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In many mathematical theories, such as groups, vector spaces, topological
spaces, graphs etc., the study of submodels of a given model is indispensable
to the understanding of the model and in some sense measures its complexity.
In forcing theory, subforcings of a given forcing generate intermediate models
to a generic extension by the forcing. Hence, in order to understand the
subforcings of a given forcing it suffices to consider the following question,
which will be the central to this talk:

Question

Given a forcing notion P, what forcing notions Q have (consistently have) generic
extensions which are intermediate to a generic extension by P?

There are numerous classification results in this spirit, for example:

Theorem 1
1 (folklore [13]) Any intermediate model of a Cohen generic extension is a

Cohen generic extension.

2 (D.Maharam [16]) Any intermediate model of a random real generic
extension is a random real generic extension.

3 (Sacks [21]) There are no proper intermediate models to a generic extension
by the Sacks forcing.
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Prikry-Type Forcing

In this talk we will focus on a class of forcing notion called Prikry-Type forcing,
which is among the most important today tools in the realm of singular cardinals
arithmetics and combinatorics. It traces back to Karel Prikry’s celebrated work
[19], where he defined the standard Prikry forcing, denoted by P(U) which was
designated to be an example of a forcing which preserves cardinals and changes
cofinalities:

Definition 2 (Prikry forcing)

Let U be a normal measure over a measurable cardinal κ. The conditions of P(U)
are of the form 〈α1, ..., αn,A〉 where:

1 α1 < ... < αn is an increasing sequence of ordinals below κ.

2 A ∈ U, min(A) > αn is the set of candidates for the continuation.

The order is define as follows 〈α1, ..., αn,A〉 ≤ 〈β1, ..., βm,B〉 iff:

1 n ≤ m and αi = βi for 1 ≤ i ≤ n.

2 βn+1, ..., βm ∈ A.

3 B ⊆ A.
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Prikry sequence illustration

〈A〉
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Prikry sequence illustration

〈A〉, Choose α1 ∈ A,A1 ⊆ A
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Prikry sequence illustration

〈α1,A1〉
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Prikry sequence illustration

〈α1,A1〉, Choose α2 ∈ A1, A2 ⊆ A1
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Prikry sequence illustration

〈α1, α2,A2〉
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Prikry sequence illustration

〈α1, α2, α3,A3〉
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Prikry sequence illustration

〈α1, α2, α3, α4,A4〉
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Prikry sequence illustration

〈α1, α2, α3, ...αn,An〉
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Prikry sequence illustration

〈α1, α2, α3, ....〉
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Prikry sequence illustration

〈α1, α2, α3, ....〉

This sequence, which we denote by CG (where G is the generic filter), produced
generically by P(U) is an unbounded and cofinal sequence in κ called a Prikry
sequence for the measure U. It diagonalizes U.
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Prikry forcing with a normal filter

The intermediate models of the Prikry forcing are completely classified:

Theorem 3 (Gitik, Kanovei, Koepke, 2010 [12])

Let U be a normal measure over κ and G ⊆ P(U) be a V -generic set producing
the Prikry sequence CG := {κn | n < ω}. Then for every set of ordinals A ∈ V [G ]
there is C ⊆ CG , such that V [A] = V [C ] a

aFor A ⊆ On, V [A] is the minimal ZFC model which includes V ∪ {A}.

Corollary 4

In the settings of the last theorem, let V ( M ⊆ V [G ] be an intermediate ZFC
model definable in V [G ], then M = V [G ′] where G ′ ⊆ P(U) is another V -generic
filter.

Proof.

Every such model is of the form M = V [A] for some set A ∈ V [G ]. By theorem 3,
M = V [C ] for some subsequence C of the Prikry sequence. By the Mathias
criteria[17], C is itself a Prikry sequence.

