Cofinal types of ultrafilters on measurable and non-measurable cardinals

Tom Benhamou Joint work with Natasha Dobrinen

VCU Analysis, Logic and Physics Seminar

Department of Mathematics Departement at Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2246703

Image: A math a math

Sequencial Continuity Vs. Continuity

2

(日)

Let $(X, \tau_X), (Y, \tau_Y)$ be Hausdorff topological spaces. Recall that

Definition 1

A function $f: X \to Y$ is continuous in the sequential sense if whenever $(x_n)_{n=0}^{\infty} \subseteq X$ is a sequence converging to $x \in X$ (namely, for every neighborhood $x \in U \in \tau_X$ there is N such that for all $n \ge N$, $x_n \in U$), the sequence $(f(x_n))_{n=0}^{\infty}$ converges to f(x).

It is well known that first-countable spaces a function f is continuous if and only if f is continuous in the sequential sense. In general the two are not equivalent (For example $f : \omega_1 + 1 \rightarrow \mathbb{R}$ defined by f(x) = 0 if $x < \omega_1$ and $f(\omega_1) = 1$ is not continuous but sequentially continuous.)

Definition 2

A net is a function $\vec{x} = (x_a)_{a \in A}$ such that (A, \leq_A) is a directed set. x is a limit of \vec{x} if for every $x \in U \in \tau_X$ there is a such that , $b \geq a$, $x_b \in U$ (AKA Moore-Smith convergence).

Now a function $f : X \to Y$ is continuous iff for every net $(x_a)_{a \in A}$ with limit x, $(f(x_a))_{a \in A}$ has limit f(x).

イロト イヨト イヨト イヨト

Some "types" of directed sets actually give essentially the same notion of net, for example, \mathbb{N} and \mathbb{N}_{even} or even $fin = \{X \in P(\mathbb{N}) \mid X \text{ is finite}\}$. More generally we would like to find an equivalence relation that reduces to the "essential" ordered sets. This is given by the Tukey order which was defined by J. Tukey [7]:

Definition 3

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff there is a cofinal map^a $f : Q \to P$. Define $(P, \leq_P) \equiv_T (Q, \leq_Q)$ iff $(P, \leq_P) \leq_T (Q, \leq_Q)$ and $(Q, \leq_Q) \leq_T (P, \leq_P)$.

^{*a*} if for every cofinal $B \subseteq Q$, $f[B] \subseteq P$ is cofinal.

If $B \leq_T A$, then any B-net $(x_b)_{b\in B}$ can be now replaced by $(x_{f(a)})_{a\in A}$ and if x is a limit point of (x_b) then x must be a limit of $(x_{f(a)})_{a\in A}$. The research of what are the "essential" A's is a completely set theoretic (order theoretic) question.

イロト イヨト イヨト イヨト

Theorem 4 (Todorcevic 85[6])

Assuming MA_{\aleph_1} it is consistent that there are exactly 5 Tukey classes of directed posets of cardinality at most \aleph_1 .

Theorem 5 (Todorcevic 85[6])

for any regular $\kappa > \omega$, there are 2^{κ} -many distinct Tukey classes of cardinality κ^{\aleph_0} . In particular, there are at least $2^{cf(\mathfrak{c})}$ many distinct Tukey classes of cardinality \mathfrak{c} .

• • • • • • • • • • •

Definition 6

Given a net $\vec{x} = (x_a)_{a \in A}$, define for each $a \in A$, $x_{\geq a} = \{x_b \mid b \geq a\}$. The filter associated with \vec{x} , denoted by $F_{\vec{x}}$ is the filter generated by the sets $x_{\geq a}$. Namely, $T \in F_{\vec{x}}$ iff $\exists a \in A, x_{\geq a} \subseteq T$.

Indeed, $F_{\vec{x}} \subseteq P(X)$ is a filter over X:

 $\ \, \emptyset \notin F_{\vec{x}}, \ X \in F_{\vec{x}}.$

Opward closed with respect to inclusion.

Olosed under finite intersections

Filters catches the abstract notion of "large sets". The filter $F_{\vec{x}}$ determines the convergence properties of the net \vec{x} . Yet, we can restrict our attention to maximal filters, namely, ultrafilers:

Definition 7

A filter U over X is an *ultrafilter* if for every $B \subseteq X$, either $B \in U$ or $X \setminus B \in U$.

