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THE VARIETY OF PROJECTIONS OF A TREE-PRIKRY FORCING

TOM BENHAMOU, MOTI GITIK, AND YAIR HAYUT

ABSTRACT. We study which κ-distributive forcing notions of size κ can be embed-

ded into tree Prikry forcing notions with κ-complete ultrafilters under various large

cardinal assumptions. An alternative formulation - can the filter of dense open

subsets of a κ-distributive forcing notion of size κ be extended to a κ-complete

ultrafilter.

1. INTRODUCTION

In this paper we will study possibilities of embedding of κ-distributive forcing

notions of size κ into Prikry forcings with non-normal ultrafilter or into tree Prikry

forcing notions with κ-complete ultrafilters.
By the result of Kanovei, Koepke and the second author [11] every subforcing of the

standard Prikry forcing is either trivial or equivalent to the Prikry forcing with the

same normal ultrafilter. However, the situation changes drastically if non-normal
ultrafilters are used.

Existence of such embedding allows one to iterate distributive forcing notions
on different cardinals, see [9, Section 6.4].

A closely related problem is the possibility of extension of the filter of dense

open subsets of a κ-distributive forcing notion of size κ to a κ-complete ultrafilter,
the exact statement is given in theorem 13.

Clearly, if κ is a κ-compact cardinal, then this follows. Actually more is true—

there is a single Prikry type forcing, such that any κ-distributive forcing notion of
size κ embeds into it, see [10].

However, there are κ-distributive forcing notion of size κ which can be embedded
into Prikry forcing notions under much weaker assumptions. Thus, for example, in

[4] starting from a measurable cardinal, a generic extension in which there is a

κ-complete ultrafilter on κ, U , such that the tree Prikry forcing using U introduces
a Cohen subset of κ was constructed.

This paper investigates different possibilities which are intermediate between

those two extremes. More specifically, let H be a subclass of the κ-distributive of
size κ forcings, we examine the following question:

Can the dense open filter, D(Q), of any Q ∈ H
be extended to a κ-complete ultrafilter?

Our notations are mostly standard. For general information about Prikry type forc-

ing we refer the reader to [9]. For general information about large cardinals we

refer the reader to [14].
Throughout the paper, p ≤ q means that p is weaker than q.

The structure of the paper is as follows:

• Section 2 is intended to give the reader background and basic definitions
which appear in this paper.
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• The main result of section 3 is theorem 13: Let Q be a σ-distributive forcing
of size κ. Then B(Q) is a projection of the tree Prikry forcing if and only if

D(Q) can be extended to a κ-complete ultrafilter. Moreover the ultrafilter

extending D(Q) must be Rudin-Keisler below the ultrafilters of the tree
Prikry forcing.

• Section 4 deals with the class of κ-strategically closed and <κ-strategically
closed forcings. Lemma 17 establishes that Add(κ, 1) projects onto every

κ-strategically closed forcing of cardinality κ. Also, we present the forcing

that adds a Jensen square (see definition 20) and prove that it maximal
among all the <κ-strategically closed forcings, this is formulated in Lemma

22.

• Section 5 focuses on upper bounds. In theorem 24 we give an upper bound
for the claim “For every <κ-strategically closed forcing of size κ P and every

p ∈ P, Dp(P) can be extended to a κ-complete ultrafilter”. In the rest of the

section we discuss some weaker version of Π1
1-subcompact cardinal which

is an upper bound for the claim “For every κ-distributive forcing of size κ
P and every p ∈ P, Dp(P) can be extended to a κ-complete ultrafilter.

• Section 6 is devoted to the forcing Q, of shooting a club through the sin-

gulars. This forcing is a milestone for the class of <κ-strategically closed

forcing of size κ. In theorem -34, we prove that if we can extend D(Q),
then either ∃λo(λ) = λ++ or oK(κ) ≥ κ+ κ.

• Section 7 provides a strengthening of results of section 6 to oK(κ) ≥ κ++1.

