Intermediate Models of Prikry-Type Forcings

Tom Benhamou

Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

January 25, 2024

Benhamou, T.

Rutgers Logic Seminar, Fall 2022

January 25, 2024 1 / 34

・ロト ・回ト ・ヨト ・

Outline

Background

2 Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

3 Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

Image: A math a math

Outline

Background

Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

- In many mathematical theories, such as groups, vector spaces, topological spaces, graphs etc., the study of submodels of a given model is indispensable to the understanding of the model and in some sense measures its complexity.
- In forcing theory, subforcings of a given forcing generate intermediate models to a generic extension by the forcing. Hence, in order to understand the subforcings of a given forcing it suffices to consider the following question, which will be the central to this talk:

Question

Given a forcing notion \mathbb{P} , what forcing notions \mathbb{Q} have (consistently have) generic extensions which are intermediate to a generic extension by \mathbb{P} ?

There are numerous classification results in this spirit, for example:

Theorem 1

- (folklore [13]) Any intermediate model of a Cohen generic extension is a Cohen generic extension.
- (D.Maharam [16]) Any intermediate model of a random real generic extension is a random real generic extension.
- (Sacks [21]) There are no proper intermediate models to a generic extension by the Sacks forcing.

Prikry-Type Forcing

In this talk we will focus on a class of forcing notion called *Prikry-Type* forcing, which is among the most important today tools in the realm of singular cardinals arithmetics and combinatorics. It traces back to Karel Prikry's celebrated work [19], where he defined the standard Prikry forcing, denoted by $\mathbb{P}(U)$ which was designated to be an example of a forcing which preserves cardinals and changes cofinalities:

Definition 2 (Prikry forcing)

Let U be a **normal** measure over a measurable cardinal κ . The conditions of $\mathbb{P}(U)$ are of the form $\langle \alpha_1, ..., \alpha_n, A \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence of ordinals below κ .
- **2** $A \in U$, min(A) > α_n is the set of candidates for the continuation.

The order is define as follows $\langle \alpha_1, ..., \alpha_n, A \rangle \leq \langle \beta_1, ..., \beta_m, B \rangle$ iff:

• $n \leq m$ and $\alpha_i = \beta_i$ for $1 \leq i \leq n$.

$$\beta_{n+1}, ..., \beta_m \in A.$$

$$B \subseteq A.$$

Prikry sequence illustration

 $\langle A \rangle$

メロト メタト メヨト メヨト

$\langle A \rangle$, Choose $\alpha_1 \in A, A_1 \subseteq A$

$\langle \alpha_1, A_1 \rangle$

メロト メロト メヨトメ

$\langle \alpha_1, A_1 \rangle$, Choose $\alpha_2 \in A_1$, $A_2 \subseteq A_1$

$\langle \alpha_1, \alpha_2, A_2 \rangle$

メロト メロト メヨトメ

$\langle \alpha_1, \alpha_2, \alpha_3, A_3 \rangle$

メロト メロト メヨトメ

$\langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, A_4 \rangle$

$\langle \alpha_1, \alpha_2, \alpha_3, \dots \alpha_n, A_n \rangle$

$\langle \alpha_1, \alpha_2, \alpha_3, \ldots \rangle$

$\langle \alpha_1, \alpha_2, \alpha_3, \ldots \rangle$

This sequence, which we denote by C_G (where G is the generic filter), produced generically by $\mathbb{P}(U)$ is an unbounded and cofinal sequence in κ called a *Prikry* sequence for the measure U. It diagonalizes U.

Prikry forcing with a normal filter

The intermediate models of the Prikry forcing are completely classified:

Theorem 3 (Gitik, Kanovei, Koepke, 2010 [12])

Let U be a normal measure over κ and $G \subseteq \mathbb{P}(U)$ be a V-generic set producing the Prikry sequence $C_G := \{\kappa_n \mid n < \omega\}$. Then for every set of ordinals $A \in V[G]$ there is $C \subseteq C_G$, such that $V[A] = V[C]^{-a}$

^aFor $A \subseteq On$, V[A] is the minimal ZFC model which includes $V \cup \{A\}$.