Benhamou, T. Rutgers Logic Seminar, Fall 2022 January 25, 2024 7 / 34



Outline

1 Background

2 Magidor-Radin Forcing
The Forcing Notion
Examples Main result

3 Tree-Prikry Forcing
Known Results Regarding the Tree-Prikry forcing
Under very large cardinals
Cardinality greater than κ

4 References

Benhamou, T. Rutgers Logic Seminar, Fall 2022 January 25, 2024 8 / 34



Magidor-Radin Forcing

Menachem Magidor introduced [15] his forcing as an example of a forcing which
preserves cardinals and changes the cofinality of some measurable cardinal κ of
high Mitchell order to be uncountable by adding a club of low order type to κ. A
closely related forcing is the Radin forcing[20], which also adds a club with similar
to the Magidor club, but can also keep κ regular or even measurable. Nowadays,
there are several variations of Magidor and Magidor-Radin forcings in use.
The following maximality result for Magidor’s original variation of Magidor forcing
is due to Fuchs[8]:

Theorem 5 (Fuchs, G. 2014)

Let c , d be two Magidor generic clubs over V . If d ∈ V [c] then d \ c is finite.

In other words, the only situation when two Magidor generic extensions are
intermediate to one another, is if the generic clubs associated are almost included.
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Magidor Forcing I

Let ~U = 〈U(α, β) | α ≤ κ , β < o
~U(α)〉 be a coherent sequence. We follow the

variation of Magidor forcing described in [9] due to Mitchell[18]:

Definition 6

The conditions of M[ ~U] are of the form 〈〈α1,A1〉, ..., 〈αn,An〉, 〈κ,A〉〉 where:

1 α1 < ... < αn is an increasing sequence below κ.

2 Ai = ∅ unless o
~U(αi ) > 0 in which case, Ai ∈ ∩β<o~U (αi )

U(αi , β) is a measure

one set with respect to all the measures given on αi .
The order is define as follows,
p := 〈〈α1,A1〉, ..., 〈αn,An〉, 〈κ,A〉〉 ≤ 〈q := 〈β1,B1〉, ..., 〈βm,Bm〉, 〈κ,B〉〉 iff:

∃1 ≤ i1 < ... < in ≤ m such that for every 1 ≤ j ≤ m:
1 If ∃1 ≤ r ≤ n such that ir = j then βir = αr and Bir ⊆ Ar .
2 Otherwise let 1 ≤ r ≤ n + 1 such that ir−1 < j < ir then:
βj ∈ Ar , Bj ⊆ Ar ∩ αr
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals.

〈〈κ,A〉〉
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals. we now have two
options.

〈〈κ,A〉〉
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals. we now have two
options.
Option 1:

〈〈κ,A〉〉
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals. we now have two
options.
Option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

o
~U(αω) = 1, Aω ∈ U(αω, 0)
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals. we now have two
options.
Option 2:

〈〈κ,A〉〉
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Magidor Sequence illustration

Assume for simplicity that o(κ) = 2, then we have two measures on κ, U(κ, 0)

which concentrate on {α | o ~U(α) = 1} and U(κ, 1) which concentrate on

{α | o ~U(α) = 0}. Start with a condition with no ordinals. we now have two
options.
Option 2:

〈α0, 〈κ,A′〉〉

o
~U(α0) = 0
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
Option 1:(start producing a Prikry sequence for αω for U(αω, 0))

〈〈αω,Aω〉, 〈κ,A′〉〉
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
Option 1:(start producing a Prikry sequence for αω for U(αω, 0))

〈α1, 〈αω,Aω〉, 〈κ,A′〉〉

o
~U(α1) = 0,
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
Option 2:(dropping another limit cardinal of the eventual sequence)

〈〈αω,Aω〉, 〈κ,A′〉〉
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
Option 2:(dropping another limit cardinal of the eventual sequence)

〈〈αω,Aω〉, 〈αω·2,Aω·2〉, 〈κ,A′〉〉

o
~U(αω·2) = 1
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
option 3:(producing a Prikry sequence for the unknown αω·2)

〈〈αω,Aω〉, 〈κ,A′〉〉
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Magidor Sequence illustration

Assume we have chosen option 1:

〈〈αω,Aω〉, 〈κ,A′〉〉

At each stage we can do one of the following.
option 3:(producing a Prikry sequence for the unknown αω·2)

〈〈αω,Aω〉, αω+1, 〈κ,A′〉〉

o
~U(αω+1) = 0
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈〈αω,Aω〉, 〈αω·2,Aω·2〉, 〈κ,A′〉〉