It is well known that under the axiom of choice (which we assume), every filter can be extended to an ultrafilter. If $F_{\vec{x}} \subseteq U$ and U is an ultrafilter, then whenever x is a limit of \vec{x} , x is a limit of U. Therefore, for most purposes, is suffices to consider only ultrafilters, or *ultranets*.

Benhamou, T. (Rutgers)

Cofinal Types of ultrafilters

As we have seen earlier, it suffices to study the cofinal types of ultrafilters. This motivates the study of the directed order (U, \supseteq) where U is an ultrafilter.

Proposition 1

Suppose that $U \leq_T V$ where U, V are ultrafilters, then there is a (weakly) monotone map $f : V \to U$ which is cofinal.

The Tukey order has been studied extensively on ultrafilters on ω by Blass, Dobrinen, Milovic, Raghavan, Shelah, Solecki, Todorcevic, Verner and many others. It still entails quite challenging open problems. However, the investigation regarding ultrafilters on a set of uncountable cardinality, and in particular on measurable cardinals, is limited.

The Tukey class of a Fubini product of ultrafilters.

A D > A B > A

Fact 8

Let P, Q be directed orders. Then $P \times Q$ is the least upper bound of p, Q in the Tukey order. Hence $P =_T P \times P$.

Definition 9 (Fubini product)

Suppose that U is a filter over X and for each $x \in X$, U_x is a filter over Y_x . We denote by $\sum_U U_x$ the filter over $\bigcup_{x \in X} \{x\} \times Y_x$, defined by

$$A \in \sum_{U} U_x$$
 if and only if $\{x \in X \mid (A)_x \in U_x\} \in U$

where $(A)_x = \{y \in Y_x \mid \langle x, y \rangle \in A\}$. If for every $x, U_x = V$ for some fixed V over a set Y, then $U \cdot V$ is defined as $\sum_U V$, which is a filter over $X \times Y$.

It is not hard to show that $U, V \leq_T U \cdot V$ and therefore $U \times V \leq_T U \cdot V$.

Theorem 10 (Dobrinen-Todorcevic[3], Milovich[5]) For any $U, V, U \cdot V =_T U \times \prod_{n < \omega} V$.

Definition 11

Let U be an ultrafilter over \mathbb{N} .

- U is a p-point if every sequence (X_n | n < ω) ⊆ U has a U-measure one pseudo intersection.
- *U* is rapid if for every function $f : \mathbb{N} \to \mathbb{N}$ there is $X \in U$ such that for every $n < \omega, X(n) \ge f(n)$.

These definitions are obviously generalized to any cardinal $\kappa > \omega$.

Theorem 12 (Dobrinen-Todorcevic[3])

Suppose that V, U are ultrafilters on ω , V is a rapid p-point. Then $U \cdot V \equiv_T U \times V$. In particular, if U, V are rapid p-points then $U \cdot V =_T V \cdot U$.

In particular if U is a rapid p-point then $U \cdot U \equiv_T U$. Moreover, Dobrinen and Todorcevic constructed an example of a non-rapid p-point ultrafilter U such that $U <_T U^2$.

Theorem 13 (Milovich[5])

If U is a p-point ultrafilter then on ω and V is any ultrafilter, then $V \cdot U = V \times U \times \omega^{\omega}$ and therefore if U, V are both p-points then $U \cdot V =_{T} V \cdot U$.

Theorem 14 (Dobrinen-B.[1])

Let U, V be any κ -complete ultrafilters over $\kappa > \omega$, then $U \cdot V \equiv_T U \times V$. In particular $U \cdot V =_T V \cdot U$ and $U \cdot U \equiv_T U$.

Corollary 15 (A corollary for set theorist)

In L[U] there is a single Tukey class.

Theorem 16 (Isbell-juhazs[4])

There is an ultrafilter U_{top} over ω such that for every ultrafilter U over ω , $U \leq_T U_{top}$

Clearly $\mathcal{U}_{top} \cdot \mathcal{U}_{top} =_{\mathcal{T}} \mathcal{U}_{top}$

Question (Dobrinen-Todorcevic[3])

Suppose to U is an ultrafilter over a countable set, does $U \cdot U =_T U <_T U_{top}$ implies that U is basically generated?

Recently, together with Dobrinen, we answered this question negatively:

Theorem 17 (Dobrinen-B. 2023)

It is consistent that there is an ultrafilter U over ω such that $U \cdot U =_T U < \mathcal{U}_{top}$ which is not basically generated.