Corollary 4

In the settings of the last theorem, let $V \subsetneq M \subseteq V[G]$ be an intermediate ZFC model definable in V[G], then M = V[G'] where $G' \subseteq \mathbb{P}(U)$ is another V-generic filter.

Proof.

Every such model is of the form M = V[A] for some set $A \in V[G]$. By theorem 3, M = V[C] for some subsequence C of the Prikry sequence. By the Mathias criteria[17], C is itself a Prikry sequence.

Benhamou, T.

Rutgers Logic Seminar, Fall 2022

Outline

Background

2 Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

Menachem Magidor introduced [15] his forcing as an example of a forcing which preserves cardinals and changes the cofinality of some measurable cardinal κ of high Mitchell order to be uncountable by adding a club of low order type to κ . A closely related forcing is the Radin forcing[20], which also adds a club with similar to the Magidor club, but can also keep κ regular or even measurable. Nowadays, there are several variations of Magidor and Magidor-Radin forcings in use. The following maximality result for Magidor's original variation of Magidor forcing is due to Fuchs[8]:

Theorem 5 (Fuchs, G. 2014)

Let c, d be two Magidor generic clubs over V. If $d \in V[c]$ then $d \setminus c$ is finite.

In other words, the only situation when two Magidor generic extensions are intermediate to one another, is if the generic clubs associated are almost included.

Outline

Background

• Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

Image: A math the second se

Magidor Forcing I

Let $\vec{U} = \langle U(\alpha, \beta) \mid \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. We follow the variation of Magidor forcing described in [9] due to Mitchell[18]:

Definition 6

The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- A_i = Ø unless o^U(α_i) > 0 in which case, A_i ∈ ∩_{β<o^U(α_i)} U(α_i, β) is a measure one set with respect to all the measures given on α_i. The order is define as follows,
 p := ⟨⟨α₁, A₁⟩, ..., ⟨α_n, A_n⟩, ⟨κ, A⟩⟩ ≤ ⟨q := ⟨β₁, B₁⟩, ..., ⟨β_m, B_m⟩, ⟨κ, B⟩⟩ iff:
 ∃1 ≤ i₁ < ... < i_n ≤ m such that for every 1 ≤ j ≤ m:
 If ∃1 ≤ r ≤ n such that i_r = j then β_{ir} = α_r and B_{ir} ⊆ A_r.
 Otherwise let 1 ≤ r ≤ n + 1 such that i_{r-1} < j < i_r then:
 β_j ∈ A_r, B_j ⊆ A_r ∩ α_r

 $\langle \langle \kappa, A \rangle \rangle$

A D M A B M A B M

 $\langle \langle \kappa, A \rangle \rangle$

< D > < A > < B > <</p>

 $\langle \langle \kappa, A \rangle \rangle$

A D F A B F A B F A

Option 1:

$$egin{aligned} &\langle lpha_{\omega}, A_{\omega}
angle, \langle \kappa, \mathcal{A}'
angle
angle \ o^{ec{U}}(lpha_{\omega}) = 1, \; A_{\omega} \in U(lpha_{\omega}, 0) \end{aligned}$$

A D F A A F F A

Option 2:

 $\langle \langle \kappa, A \rangle \rangle$

< D > < A > < B > <</p>

Option 2:

$$\langle \alpha_0, \langle \kappa, A' \rangle \rangle$$

 $o^{\vec{U}}(\alpha_0) = 0$

A D F A A F F A

 $\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$

At each stage we can do one of the following.

A D F A B F A B F

$$\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$$

At each stage we can do one of the following. Option 1:(start producing a Prikry sequence for α_{ω} for $U(\alpha_{\omega}, 0)$)

 $\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$

Benhamou, T.

