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Sequencial Continuity Vs. Continuity
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Let (X , τX ), (Y , τY ) be Hausdorff topological spaces. Recall that

Definition 1
A function f : X → Y is continuous in the sequential sense if whenever
(xn)∞n=0 ⊆ X is a sequence converging to x ∈ X (namely, for every neighborhood
x ∈ U ∈ τX there is N such that for all n ≥ N, xn ∈ U), the sequence (f (xn))∞n=0

converges to f (x).

It is well known that first-countable spaces a function f is continuous if and only if
f is continuous in the sequential sense. In general the two are not equivalent (For
example f : ω1 + 1→ R defined by f (x) = 0 if x < ω1 and f (ω1) = 1 is not
continuous but sequentially continuous.)

Definition 2

A net is a function ~x = (xa)a∈A such that (A,≤A) is a directed set. x is a limit of
~x if for every x ∈ U ∈ τX there is a such that , b ≥ a, xb ∈ U (AKA Moore-Smith
convergence).

Now a function f : X → Y is continuous iff for every net (xa)a∈A with limit x ,
(f (xa))a∈A has limit f (x).
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Cofinal maps

Some ”types” of directed sets actually give essentially the same notion of net, for
example, N and Neven or even fin = {X ∈ P(N) | X is finite}. More generally we
would like to find an equivalence relation that reduces to the ”essential” ordered
sets. This is given by the Tukey order which was defined by J. Tukey [7]:

Definition 3

Let (P,≤P), (Q,≤Q) be two partially ordered (directed) sets. Define
(P,≤P) ≤T (Q,≤Q) iff there is a cofinal mapa f : Q → P. Define
(P,≤P) ≡T (Q,≤Q) iff (P,≤P) ≤T (Q,≤Q) and (Q,≤Q) ≤T (P,≤P).

aif for every cofinal B ⊆ Q, f [B] ⊆ P is cofinal.

If B ≤T A, then any B-net (xb)b∈B can be now replaced by (xf (a))a∈A and if x is
a limit point of (xb) then x must be a limit of (xf (a))a∈A.
The research of what are the ”essential” A’s is a completely set theoretic (order
theoretic) question.
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Classic results of Todorcevic

Theorem 4 (Todorcevic 85[6])

Assuming MAℵ1 it is consistent that there are exactly 5 Tukey classes of directed
posets of cardinality at most ℵ1.

Theorem 5 (Todorcevic 85[6])

for any regular κ > ω, there are 2κ-many distinct Tukey classes of cardinality κℵ0 .
In particular, there are at least 2cf (c) many distinct Tukey classes of cardinality c.
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Definition 6

Given a net ~x = (xa)a∈A, define for each a ∈ A, x≥a = {xb | b ≥ a}. The filter
associated with ~x , denoted by F~x is the filter generated by the sets x≥a. Namely,
T ∈ F~x iff ∃a ∈ A, x≥a ⊆ T .

Indeed, F~x ⊆ P(X ) is a filter over X :

1 ∅ /∈ F~x , X ∈ F~x .

2 Upward closed with respect to inclusion.

3 Closed under finite intersections

Filters catches the abstract notion of ”large sets”. The filter F~x determines the
convergence properties of the net ~x . Yet, we can restrict our attention to maximal
filters, namely, ultrafilers:

Definition 7

A filter U over X is an ultrafilter if for every B ⊆ X , either B ∈ U or X \ B ∈ U.

It is well known that under the axiom of choice (which we assume), every filter
can be extended to an ultrafilter. If F~x ⊆ U and U is an ultrafilter, then whenever
x is a limit of ~x , x is a limit of U. Therefore, for most purposes, is suffices to
consider only ultrafilters, or ultranets.
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The Tukey order on ultrafilters

As we have seen earlier, it suffices to study the cofinal types of ultrafilters. This
motivates the study of the directed order (U,⊇) where U is an ultrafilter.

Proposition 1

Suppose that U ≤T V where U,V are ultrafilters, then there is a (weakly)
monotone map f : V → U which is cofinal.

The Tukey order has been studied extensively on ultrafilters on ω by Blass,
Dobrinen, Milovic, Raghavan, Shelah, Solecki, Todorcevic, Verner and many
others. It still entails quite challenging open problems. However, the investigation
regarding ultrafilters on a set of uncountable cardinality, and in particular on
measurable cardinals, is limited.

Benhamou, T. (Rutgers) Cofinal Types of ultrafilters VCU ALPS Seminar, Nov. 2023 7 / 19



The Tukey class of a Fubini product of ultrafilters.
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Fact 8
Let P,Q be directed orders. Then P × Q is the least upper bound of p,Q in the
Tukey order. Hence P =T P × P.

Definition 9 (Fubini product)

Suppose that U is a filter over X and for each x ∈ X , Ux is a filter over Yx . We
denote by

∑
U Ux the filter over

⋃
x∈X{x} × Yx , defined by

A ∈
∑
U

Ux if and only if {x ∈ X | (A)x ∈ Ux} ∈ U

where (A)x = {y ∈ Yx | 〈x , y〉 ∈ A}. If for every x , Ux = V for some fixed V over
a set Y , then U · V is defined as

∑
U V , which is a filter over X × Y .