• Section 8 defines a class called masterable forcing. We show, starting with
a measurable, that one can force that the filter of Dp(P) can be extended

to a κ-complete ultrafilter for every masterable forcing P. In this generic
extension we give examples of many important forcing notions which are

masterable.

• Section 9 presents forcing notions which do not fall under the examples
considered in this paper and present further research directions.

2. PRELIMINARIES

Let us recall some basic concepts about forcing notions and Tree Prikry forcing.

First, our forcing notions are always separative and have a minimal element. We

force upward i.e. p ≤ q means that q  p ∈ Ġ. Let us start with the concept of
projection:

Definition 1. Let P,Q be forcing notions, π : P → Q is a projection if

(1) π is order preserving.
(2) ∀p ∈ P∀π(p) ≤ q∃p′ ≥ p.π(p′) ≥ q. projection.

(3) Im(π) is dense in P.

Definition 2. Let π : P → Q be a function

(1) If G ⊆ P is V -generic, define

π∗(G) = {q ∈ Q | ∃p ∈ G.q ≤ π(p)}

(2) If H ⊆ Q is V -generic, define the quotient forcing

P/H = π−1[H ] = {p ∈ P | π(p) ∈ H}

With the separative order p ≤P/H q if an only if for every q ≤P r, r is

compatible with p.

Claim 3. Let P,Q be any forcing notions, then:

(1) Let G ⊆ P be V -generic and π : P → Q a projection, then π∗(G) ⊆ Q is

V -generic
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(2) Let H ⊆ Q be V -generic and π : P → Q a projection, then if G ⊆ P/H is

V [H ]-generic, then G ⊆ P is V -generic, moreover, π∗(G) = H .

(3) Let G ⊆ P be V -generic and π : P → Q a projection, then G ⊆ P/π∗(G) is

V [π∗(G)]-generic.

Definition 4. Let P be a forcing notion, denote by B(P) the complete boolean

algebra of regular open sets of P.

If is known that P can be identify with a dense subset of B(P) and that B(P)
is the unique (up to isomorphism) complete boolean algebra we a dense subset

isomorphic to P. Moreover, P and B(P) yield the same generic extensions. Let
G ⊆ P be a V -generic filter then Ḡ = {b ∈ B(P) | ∃p ∈ G.b ≤ p} ⊆ B(P) is V -

generic and if Ḡ ⊆ B(P) is V -generic then G = Ḡ ∩ P ⊆ P is V -generic. For more

information about boolean algebras see [20] or [1].

Claim 5. Let P,Q be forcing notions. Then:

(1) There is a projection π : P → B(Q) if and only if there is a P-name H
∼

such

that for every generic filter H for Q there is a generic filter G for P such that

(H
∼
)G = H .

(2) There is a strong projection π : P → B(Q) iff there is a P-name H
∼

such that

for every V -generic filter H for Q there is a V -generic filter G for P such that

(H
∼
)G = H .

Definition 6. Let P be a forcing notion and let κ be a cardinal. P is κ-distributive
if for every collection D of dense open subsets of P, |D| < κ, the intersection

⋂
D

is also a dense open subset of P.

Note that if P is κ-distributive then the filter generated by the dense open subsets

of P is κ-complete.

Notation. Let P be a forcing notion. We denote by D(P) the filter for dense open
subsets of P. For p ∈ P let Dp(P) be the filter generated by D(P) and the set

{q ∈ P | q ≥ p}.

Let us define the tree Prikry forcing. Let κ be a cardinal, and let ~U = 〈Uη | η ∈
[κ]<ω〉 be a sequence of ultrafilters on κ, indexed by [κ]<ω which is the set of all
finite sequences below κ. Such that Uη concentrate on the set κ \max(η) + 1.

Let us define the forcing T~U . An element in T~U is a pair 〈s, T 〉 where:

(1) s ∈ [κ]<ω.

(2) T ⊆ [κ]<ω, and for all t ∈ T , s E t.

(3) T is ~U -splitting: for all t ∈ T , {ν < κ | taν ∈ T } ∈ Ut.