A D F A A F F A

$$\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$$

At each stage we can do one of the following. Option 1:(start producing a Prikry sequence for α_{ω} for $U(\alpha_{\omega}, 0)$)

> $\langle \alpha_1, \langle \alpha_\omega, A_\omega \rangle, \langle \kappa, A' \rangle \rangle$ $o^{\vec{U}}(\alpha_1) = 0,$

A D F A A F F A

$$\langle \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

At each stage we can do one of the following. Option 2:(dropping another limit cardinal of the eventual sequence)

 $\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$

Image: A math the second se

$$\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$$

At each stage we can do one of the following. Option 2:(dropping another limit cardinal of the eventual sequence)

$$egin{aligned} &\langle lpha_{\omega}, \mathcal{A}_{\omega}
angle, \langle lpha_{\omega\cdot 2}, \mathcal{A}_{\omega\cdot 2}
angle, \langle \kappa, \mathcal{A}'
angle
angle \ &o^{ec{U}}(lpha_{\omega\cdot 2}) = 1 \end{aligned}$$

Image: A math the second se

$$\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$$

At each stage we can do one of the following. option 3:(producing a Prikry sequence for the unknown $\alpha_{\omega \cdot 2}$)

 $\langle \langle \alpha_{\omega}, \mathbf{A}_{\omega} \rangle, \langle \kappa, \mathbf{A}' \rangle \rangle$

< D > < A > < B > <</p>

$$\langle \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

At each stage we can do one of the following. option 3:(producing a Prikry sequence for the unknown $\alpha_{\omega \cdot 2}$)

$$egin{aligned} &\langle lpha_{\omega}, \mathcal{A}_{\omega}
angle, lpha_{\omega+1}, \langle \kappa, \mathcal{A}'
angle
angle \ &o^{ec{U}}(lpha_{\omega+1}) = 0 \end{aligned}$$

Image: A matching of the second se

In this fashion we continue to produce the sequence

$$\langle \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \langle \alpha_{\omega \cdot 2}, \mathcal{A}_{\omega \cdot 2} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

・ロト ・日下・ ・ ヨト・

In this fashion we continue to produce the sequence

$$\langle \alpha_1, \langle \alpha_\omega, \mathcal{A}_\omega \rangle, \langle \alpha_{\omega \cdot 2}, \mathcal{A}_{\omega \cdot 2} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

・ロト ・回ト ・ヨト

In this fashion we continue to produce the sequence

$$\langle \alpha_1, \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \alpha_{\omega+1}, \langle \alpha_{\omega \cdot 2}, \mathcal{A}_{\omega \cdot 2} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

$$\langle \alpha_1, \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \alpha_{\omega+1}, \langle \alpha_{\omega\cdot 2}, \mathcal{A}_{\omega\cdot 2} \rangle, \langle \alpha_{\omega\cdot 3}, \mathcal{A}_{\omega\cdot 3} \rangle, \langle \kappa, \mathcal{A}' \rangle \rangle$$

$$\langle \alpha_1, \alpha_2, \langle \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \langle \alpha_{\omega \cdot 2}, A_{\omega \cdot 2} \rangle, \langle \alpha_{\omega \cdot 3}, A_{\omega \cdot 3} \rangle, \langle \kappa, A' \rangle \rangle$$

$$\langle \alpha_1, \alpha_2, \langle \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \langle \alpha_{\omega \cdot 2}, A_{\omega \cdot 2} \rangle, \langle \alpha_{\omega \cdot 3}, A_{\omega \cdot 3} \rangle, \alpha_{\omega \cdot 3+1}, \langle \kappa, A' \rangle \rangle$$