Theorem 18 (B. 2024)

For any two ultrafilters U, V (on any cardinal), $U \cdot V =_T V \cdot U$.

э

イロト イ団ト イヨト イヨト

The dual notion of a filter is an *ideal* which is just a set of the form $F^* = \{A^c \mid A \in F\}$ where F is a filter. Ideals catches the notion of smallness. For example $fin = \{A \subseteq \omega \mid A \text{ finite}\}$ is an ideal.

Definition 19 (Dobrinen-B.)

Suppose that U is an ultrafilter and $I \subseteq U^*$ is an ideal. We say that U has the *I*-p.i.p if for any sequence $\langle X_n \mid n < \omega \rangle$, there is $X \in U$ such that for every $n < \omega$, $X \setminus X_n \in I$.

For example, U is a p-point if and only if U has the *fin*-p.i.p.

Proposition 2

Suppose that U has the I-p.i.p, then $U \cdot U =_T \prod_{n < \omega} U \leq_T U \times \prod_{n < \omega} I$.

For example, if U is a p-point then $U \cdot U \leq_{T} U \times \omega^{\omega}$.

Theorem 20

Let I be a σ -ideal over a countable set X, and $G \subseteq P(X)/I$ be a V-generic ultrafilter. Then G has the I-p.i.p

We used that to prove that if $I = fin \cdot fin$ then $G \cdot G =_{T} G$ and by results of Blass Dobrinen and Raghavan [2], $G <_{T} U_{top}$ and not basically generated.

Theorem 21

If U and V are ultrafilters, then U (and V of course) have the $U \cap V$ -p.i.p.

Corollary 22

$$U \cdot V \leq_T U \times \prod_{n < \omega} U \cap V.$$

• • • • • • • • • • •

Theorem 23

For every filter $I \subseteq U^*$, $U \cdot V \ge_T \prod_{n < \omega} I$. In particular, $U \cdot V = U \times V \times \prod_{n < \omega} U \cap V$.

Corollary 24

For every ultrafilters $U, V, U \cdot V =_T V \cdot U$.

Corollary 25

If $U \cdot U =_T U$ then for every $U \leq_T V$, $V \cdot V =_T V$.

Thank you for your attention!

2

メロト メタト メヨト メヨト

References I

- Tom Benhamou and Natasha Dobrinen, *Cofinal types of ultrafilters over measurable cardinals*, submitted (2023), arXiv:2304.07214.
- Andreas Blass, Natasha Dobrinen, and Dilip Raghavan, *The next best thing to a p-point*, Journal of Symbolic Logic **80** (15), no. 3, 866–900.
- Natasha Dobrinen and Stevo Todorcevic, Tukey types of ultrafilters, Illinois Journal of Mathematics 55 (2011), no. 3, 907–951.
- John R. Isbell, *The category of cofinal types. II*, Transactions of the American Mathematical Society **116** (1965), 394–416.
- David Milovich, *Forbidden rectangles in compacta*, Topology and Its Applications **159** (2012), no. 14, 3180–3189.
- Stevo Todorcevic, *Directed sets and cofinal types*, Transactions of the American Mathematical Society **290** (1985), no. 2, 711–723.
 - John W. Tukey, *Convergence and uniformity in topology. (am-2)*, Princeton University Press, 1940.

イロト イボト イヨト イヨ

In an attempt to approximate the non-Tukey-top class of ultrafilters, we have the following definition:

Definition 26

A κ -complete ultrafilter U over κ is basically generated if there is a cofinal set $B \subseteq U$ such that for every sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle \subseteq B$, which converges to an element of B, there is $f : \kappa \to \kappa$ such that for every $f \leq^* g$, $\cap_{\alpha < \kappa} A_{g(\alpha)} \in U$.

The results below are due to Dobrinen-Todorcevic for $\kappa=\omega$ and B.-Dobrinen for $\kappa>\omega.$

Theorem 27

A p-point ultrafilter over a measurable cardinal is basically generated which in turn implies non-Tukey-top

Theorem 28

Given $U, (V_{\alpha})_{\alpha < \kappa}$, basically generated if $\sum_{U} V_{\alpha}$ is basically generated. In particular, the product and powers of basically generated ultrafilters are basically generated.

イロト イヨト イヨト