For T ⊆ [κ]<ω and η ∈ T we denote Tη = {s ∈ [κ]<ω | ηas ∈ T }.
For p = 〈s, T 〉, p′ = 〈s′, T ′〉 ∈ T~U , p′ ≤ p and say that p extends p′ if s ∈ T ′ and

T ⊆ T ′
s. We denote p′ ≤∗ p and say that p is a direct extension of p′ if p′ ≤ p and

s = s′.
We will assume always that each Uη is κ-complete. In this case, the relation ≤∗

is κ-complete.
The following claim is well known [3, Lemma 3.16]:

Lemma 7 (Strong Prikry Lemma). Let D ⊆ T~U be dense open and let p = 〈s, T 〉 ∈ T~U
be a condition. There is a direct extension of p ≤∗ p∗ = 〈s, T ∗〉, and a natural number

n such that for all η ∈ T ∗, with len η = n, 〈saη, T ∗
η 〉 ∈ D and for all η such that

len η < n, 〈saη, T ∗
η 〉 /∈ D.

When analyzing a tree of measures there is a natural iteration of ultrapowers to

consider.
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Definition 8. Let ~U be a tree of κ-complete ultrafilters and η ∈ [κ]<ω. For ~U and

0 < n < ω, define recursively the nth ultrafilter above η derived from ~U , denoted

(Uη)n, to be the following ultrafilter over [κ]n:

(Uη)1 = Uη

For A ⊆ [κ]n+1 define

A ∈ (Uη)n+1 ⇐⇒ {γ ∈ [κ]n | Aγ ∈ Uη⌢γ} ∈ (Uη)n

where

Aγ = {α < κ | γ⌢α ∈ A}

Definition 9. Let ~U be a tree of κ-complete ultrafilters, define recursively the iter-

ation corresponding to ~U above η ∈ [κ]<ω.

j0 = jUη
: V → M0 ≃ Ult(V,Uη), δ0 = [id]Uη

jn,n+1 : Mn → Ult(Mn, jn(~U)~η⌢〈δ0,...,δn〉) ≃ Mn+1

δn+1 = [id]jn(~U)~η⌢〈δ0,...,δn〉
,jn+1 = jn,n+1 ◦ jn and jm,n+1 = jn,n+1 ◦ jm,n

The following theorem can also be found in [3]:

Theorem 10. Let Mω be the ω-th iteration of the iteration corresponding to ~U above ~η
i.e. Mω is the transitive collapse of the direct limit of the system 〈Mn, jn,m | n,m < ω〉
defined in 9, denote the direct limit embeddings by jn,ω : Mn → Mω. Then the

sequence ~η⌢〈δn | n < ω〉 is Mω-generic for the forcing jω(T~U ).

Claim 11. For every A ⊆ [κ]n

〈δ0, . . . , δn−1〉 ∈ jn−1(A) ⇐⇒ A ∈ (Uη)n

Proof. For n = 1 it is just Łoś theorem [id]Uη
∈ j1(A) ⇐⇒ A ∈ Uη = (Uη)1. Assume

that the claim holds for n, and let A ⊆ [κ]n+1. Denote by ~δm = 〈δ0, . . . , δm〉, then

~δn ∈ jn(A) ⇐⇒ δn ∈ jn(A)~δn−1
⇐⇒ jn−1(A)~δn−1

∈ jn−1(~U)η⌢~δn−1

By the definition of jn−1(A)~δn−1
and the induction hypothesis we can continue the

chain of equivalences

⇐⇒ {γ | Aγ ∈ Uη⌢γ} ∈ (Uη)n ⇐⇒ A ∈ (Uη)n+1

�

3. SUBFORCING OF THE TREE PRIKRY FORCING

In this section we characterize the σ-distributive complete subforcings of a tree
Prikry forcing. Since no bounded subsets of κ are introduced, such a forcing is

either trivial or (κ, κ)-centered i.e. it is the union of κ many sets Ai for i < κ such

that each Ai is κ-directed. Standard arguments show that those forcing notions
have to be κ-distributive. By a theorem of Gitik (see [10]), if κ is κ-compact,

then there is a Prikry type forcing which absorbs every κ-distributive forcing P of
cardinality κ. A simpler version of this theorem is stated in the following claim:

Claim 12. Assume that for every p ∈ P, we can extend Dp(P) to a κ-complete ultra-

filter Up. Then there is a tree of κ complete ultrafilter

~W = 〈Wη | η ∈ [κ]<ω〉

and a projection π : T ~W → B(P)
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Proof. We would like to turn the ultrafilters Up to ultrafilters on κ. For this, we first
need to identify P with [κ]<ω somehow. We define inductively for every η ∈ [κ]<ω

a condition pη ∈ P. First p〈〉 = 0P. Assume that pη is defined, and let P/pη := {q ∈
P | q ≥ pη}. By assumption |P/pη| ≤ κ, fix any surjection fη : (max{η}, κ) → P/pη.

Define for every α ∈ (max{η}, κ), pηaα = fη(α).
Next we define the ultrafilters Wη for every η ∈ [κ]<ω. Let gη : P/pη →

(max(η), κ) be a right inverse of fη such that fη◦gη = idP/pη
. Define Wη = gη∗(Upη

)
to be the Rudin-Keisler projection of Upη

to κ i.e. for A ⊆ κ:

A ∈ Wη ⇐⇒ g−1
η [A \max(η) + 1] ∈ Upη

In particular ~W := 〈Wη | η ∈ [κ]<ω〉 is defined.

Let us define the following name

H
∼

= {〈q̇, 〈t, T 〉〉 | q ∈ P, q ≤ pt, 〈t, T 〉 ∈ T ~W}

Then T ~W
H
∼

is V -generic for P. Indeed, Let G ⊆ T ~W be V -generic and let H =
(H
∼
)G. Assume that 〈αn | n < ω〉 is the Prikry sequence produced by G, and denote

by pn = p〈α0,...,αn〉, then

H = {q ∈ P | ∃n < ω q ≤ pn}

Note that, αn+1 > αn and by construction pn+1 = f〈α0,...,αn〉(αn+1) ∈ P/pn,

hence the pn’s are increasing in the order of P and H is a filter. Let D ⊆ P be

dense open. We proceed by a density argument, let 〈t, T 〉 ∈ T ~W then D is dense
open above pt and therefore D ∩ P/pt ∈ Upt

. It is not hard to check from the

definition that f−1
t [D ∩ P/pt] ∈ Wt. It follows that succT (t) ∈ Wt, fix any α ∈

f−1
t [D ∩ P/pt] ∩ succT (t). Consider the condition 〈taα, Ttaα〉 ≥ 〈t, T 〉. By density,

there is 〈saαn0 , S〉 ∈ G such that psaαn0
= fs(αn0) ∈ D. By the definition of H we

conclude that psaαn0
∈ H ∩D and H is a V -generic filter for P.

Let H
∼

∗ be a T ~W -name for the B(P)-generic corresponding to H
∼

. Now the pro-

jection is defined as follows:

π(x) = inf{b ∈ B(P) | x  b ∈ H
∼

∗}

Clearly π is order preserving and dense in B(P). To see that condition (2) holds,
is just an abstract argument, take b ≤ π(x), then ¬(x  bc ∈ H

∼
∗), otherwise

bc ≥ π(x) ≥ b. Hence there is an extension x′ ≥ x such that x′  bc /∈ H
∼

∗, since H
∼

∗

is an ultrafilter it follows that b ∈ H
∼

∗. so π(x′) ≤ b. �

Remark. If Dp(P) can be extended to Up only densely often, then we still get a

projection.

The following theorem claims that in some sense, this is the only way to get a

projection.

Theorem 13. Let P be a σ-distributive forcing of size κ. The following are equivalent:

• There is a sequence ~U of κ-complete ultrafilters and a projection π : T~U →
B(P).

• For every p ∈ P, Dp(P) can be extended to a κ-complete ultrafilter Up.