・ロト ・ 日 ・ ・ 日 ・

$$\langle \alpha_1, \alpha_2, \langle \alpha_{\omega}, \mathcal{A}_{\omega} \rangle, \alpha_{\omega+1}, \alpha_{\omega+2}, \langle \alpha_{\omega \cdot 2}, \mathcal{A}_{\omega \cdot 2} \rangle, \langle \alpha_{\omega \cdot 3}, \mathcal{A}_{\omega \cdot 3} \rangle, \alpha_{\omega \cdot 3+1}, \langle \kappa, \mathcal{A}' \rangle \rangle$$

 $\langle \alpha_1, \alpha_2, \langle, \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \alpha_{\omega+2}, \langle \alpha_{\omega\cdot 2}, A_{\omega\cdot 2} \rangle, \alpha_{\omega\cdot 2+1}, \langle \alpha_{\omega\cdot 3}, A_{\omega\cdot 3} \rangle, \alpha_{\omega\cdot 3+1}, \langle \kappa, A' \rangle \rangle$

 $\langle \alpha_1, \alpha_2, \langle, \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \alpha_{\omega+2}, \langle \alpha_{\omega\cdot 2}, A_{\omega\cdot 2} \rangle, \alpha_{\omega\cdot 2+1}, \langle \alpha_{\omega\cdot 3}, A_{\omega\cdot 3} \rangle, \alpha_{\omega\cdot 3+1}, \alpha_{\omega\cdot 3+2}, \langle \alpha_{\omega\cdot 4}, A_{\omega\cdot 4} \rangle, \langle \kappa, A' \rangle \rangle$

A D F A B F A B F

 $\langle \alpha_1, \alpha_2, \alpha_3, \langle \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \alpha_{\omega+2}, \langle \alpha_{\omega.2}, A_{\omega.2} \rangle, \alpha_{\omega.2+1}, \langle \alpha_{\omega.3}, A_{\omega.3} \rangle, \alpha_{\omega.3+1}, \alpha_{\omega.3+2}, \langle \alpha_{\omega.4}, A_{\omega.4} \rangle, \langle \kappa, A' \rangle \rangle$

A D F A B F A B F

 $\langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, \langle \alpha_{\omega}, A_{\omega} \rangle, \alpha_{\omega+1}, \alpha_{\omega+2}, \langle \alpha_{\omega,2}, A_{\omega,2} \rangle, \alpha_{\omega,2+1}, \langle \alpha_{\omega,3}, A_{\omega,3} \rangle, \alpha_{\omega,3+1}, \alpha_{\omega,3+2}, \langle \alpha_{\omega,4}, A_{\omega,4} \rangle, \langle \kappa, A' \rangle \rangle$

A D F A B F A B F

Generically, this forcing produces an ω^2 -sequence cofinal at κ .

 $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_{\omega}, \alpha_{\omega+1}, \alpha_{\omega+2}, \ldots, \alpha_{\omega \cdot 2}, \alpha_{\omega \cdot 2+1}, \ldots, \alpha_{\omega \cdot 3}, \ldots, \alpha_{\omega \cdot 4}, \ldots \kappa$

Generically, this forcing produces an ω^2 -sequence cofinal at κ .

 $\alpha_1,\alpha_2,\alpha_3,\ldots,\alpha_{\omega},\alpha_{\omega+1},\alpha_{\omega+2},\ldots,\alpha_{\omega\cdot 2},\alpha_{\omega\cdot 2+1},\ldots\alpha_{\omega\cdot 3},\ldots\alpha_{\omega\cdot 4},\ldots\kappa$

If $G \subseteq \mathbb{M}[\vec{U}]$ is a generic filter, we denote by C_G the Magidor generic sequence generated by G.

Outline

Background

Magidor-Radin ForcingThe Forcing Notion

• Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

Intermediate Models of a generic extension by $\mathbb{M}[\vec{U}]$ are not necessarily generic extensions of $\mathbb{M}[\vec{U}]$:

Example 7

Assume that $o^{\vec{U}}(\kappa) = 2$. Then κ carries two measures: $U(\kappa, 0), U(\kappa, 1)$. This means that typically $otp(C_G) = \omega^2$, denote it by $C_G = \{C_G(i) \mid i < \omega^2\}$. For example the intermediate model $V[\{C_G(n) \mid n < \omega\}]$, is a Prikry generic extension.