It is not hard to show that U,V ≤T U · V and therefore U × V ≤T U · V .

Theorem 10 (Dobrinen-Todorcevic[3], Milovich[5])

For any U,V , U · V =T U ×
∏

n<ω V .
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Definition 11
Let U be an ultrafilter over N.

U is a p-point if every sequence 〈Xn | n < ω〉 ⊆ U has a U-measure one
pseudo intersection.

U is rapid if for every function f : N→ N there is X ∈ U such that for every
n < ω, X (n) ≥ f (n).

These definitions are obviously generalized to any cardinal κ > ω.

Theorem 12 (Dobrinen-Todorcevic[3])

Suppose that V ,U are ultrafilters on ω, V is a rapid p-point. Then
U · V ≡T U × V . In particular, if U,V are rapid p-points then U · V =T V · U.

In particular if U is a rapid p-point then U · U ≡T U. Moreover, Dobrinen and
Todorcevic constructed an example of a non-rapid p-point ultrafilter U such that
U <T U2.
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Theorem 13 (Milovich[5])

If U is a p-point ultrafilter then on ω and V is any ultrafilter, then
V ·U = V ×U ×ωω and therefore if U,V are both p-points then U ·V =T V ·U.

Theorem 14 (Dobrinen-B.[1])

Let U,V be any κ-complete ultrafilters over κ > ω, then U · V ≡T U × V . In
particular U · V =T V · U and U · U ≡T U.

Corollary 15 (A corollary for set theorist)

In L[U] there is a single Tukey class.
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On the class of U · U =T U

Theorem 16 (Isbell-juhazs[4])

There is an ultrafilter Utop over ω such that for every ultrafilter U over ω,
U ≤T Utop

Clearly Utop · Utop =T Utop

Question (Dobrinen-Todorcevic[3])

Suppose to U is an ultrafilter over a countable set, does U · U =T U <T Utop
implies that U is basically generated?

Recently, together with Dobrinen, we answered this question negatively:

Theorem 17 (Dobrinen-B. 2023)

It is consistent that there is an ultrafilter U over ω such that U · U =T U < Utop
which is not basically generated.
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Theorem 18 (B. 2024)

For any two ultrafilters U,V (on any cardinal), U · V =T V · U.
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The dual notion of a filter is an ideal which is just a set of the form
F ∗ = {Ac | A ∈ F} where F is a filter. Ideals catches the notion of smallness. For
example fin = {A ⊆ ω | A finite} is an ideal.

Definition 19 (Dobrinen-B.)

Suppose that U is an ultrafilter and I ⊆ U∗ is an ideal. We say that U has the
I -p.i.p if for any sequence 〈Xn | n < ω〉, there is X ∈ U such that for every n < ω,
X \ Xn ∈ I .

For example, U is a p-point if and only if U has the fin-p.i.p.

Proposition 2

Suppose that U has the I -p.i.p, then U · U =T

∏
n<ω U ≤T U ×

∏
n<ω I .

For example, if U is a p-point then U · U ≤T U × ωω.

Benhamou, T. (Rutgers) Cofinal Types of ultrafilters VCU ALPS Seminar, Nov. 2023 14 / 19



Theorem 20

Let I be a σ-ideal over a countable set X , and G ⊆ P(X )/I be a V -generic
ultrafilter. Then G has the I -p.i.p

We used that to prove that if I = fin · fin then G · G =T G and by results of Blass
Dobrinen and Raghavan [2], G <T Utop and not basically generated.

Theorem 21

If U and V are ultrafilters, then U (and V of course) have the U ∩ V -p.i.p.

Corollary 22

U · V ≤T U ×
∏

n<ω U ∩ V .
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Theorem 23

For every filter I ⊆ U∗, U · V ≥T

∏
n<ω I . In particular,

U · V = U × V ×
∏

n<ω U ∩ V .

Corollary 24

For every ultrafilters U,V , U · V =T V · U.

Corollary 25

If U · U =T U then for every U ≤T V , V · V =T V .
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Thank you for your attention!
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In an attempt to approximate the non-Tukey-top class of ultrafilters, we have the
following definition:

Definition 26
A κ-complete ultrafilter U over κ is basically generated if there is a cofinal set
B ⊆ U such that for every sequence 〈Aα | α < κ〉 ⊆ B, which converges to an
element of B, there is f : κ→ κ such that for every f ≤∗ g , ∩α<κAg(α) ∈ U.

The results below are due to Dobrinen-Todorcevic for κ = ω and B.-Dobrinen for
κ > ω.

Theorem 27
A p-point ultrafilter over a measurable cardinal is basically generated which in
turn implies non-Tukey-top

Theorem 28

Given U, (Vα)α<κ, basically generated if
∑

U Vα is basically generated. In
particular, the product and powers of basically generated ultrafilters are basically
generated.
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