Proof. If Dp(P) can be extended to a κ-complete ultrafilter, use claim 12. For the

other direction, let π : T~U → B(P) be a projection, denote T~U = T. Without loss of
generality, we can assume that P = κ, and ≤P is an order on κ.

Let q ∈ P and p = 〈s, T 〉 ∈ T such that π(p) ≥ q which exists since π is a

projection. For every D ⊆ P dense and open subset above q, let

D̄ := {b ∈ B(P) | ∃a ∈ D.a ≤ b}
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Then D̄ ⊆ B(P) is dense open, and since π is a projection, D′ := π−1[D̄] is a dense
open subset of T above p. By the strong Prikry property, there is a direct extension

p∗ = 〈s, TD〉 ≥∗ p and a natural number nD < ω such that for all η ∈ T ∗ such that

len(η) = nD, π(〈saη, (TD)η〉) ∈ D̄, while the projection of any extension of 〈s, TD〉
of smaller length is not in D̄. We claim that there must be a single n∗ < ω which is
an upper bound to the set

{nD | D ⊆ P dense open above q}

Otherwise, there is a sequence of dense open subsets Dm above q for which

sup
m<ω

nDm
= ω.

The forcing P is σ-distributive, thus

D∗ =
⋂

m<ω

Dm

is still dense and open above q. Consider nD∗ and TD∗ . Any extension p′ of length
nD∗ from TD∗ will satisfy π(p′) ∈ D̄∗ and in particular it will be in D̄m for all m.

But let m be so large that nDm
> nD∗ . This is a contradiction to the definition of

nDm
.

Let us fix such n∗. Next we consider the iterated ultrapower of length ω using

the ultrafilters in ~U .
Let k = len s (the stem of p) and let us denote s = 〈δ∗0 , . . . , δ

∗
k−1〉. Consider the

iteration corresponding to ~U above s, and denote δ∗k+n = δn.

By theorem 10, 〈δ∗n | n < ω〉 is a tree Prikry generic sequence for the forcing

jω(T) over the model Mω and by claim 11, this generic filter will contain the condi-

tion jω(p). Denote by Hω ⊆ jω(B(P)) the Mω-generic filter generated by the Prikry
sequence in Mω[〈δ∗n | n < ω〉].

Working in Mn∗−1, let

F = {x ∈ jn∗−1(P) | ∃T, jn∗−1(π)(〈〈δ
∗
0 , . . . , δ

∗
k+n∗−1〉, T 〉) ≥ x}.

F ∈ Mn∗−1 and it is a subset of jn∗−1(P) = jn∗−1(κ). In particular for every x ∈ F ,

jn∗−1,ω(x) = x. Since for every T , jn∗−1,ω(〈〈δ0, . . . , δk+n∗−1〉, T 〉) is a member of

the generic filter which is generated by the sequence 〈δ∗n | n < ω〉, we conclude that
F ⊆ Hω. Note that F ∈ Mn∗ , as Mn∗−1 and Mn∗ agree on subsets of jn∗−1(κ). It

follows that jn∗,ω(F ) = F ∈ Mω. Thus, there must be a single condition f ∈ Hω

forcing F ⊆ Ḣω. This can be the case only if f is stronger that all elements of F .

find any f∗ ∈ P such that f∗ ≥ f . We conclude that for every dense open set D ⊆ P

above q, f ∈ jω(D̄) and since D is dense open in P, f∗ ∈ jω(D).
Let us define:

Uq = {A ⊆ P | f∗ ∈ jω(A)}

Uq is a κ-complete ultrafilter (since crit jω = κ) and for all dense open D ⊆ P above

q, D ∈ Uq. �

Remark. In the previous proof we have defined the filter Up to be

Uq = {A ⊆ P | f∗ ∈ jω(A)}

where f∗ ∈ P was a condition forcing F ⊆ Ḣω, Ḣω being a canonical name for
the generic filter of jω(P). In Mn∗ , we will have F bounded in the critical point

of jn∗,ω and therefore jn∗,ω(F ) = F . By elementarity of jn∗,ω, there is a condition

q∗ ∈ jn∗(P) forcing that F ⊆ ˙Hn∗ where ˙Hn∗ is the canonical name for the generic

filter of jn∗(P). So we may use q∗ in order to define

Uq = {A ⊆ P | q∗ ∈ jn∗(A)}
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This new definition indicates that if there is a projection from T~U onto P then there

will be a Rudin-Keisler projection of the sequence of ultrafilters ~U on an ultrafilter

extending the filter of dense open subsets of P.