Example 8

Assume that $o^{\vec{U}}(\kappa) = \omega$, thus $otp(C_G) = \omega^{\omega}$. Consider the intermediate extension $V[\{C_G(\omega^n) \mid n < \omega\}]$ it is a diagonal Prikry generic extension for the sequence of measures $\langle U(\kappa, n) \mid n < \omega \rangle$.

イロト イヨト イヨト イヨト

Example 9

Let $o^{\vec{U}}(o^{\vec{U}}(\kappa)) = 1$. There is $G \subseteq \mathbb{M}[\vec{U}]$ which produces a Magidor sequence $\{C_G(\alpha) \mid \alpha < \delta_0\}$ such that $C_G(\omega) = \delta_0$. The first Prikry sequence $\{C_G(n) \mid n < \omega\} \in V[G]$ is a cofinal sequence in $C_G(\omega) = \delta_0$. Consider the sequence $C = \{C_G(C_G(n)) \mid n < \omega\}$. It is unbounded in κ and witnesses that κ changes cofinality. This example is quite different from the previous two in the sense that the indices of C inside C_G are $I := \{C_G(n) \mid n < \omega\} \notin V$.

Example 10

Assume $o^{\vec{U}}(\kappa) = \kappa$. Let Again $C_G = \{C_G(\alpha) \mid \alpha < \kappa\}$. In V[G], define $\alpha_0 = C_G(0)$, and $\alpha_{n+1} = C_G(\alpha_n)$. Then $\{\alpha_n \mid n < \omega\}$ is a cofinal ω -sequence in κ .

Theorem 11 (B. (2019)[2])

 $\langle \alpha_n \mid n < \omega \rangle$ is Tree-Prikry generic sequence for the measures $\langle U(\kappa, \alpha) \mid \alpha < \kappa \rangle$.

Actually the theorem is a Mathias-like criterion for the Tree-Prikry forcing. Clearly all these example are Prikry-Type extensions.

< □ > < □ > < □ > < □ > < □ >

We obtained the first step toward a classification of the intermediate models of Magidor-Radin forcing:

Theorem 12 (Gitik, B.[5])

Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Assume that $\forall \alpha \in C_G \cup \{\kappa\}.o^{\vec{U}}(\alpha) < \alpha^+$. Then for every set of ordinals $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C]. Where C_G is the Magidor club added by G.

As we have seen from the examples, it is not clear which are the forcings that the models V[C] are generic extensions for. In [4], we restrict the order of κ to be below κ and define a class of "Magidor-Type" forcing notions, denoted by $\mathbb{M}_f[\vec{U}]$. This class is basically a Magidor forcing adding elements from measures prescribed by the function f. We then prove that the intermediate model must be finite iterations of such forcings.

< □ > < □ > < □ > < □ > < □ >

Background

2 Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

The Tree-Prikry forcing

Let $\vec{U} = \langle U_a \mid a \in [\kappa]^{<\omega} \rangle$ be a tree of κ -complete ultrafilters over κ .

Definition 13 (Tree Prikry Forcing- $P_T(\vec{U})$)

Conditions of $P_T(\vec{U})$ are pairs $\langle t, T \rangle$, where T is a subtree of $[\kappa]^{<\omega}$ with stem t, which is \vec{U} -splitting:

$$\forall s \in T.s \ge t \to \operatorname{Succ}_{T}(s) := \{ \alpha < \kappa \mid s^{\frown} \alpha \in T \} \in U_{s}$$

The order is defined (Israel convention: $q \leq p$ then $p \vdash q \in \dot{G}$) $\langle t, T \rangle \leq \langle s, S \rangle$ iff $S \subseteq T$ (hence $s \in T$)

There is an equivalent forcing to $P_T(W)$, where W is a non-normal κ -complete ultrafilter (We view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = W$). The conditions are of the form $\langle t, A \rangle$ where $A \in W$ and the sequence t is strongly increasing. It turns out (not surprisingly) that the structure of the intermediate models of the tree Prikry forcing depends on the combinatorical properties of the measures in \vec{U} .