Benhamou, T. Rutgers Logic Seminar, Fall 2022 January 25, 2024 14 / 34



Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, 〈αω,Aω〉, 〈αω·2,Aω·2〉, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, 〈αω,Aω〉, αω+1, 〈αω·2,Aω·2〉, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, 〈αω,Aω〉, αω+1, 〈αω·2,Aω·2〉, 〈αω·3,Aω·3〉, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, α2, 〈αω,Aω〉, αω+1, 〈αω·2,Aω·2〉, 〈αω·3,Aω·3〉, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, α2, 〈αω,Aω〉, αω+1, 〈αω·2,Aω·2〉, 〈αω·3,Aω·3〉, αω·3+1, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1, α2, 〈αω,Aω〉, αω+1, αω+2, 〈αω·2,Aω·2〉, 〈αω·3,Aω·3〉, αω·3+1, 〈κ,A′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1,α2,〈,αω,Aω〉,αω+1,αω+2,〈αω·2,Aω·2〉,αω·2+1,〈αω·3,Aω·3〉,αω·3+1,〈κ,A
′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1,α2,〈,αω,Aω〉,αω+1,αω+2,〈αω·2,Aω·2〉,αω·2+1,〈αω·3,Aω·3〉,αω·3+1,αω·3+2,〈αω·4,Aω·4〉,〈κ,A
′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1,α2,α3,〈αω,Aω〉,αω+1,αω+2,〈αω·2,Aω·2〉,αω·2+1,〈αω·3,Aω·3〉,αω·3+1,αω·3+2,〈αω·4,Aω·4〉,〈κ,A
′〉〉
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Magidor Sequence illustration

In this fashion we continue to produce the sequence

〈α1,α2,α3,α4,〈αω,Aω〉,αω+1,αω+2,〈αω·2,Aω·2〉,αω·2+1,〈αω·3,Aω·3〉,αω·3+1,αω·3+2,〈αω·4,Aω·4〉,〈κ,A
′〉〉
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Magidor Sequence illustration

Generically, this forcing produces an ω2-sequence cofinal at κ.

α1,α2,α3,...,αω,αω+1,αω+2,...,αω·2,αω·2+1,....αω·3,...αω·4,...κ
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Magidor Sequence illustration

Generically, this forcing produces an ω2-sequence cofinal at κ.

α1,α2,α3,...,αω,αω+1,αω+2,...,αω·2,αω·2+1,....αω·3,...αω·4,...κ

If G ⊆M[ ~U] is a generic filter, we denote by CG the Magidor generic sequence
generated by G .
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Magidor Forcing- Examples of Intermediate Models

Intermediate Models of a generic extension by M[ ~U] are not necessarily generic

extensions of M[ ~U]:

Example 7

Assume that o
~U(κ) = 2. Then κ carries two measures: U(κ, 0),U(κ, 1). This

means that typically otp(CG ) = ω2, denote it by CG = {CG (i) | i < ω2}. For
example the intermediate model V [{CG (n) | n < ω}], is a Prikry generic extension.

Example 8

Assume that o
~U(κ) = ω, thus otp(CG ) = ωω. Consider the intermediate

extension V [{CG (ωn) | n < ω}] it is a diagonal Prikry generic extension for the
sequence of measures 〈U(κ, n) | n < ω〉.
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Example 9

Let o
~U(o

~U(κ)) = 1. There is G ⊆M[ ~U] which produces a Magidor sequence
{CG (α) | α < δ0} such that CG (ω) = δ0. The first Prikry sequence
{CG (n) | n < ω} ∈ V [G ] is a cofinal sequence in CG (ω) = δ0. Consider the
sequence C = {CG (CG (n)) | n < ω}. It is unbounded in κ and witnesses that κ
changes cofinality. This example is quite different from the previous two in the
sense that the indices of C inside CG are I := {CG (n) | n < ω} /∈ V .

Example 10

Assume o
~U(κ) = κ. Let Again CG = {CG (α) | α < κ}. In V [G ], define

α0 = CG (0), and αn+1 = CG (αn). Then {αn | n < ω} is a cofinal ω-sequence in κ.

Theorem 11 (B. (2019)[2])

〈αn | n < ω〉 is Tree-Prikry generic sequence for the measures 〈U(κ, α) | α < κ〉.