Definition 14. Let ~U be a tree of κ-complete ultrafilters and let W be a κ-complete

ultrafilter. We say that W ≤RK
~U if there is ~η ∈ κ<ω and n < ω such that

W ≤RK (U~η)n

.

Theorem 15. Let ~U be a tree of κ-complete ultrafilters and let P be σ-distributive

forcing of cardinality κ.

If T~U projects onto B(P) then for every p = 〈δ0, . . . , δk−1, T 〉 ∈ T~U there is a

κ-complete ultrafilter Up which extends Dπ(p)(P) that contain p and Up ≤RK
~U .

Proof. The proof is just the continuation of the discussion following the proof of
theorem 13, recall the definition of Up

Up = {A ⊆ P | q∗ ∈ jn∗(A)}

There exists a function g : [κ]n
∗

→ P such that jn∗(g)(δk, . . . , δn∗+k) = q∗. We claim

that Up = g∗((U〈δ0,...,δk−1〉)n∗+1). Let A ⊆ P, then

A ∈ Up ⇐⇒ jn∗(g)(δk, . . . , δn∗+k) ∈ jn∗(A) ⇐⇒

⇐⇒ 〈δk, . . . , δn∗+k〉 ∈ jn∗(g−1[A]) ⇐⇒ g−1[A] ∈ (U〈δ0,...,δk−1〉)n∗+1

�

4. PROJECTIONS OF FORCINGS

The following simple lemma indicates that the difficulty of extending the dense

open filter for different forcing notions is related to the existence of projections

from other forcing notions.

Lemma 16. Let π : P → Q be a projection of forcing notions and let κ be a regular

cardinal. If there is a κ-complete ultrafilter that extends Dp(P), then there is a κ-

complete ultrafilter that extends Dπ(p)(Q).

Proof. Let U be a κ-complete ultrafilter that extends Dp(P). Let:

π∗(U) = {A ⊆ Q | π−1(A) ∈ U}.

It is clear that π∗(U) is a κ complete ultrafilter. For any dense open set D ∈
Dπ(p)(Q), the fact that π is a projection ensures that π−1(D) ∈ Dp(P). Thus,

D ∈ π∗(U). �

For the definition of λ-strategically closed forcings see [6]. The proof of the
following lemma is a variant of theorem 14.1 in [6].

Lemma 17 (Folklore). Let P be κ-strategically closed forcing notion of size ≤ λ. There

is a projection from Col(κ, λ) onto P.

The relevant case for our purpose is the case κ = λ. In this case, Col(κ, κ) ∼=
Add(κ, 1). Thus, if P is a κ-strategically closed forcing of size κ then there is a

projection from the Cohen forcing Add(κ, 1) onto B(P).
Note that the other direction of lemma 17 is also true, namely that if there is a

projection π : Add(κ, 1) → B(P), then P must also be κ-strategically closed.

We conclude that questions about the existence of ultrafilters that extend the
dense open filter of κ-strategically of cardinality κ closed forcing notions are equiv-

alent to the same question about the Cohen forcing.

For <κ-strategically closed forcing notions the situation is more involved.
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Definition 18 (Jensen). Let κ be an inaccessible cardinal. A Jensen Square on κ is
a sequence 〈Cα | α ∈ D〉, such that

(1) D is a club consisting of only limit ordinals.
(2) Cα is a club at α.

(3) otpCα < α.

(4) If β ∈ accCα, then β ∈ D and Cβ = Cα ∩ β.