< □ > < □ > < □ > < □ > < □ >

Theorem 14 (Koepke, Räsch, Schlicht (2013)[14])

Assume that $\vec{U} = \langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of distinct normal measures. Then for every V-generic filter $G \subseteq P_T(\vec{U})^a$, there is no proper intermediate model $V \subsetneq M \subsetneq V[G]$.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = U_{\max(a)}$.

On the other hand:

Theorem 15 (Gitik, B. (2021)[5])

Assume GCH and let κ be a measurable cardinal. There is a cofinality preserving forcing extension $V \subseteq N$ and an ultrefilter $W \in N$ such that forcing with $P_T(W)$ over N adds a κ -Cohen real.

< □ > < □ > < □ > < □ > < □ >

Sketch of the Proof.

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing $\{0\}$ and the β -Cohen real forcing $Add(\beta, 1)$. Let $G_{\kappa} \subseteq P_{\kappa}$ be V-generic and $N := V[G_{\kappa}]$. The idea is to take $U \in V$ be a normal measure over κ extend it to a (non-normal) κ -complete ultrafilter W which concentrate on the set

$$L_0 = \{ \alpha < \kappa \mid G_\alpha \text{ is generic for } Add(\alpha, 1) \}$$

This measure W is obtained by looking at the second iteration of U. For each $\alpha \in L_0$, let f_{α} be the Cohen function added by G_{κ} . Force $P_{\mathcal{T}}(W)$ over N, and denote by $C_G := \{\kappa_n \mid n < \omega\}$ the Prikry sequence. There is $n_0 < \omega$ such that for every $n \ge n_0$, $\kappa_n \in L_0$ and therefore f_{κ_n} is defined. It remains to see that

$$f = \bigcup_{n_0 \leq n < \omega} f_{\kappa_n} \upharpoonright [\kappa_{n-1}, \kappa_n) \in N[C_G]$$

is *N*-generic for $Add(\kappa, 1)$.

Outline

Background

2 Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

Definition 16 (κ -compact Cardinal)

 κ is called a $\kappa\text{-compact cardinal}$ if every $\kappa\text{-complete}$ filter over κ can be extended to a $\kappa\text{-complete}$ ultrafilter over κ

The ability to extend κ -complete filters is deeply connected to our problem:

Theorem 17 (Gitik, Hayut, B. 2021[7])

Let \mathbb{P} be a σ -distributive forcing of size κ . The following are equivalent:

- There is a tree $\vec{\mathcal{U}}$ of κ -complete ultrafilters and a projection $\pi : \mathbb{P}_T(\vec{\mathcal{U}}) \to B(\mathbb{P}).$
- For every p ∈ P, D_p(P) can be extended to a κ-complete ultrafilter U_p. Where D_p(P) is the filter of open subsets of P which are dense above p.

Corollary 18

If κ is κ -compact, every κ -distributive forcing of cardinality κ is a projection of a Tree-Prikry forcing.

Benhamou, T.

Lower bound for all the κ -distributive

The assumption that κ is $\kappa\text{-compact}$ is quit strong:

Theorem 19 (Gitik [11])

If κ is κ -compact then there is an inner model with a Woodin cardinal.

Question

Can the assumption that κ is κ -compact be relaxed?

Since we only wish to extend a relatively easily definable filter $D_p(\mathbb{P})$, it suffices to assume that κ is 1-extendable. However, we cannot hope to improve this bound much further. In [7], we found that there is a non trivial lower bound:

Theorem 20 (Gitik, Hayut, B.)