Actually the theorem is a Mathias-like criterion for the Tree-Prikry forcing. Clearly
all these example are Prikry-Type extensions.
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The Main Result I

We obtained the first step toward a classification of the intermediate models of
Magidor-Radin forcing:

Theorem 12 (Gitik, B.[5])

Let G ⊆M[ ~U] be a V -generic set producing the Magidor sequence CG . Assume

that ∀α ∈ CG ∪ {κ}.o
~U(α) < α+. Then for every set of ordinals A ∈ V [G ] there

is C ⊆ CG , such that V [A] = V [C ]. Where CG is the Magidor club added by G .

As we have seen from the examples, it is not clear which are the forcings that the
models V [C ] are generic extensions for. In [4], we restrict the order of κ to be

below κ and define a class of ”Magidor-Type” forcing notions, denoted by Mf [ ~U].
This class is basically a Magidor forcing adding elements from measures prescribed
by the function f . We then prove that the intermediate model must be finite
iterations of such forcings.
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The Tree-Prikry forcing

Let ~U = 〈Ua | a ∈ [κ]<ω〉 be a tree of κ-complete ultrafilters over κ.

Definition 13 (Tree Prikry Forcing-PT ( ~U))

Conditions of PT ( ~U) are pairs 〈t,T 〉, where T is a subtree of [κ]<ω with stem t,

which is ~U-splitting:

∀s ∈ T .s ≥ t → SuccT (s) := {α < κ | saα ∈ T} ∈ Us

The order is defined (Israel convention: q ≤ p then p ` q ∈ Ġ ) 〈t,T 〉 ≤ 〈s,S〉 iff
S ⊆ T (hence s ∈ T )

There is an equivalent forcing to PT (W ), where W is a non-normal κ-complete

ultrafilter (We view ~U as a tree by defining for every a ∈ [κ]<ω, Ua = W ). The
conditions are of the form 〈t,A〉 where A ∈W and the sequence t is strongly
increasing. It turns out (not surprisingly) that the structure of the intermediate
models of the tree Prikry forcing depends on the combinatorical properties of the
measures in ~U.
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Intermediate Models of Tree Prikry forcing

Theorem 14 (Koepke, Räsch, Schlicht (2013)[14])

Assume that ~U = 〈Uα | α < κ〉 is a sequence of distinct normal measures. Then

for every V -generic filter G ⊆ PT ( ~U)a, there is no proper intermediate model
V ( M ( V [G ].

aWe view ~U as a tree by defining for every a ∈ [κ]<ω , Ua = Umax(a).

On the other hand:

Theorem 15 (Gitik, B. (2021)[5])

Assume GCH and let κ be a measurable cardinal. There is a cofinality preserving
forcing extension V ⊆ N and an ultrefilter W ∈ N such that forcing with PT (W )
over N adds a κ-Cohen real.
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Prikry introduce Cohen- Proof

Sketch of the Proof.
The model N is obtained by forcing the Easton support iteration
〈Pα,Q∼β | α ≤ κ, β < κ〉: Each Q∼β is trivial, unless β is inaccessible. For
inaccessible β, Q∼β is the lottery sum of the trivial forcing {0} and the β-Cohen
real forcing Add(β, 1). Let Gκ ⊆ Pκ be V -generic and N := V [Gκ]. The idea is to
take U ∈ V be a normal measure over κ extend it to a (non-normal) κ-complete
ultrafilter W which concentrate on the set

L0 = {α < κ | Gα is generic for Add(α, 1)}

This measure W is obtained by looking at the second iteration of U. For each
α ∈ L0, let fα be the Cohen function added by Gκ. Force PT (W ) over N, and
denote by CG := {κn | n < ω} the Prikry sequence. There is n0 < ω such that for
every n ≥ n0, κn ∈ L0 and therefore fκn is defined. It remains to see that

f = ∪n0≤n<ωfκn � [κn−1, κn) ∈ N[CG ]

is N-generic for Add(κ, 1).
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Assuming κ is κ-compact

Definition 16 (κ-compact Cardinal)

κ is called a κ-compact cardinal if every κ-complete filter over κ can be extended
to a κ-complete ultrafilter over κ

The ability to extend κ-complete filters is deeply connected to our problem:

Theorem 17 (Gitik, Hayut, B. 2021[7])

Let P be a σ-distributive forcing of size κ. The following are equivalent:

There is a tree ~U of κ-complete ultrafilters and a projection
π : PT (~U)→ B(P).