Note that if there is a Jensen square on κ then κ is not a Mahlo cardinal. The
following lemma was proven by Velleman [21, Theorem 1].

Lemma 19. Let κ be an infinite cardinal. If there is a Jensen square on κ then every

<κ-strategically closed forcing is κ-strategically closed.

There is a standard forcing for adding Jensen square at a cardinal κ, Sκ.

Definition 20. The conditions of Sκ are pairs of the form 〈C, d〉, such that

(1) d ⊆ κ is closed and bounded (with last element) consisting only of limit

ordinals.
(2) C is a function, dom C = d.

(3) For every α ∈ d, C(α) is a club at α, otp C(α) < α.
(4) ∀β ∈ acc C(α), β ∈ d and C(β) = C(α) ∩ β.

For 〈C, d〉, 〈C′, d′〉 ∈ Sκ, 〈C, d〉 ≤ 〈C′, d′〉 if d = d′ ∩ (max(d) + 1) and C = C′ ↾ d.

There are many variations of this forcing, some of them can be found in [7].

Lemma 21 (Folklore). Let κ be a regular cardinal then Sκ is <κ-strategically closed.

Proof. Let us define a strategy σ first. σ(〈〉) = 〈∅, ∅〉. Assume that

〈〈Ci, Di〉, 〈Ei, Fi〉 | i < α〉

is defined and played according to σ and let us define

σ(〈〈Ci, Di〉, 〈Ei, Fi〉 | i < α〉) = 〈Cα, Dα〉

Denote by di = max(Di). If α is limit, let dα = supi<α di. Then 〈Cα, Dα〉 is defined
if and only if dα is a singular cardinal, in which case

Dα = (∪i<αDi) ∪ {d′α}

For every i < α, Cα ↾ Di = Ci and

Cα(dα) =
⋃

i<α

Ci(di)

If α = β +1,let dα be an ordinal of cofinality ω above max(Fβ) and 〈xn | n < ω〉 be

a cofinal sequence in dα such that x0 > dβ . Define

Dα = Fβ ∪ {dα}

Also Cα ↾ Fβ = Eβ and

Cα(dα) = Cβ(dβ−1) ∪ {xn | n < ω}

Obviously, by the inductive construction Cα is coherent. It is not hard to see that
otp(Cα(dα))) = ω · α. So the strategy σλ starts by jumping above ω · λ, then uses

σ. This guarantees that always otp(Cα(dα)) < dα and that dα for limit α is always

singular. �

In general, |Sκ| = κ<κ. Thus, for strongly inaccessible cardinals κ, |Sκ| = κ and

it fits to the framework of this paper. For Mahlo cardinal κ, Sκ is not κ-strategically
closed (otherwise, it would be possible to construct Jensen square sequence in the

ground model). Thus, for Mahlo cardinal κ, Sκ is not isomorphic to a complete

subforcing of Add(κ, 1).
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Let us remark that in models of the form L[E], there is a partial square sequence
in the ground model which is defined on all singular cardinals. In those cases

the forcing that shoots a club through the singular cardinals clearly adds a Jensen

square for κ.
The following lemma shows that adding a Jensen square to κ is maximal be-

tween all <κ-strategically closed forcing notions.

Lemma 22. Sκ ∼= Sκ × Add(κ, 1). In particular, for every <κ-strategically closed

forcing P of cardinality κ, there is a projection from Sκ onto B(P).

Proof. Let us define a dense embedding π : Sκ → Sκ × Add(κ, 1), for every A ⊆ κ
and α < otp(A) let A(α) be the α-th element of A in it’s natural enumeration.

Define Eω = {α + ω | α < κ} and for α ∈ Eω let α− = max(Lim(α)) be the

maximal limit ordinal below α. Let 〈C, d〉 ∈ Sκ, define π(〈C, d〉) = 〈〈C′, d〉, f〉 such
that:

(1) dom(f) = γd, where γd = otp(d ∩ Eω).
(2) For i < γd, define

f(i) = 1 ⇐⇒ ((d ∩Eω)(i))
− + 1 ∈ C((d ∩ Eω)(i))

(3) dom(C′) = d.