Let Q be the forcing shooting a club through the singulars below κ^a . Assume that there is a κ -complete ultrafilter extending the filter D(Q) of dense open subset of Q. Then either there is an inner model for $\exists \lambda, o(\lambda) = \lambda^{++}$, or $o^{\mathcal{K}}(\kappa) \geq \kappa^+$.

^aThus Making κ not Mahlo. It is $< \kappa$ -strategically closed.

Outline

Background

2 Magidor-Radin Forcing

- The Forcing Notion
- Examples Main result

Tree-Prikry Forcing

- Known Results Regarding the Tree-Prikry forcing
- Under very large cardinals
- Cardinality greater than κ

4 References

Adding more than one Cohen and non-Galvin Ultrafilters

What limitations do we have on projections of the Tree-Prikry forcing. In terms of cardinality it should be at most 2^{κ} . Also, κ -centered is essential: If $\mathbb{P} = \bigcup_{i < \kappa} A_i$ such that A_i is a directed set, and $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection, then $\mathbb{Q} = \bigcup \pi'' A_i$ and each $\pi'' A_i$ is a directed set.

Corollary 21

 $Add(\kappa^+, 1)$ (Nor $B(Add(\kappa^+, 1))$) is not a projection of the Tree-Prikry forcing.

The forcing $Add(\kappa, \kappa^+)$ on the other hand is κ -centered.

In a very recent joint result with Gitik we have proved that we can actually get the consistency of κ^+ -many Cohen functions of κ as an subfrorcing of the Tree-Prikry forcing is also consistent (starting from a measurable). This is done using a non-Galvin ultrafilter.

Definition 22

A κ -complete ultrafilter U is called a *Galvin*-ultrafilter, if for every $\langle X_i \mid i < \kappa^+ \rangle \in [U]^{\kappa^+}$ there is $I \in [\kappa^+]^{\kappa}$ such that $\bigcap_{i \in I} X_i \in U$.

Galvin proved that normal ultrafilters are Galvin [1].

Benhamou, T.

イロン イロン イヨン イヨン

For adding κ^+ -many Cohens to κ , it is necessary to force with a non-Galvin ultrafilter:

Proposition 1

Let U is a Galvin ultrafilter and $G \subseteq \mathbb{P}_T(U)$ be V-generic. Then for any subset $A \in V[G]$, $A \subseteq V$, $|A| = \kappa^+$, there is $A' \in V$ such that $|A'| = \kappa$ and $A' \subseteq A$.

Proof.

Suppose otherwise, and let $f : \kappa^+ \to \kappa^+$ enumerating A. On one hand, translating the assumption on A, there is no $g \in V$ such that $|g| = \kappa$ and $g \subseteq f$. On the other hand, for every $\alpha < \kappa^+$ find a condition $p_\alpha = \langle t_\alpha, A_\alpha \rangle \in \mathbb{P}(U)$ such that p_α decides the value $f(\alpha)$. Then there is $X \subseteq \kappa^+$ and t^* such that $|X| = \kappa^+$ and for every $\alpha \in X$, $t_\alpha = t^*$. Consider $\langle A_\alpha \mid \alpha \in X \rangle$ and apply the Galvin property to find $Y \subseteq X$ such that $|Y| = \kappa$ and $A^* := \bigcap_{y \in Y} A_y \in U$. Then $\langle t^*, A^* \rangle$ decides κ -many values of f_α , contradiction. \Box

Actually the other direction is also true, that is there is no such subset in V[G] then U must be Galvin[10],[3].

イロト イヨト イヨト イヨト

Corollary 23

If U is Galvin then U does not add a κ^+ -many Cohen function.

Proof.