For every p ∈ P, Dp(P) can be extended to a κ-complete ultrafilter Up.
Where Dp(P) is the filter of open subsets of P which are dense above p.

Corollary 18

If κ is κ-compact, every κ-distributive forcing of cardinality κ is a projection of a
Tree-Prikry forcing.
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Lower bound for all the κ-distributive

The assumption that κ is κ-compact is quit strong:

Theorem 19 (Gitik [11])

If κ is κ-compact then there is an inner model with a Woodin cardinal.

Question
Can the assumption that κ is κ-compact be relaxed?

Since we only wish to extend a relatively easily definable filter Dp(P), it suffices to
assume that κ is 1-extendable. However, we cannot hope to improve this bound
much further. In [7], we found that there is a non trivial lower bound:

Theorem 20 (Gitik, Hayut, B.)

Let Q be the forcing shooting a club through the singulars below κa. Assume that
there is a κ-complete ultrafilter extending the filter D(Q) of dense open subset of
Q. Then either there is an inner model for ∃λ, o(λ) = λ++, or oK(κ) ≥ κ+.

aThus Making κ not Mahlo. It is < κ-strategically closed.
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Adding more than one Cohen and non-Galvin Ultrafilters

What limitations do we have on projections of the Tree-Prikry forcing. In terms of
cardinality it should be at most 2κ. Also, κ-centered is essential:
If P = ∪i<κAi such that Ai is a directed set, and π : P→ Q is a projection, then
Q = ∪π′′Ai and each π′′Ai is a directed set.

Corollary 21

Add(κ+, 1) (Nor B(Add(κ+, 1))) is not a projection of the Tree-Prikry forcing.

The forcing Add(κ, κ+) on the other hand is κ-centered.
In a very recent joint result with Gitik we have proved that we can actually get the
consistency of κ+-many Cohen functions of κ as an subfrorcing of the Tree-Prikry
forcing is also consistent (starting from a measurable). This is done using a
non-Galvin ultrafilter.

Definition 22
A κ-complete ultrafilter U is called a Galvin-ultrafilter, if for every
〈Xi | i < κ+〉 ∈ [U]κ

+

there is I ∈ [κ+]κ such that ∩i∈IXi ∈ U.

Galvin proved that normal ultrafilters are Galvin [1].

Benhamou, T. Rutgers Logic Seminar, Fall 2022 January 25, 2024 27 / 34



For adding κ+-many Cohens to κ, it is necessary to force with a non-Galvin
ultrafilter:

Proposition 1

Let U is a Galvin ultrafilter and G ⊆ PT (U) be V -generic. Then for any subset
A ∈ V [G ], A ⊆ V , |A| = κ+, there is A′ ∈ V such that |A′| = κ and A′ ⊆ A.

Proof.

Suppose otherwise, and let f : κ+ → κ+ enumerating A. On one hand, translating
the assumption on A, there is no g ∈ V such that |g | = κ and g ⊆ f . On the
other hand, for every α < κ+ find a condition pα = 〈tα,Aα〉 ∈ P(U) such that pα
decides the value f∼(α). Then there is X ⊆ κ+ and t∗ such that |X | = κ+ and for
every α ∈ X , tα = t∗. Consider 〈Aα | α ∈ X 〉 and apply the Galvin property to
find Y ⊆ X such that |Y | = κ and A∗ := ∩y∈YAy ∈ U. Then 〈t∗,A∗〉 decides
κ-many values of f∼, contradiction.

Actually the other direction is also true, that is there is no such subset in V [G ]
then U must be Galvin[10],[3].
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Corollary 23

If U is Galvin then U does not add a κ+-many Cohen function.

Proof.

Indeed if f : κ+ → 2 is a Add(κ, κ+)-generic, then by density argument the set
A = {α < κ+ | f (α) = 1} has no V -subset of cardinality κ.

Theorem 24 (Gitik, B. (2022)[6])

Starting from a measurable cardinal, it is concictent that there is a non-Galvin
ultrafilter U such that forcing PT (U) adds a generic for Add(κ, κ+).
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Finish line

Thank you for your attention!
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