Indeed if $f : \kappa^+ \to 2$ is a $Add(\kappa, \kappa^+)$ -generic, then by density argument the set $A = \{\alpha < \kappa^+ \mid f(\alpha) = 1\}$ has no V-subset of cardinality κ .

Theorem 24 (Gitik, B. (2022)[6])

Starting from a measurable cardinal, it is concictent that there is a non-Galvin ultrafilter U such that forcing $\mathbb{P}_T(U)$ adds a generic for $Add(\kappa, \kappa^+)$.

イロト イ団ト イヨト イヨト

References I

- James E. Baumgartner, András Hajnal, and Attila Mate, *Weak Saturation Properties of Ideals*, Colloq. Math. Soc. Janós Bolyai **10** (1973), 137–158.
- Tom Benhamou, *Prikry Forcing and Tree Prikry Forcing of Various Filters*, Arch. Math. Logic **58** (2019), 787—-817.
- Tom Benhamou, Shimon Garti, and Alejandro Poveda, *Negating the galvin property*, Journal of the London Mathematical Society (2022), to appear.
- Tom Benhamou and Moti Gitik, *Intermediate Models of Magidor-Radin Forcing-Part I*, Israel Journal of Mathematics (2021).
- Tom Benhamou and Moti Gitik, Sets in Prikry and Magidor Generic Extesions, Annals of Pure and Applied Logic 172 (2021), no. 4, 102926.
- , On Cohen and Prikry Forcing Notions, preprint (2022), arXiv:2204.02860.
 - Tom Benhamou, Moti Gitik, and Yair Hayut, *The Variety of Projections of a Tree-Prikry Forcing*, preprint (2021), arXiv:2109.09069.

<ロト < 回 > < 回 > < 回 > < 回 >

- Gunther Fuchs, *On Sequences Generic in the Sense of Magidor*, Journal of Symbolic Logic **79** (2014), 1286–1314.
- Moti Gitik, *Prikry-Type Forcings*, pp. 1351–1447, Springer Netherlands, Dordrecht, 2010.
 - _____, On Density of Old Sets in Prikry Type Extensions, Proceedings of the American Mathematical Society **145** (2017), no. 2, 881–887.
 - -, On κ -compact cardinals, Israel Journal of Mathematics **237** (2020), 457–483.
- Moti Gitik, Vladimir Kanovei, and Peter Koepke, Intermediate Models of Prikry Generic Extensions, http://www.math.tau.ac.il/ gitik/spr-kn.pdf (2010).
- Akihiro Kanamori, *The Higher Infinite*, Springer, 1994.

• • • • • • • • • • • •

- Peter Koepke, Karen Rasch, and Philipp Schlicht, Minimal Prikry-Type Forcing for Singularizing a Measurable Cardinal, J. Symb. Logic 78 (2013), 85—-100.
- Menachem Magidor, *Changing the Cofinality of Cardinals*, Fundamenta Mathematicae **99** (1978), 61–71.
- Dorothy Maharam, *An Algebraic Characterization of Measure Algebras*, Annals of Mathematics **48** (1947), 154–167.
- A. R. D. Mathias, *On Sequences Generic in the Sense of Prikry*, Journal of Australian Mathematical Society **15** (1973), 409–414.
 - William Mitchell, *How Weak is a Closed Unbounded Filter?*, stud. logic foundation math. **108** (1982), 209–230.
- Karel Prikry, *Changing Measurable into Accessible Cardinals*, Dissertationes Mathematicae **68** (1970), 5–52.

<ロト < 回 > < 回 > < 回 > < 回 >

Lon Berk Radin, *Adding Closed Cofinal Sequences to Large Cardinals*, Annals of Mathematical Logic **22** (1982), no. 3, 243—261.

Gerald E. Sacks, *Forcing with perfect closed sets, axiomatic set theory,* Proceedings of symposia in pure mathematics **13** (1971), no. 1, 331–355.

A D F A A F F A

Thank you for your attention!

メロト メタト メヨト メヨト