(4) C′ is defined inductively. For α ∈ d let βα = max(Lim(C(α)) ∩ α) and

assume that C′(β) is defined coherently for every β < α.
(a) If α ∈ d ∩Eω , then βα ≤ α− and define

C′(α) = C′(βα) ∪
(
[β, α−] ∩ C(α)

)
∪
{
γ − 1 | γ ∈ [α− + 2, α) ∩ C(α)

}

(b) If α /∈ d ∩Eω and βα = α let

C′ =
⋃

γ∈acc(C(α))∩α

C′(γ)

(c) α /∈ d ∩ Eω and βα < α let

C′(α) = C′(βα) ∪
(
[βα, α] ∩ C(α)

)

Let us prove first that 〈〈C′, d〉, f〉 ∈ Sκ × Add(κ, 1). Obviously, f ∈ Add(κ, 1), it is

routine to check that 〈C′, d〉 ∈ Sκ, show by induction that,

otp(C(α)) = otp(C′(α)), acc(C(α)) = acc(C′(α))

and that condition (3), (4) of definition 20 hold. The induction step use the fact

that by removing at most one ordinal below a limit point of the set does not change
the order type and does not change limit points of the set.

To see that π ” Sκ is dense in Sκ ×Add(κ, 1), let

p = 〈〈N , d〉, f〉 ∈ Sκ ×Add(κ, 1)

Extend p if necessary to 〈〈N ′, d′〉, f ′〉 so that dom(f ′) = otp(d′∩Eω). This is possible
since f can be defined arbitrarily on missing points of its domain and γd can be

increased by extending 〈N , d〉 at successor steps of d from the set Eω in a coherent

way just as in lemma 21. To see that 〈〈N ′, d′〉, f ′〉 ∈ π ”Sκ, define 〈C, d′〉 recursively.
Assume α ∈ d′ ∩ Eω and α = (d′ ∩ Eω)(i). If f ′(i) = 0 define

C(α) = C(βα) ∪
(
[β, α−] ∩ N (α)

)
∪
{
γ + 1 | γ ∈ (α−, α) ∩ N (α)

}

If f ′(i) = 1 define

C(α) = C(βα) ∪
(
[β, α−] ∩ N (α)

)
∪
{
γ + 1 | γ ∈ (α−, α) ∩ N (α)

}
∪ {α− ω + 1}

If α /∈ d′ ∩ Eω and α = βα define

C(α) =
⋃

γ∈acc(N (α))∩α

C(γ)



10 TOM BENHAMOU, MOTI GITIK, AND YAIR HAYUT

Finally if α /∈ d′ ∩ Eω and βα < α let

C(α) = C(βα) ∪
(
[βα, α] ∩ N (α)

)

It is routine to check that π is an embedding.
For the second part, assume that P is a <κ-strategically closed forcing, let G be

generic for Sκ, then V [G] = V [G′][H ] where G′ is another generic for Sκ and H
is V [G′]-generic for Add(κ, 1). In V [G′], since Sκ is <κ strategically closed, there
are no new plays of P of length less than κ, indicating that P stays <κ-strategically

closed in V [G′]. Since in V [G′] there is a square sequence, use 19 to conclude that
P is κ-strategically closed in V [G′]. Thus by 17, there is π : Add(κ, 1) → P ∈ V [G′]
a projection. Let us turn this projection to a projection in V of Sκ ×Add(κ, 1). Let

π̃ be a Sκ-name such that Sκ π̃ : Add(κ, 1) → B(P) is a projection. Consider the
set

D = {〈p, q〉 ∈ Sκ ×Add(κ, 1) | ∃a ∈ P.p  π̃(q) = a}

It is dense in Sκ × Add(κ, 1). For every 〈p, q〉 ∈ D, define π∗(〈p, q〉) = a for the

unique a ∈ P, such that p  π̃(q) = a. It is a straightforward verification to see that
π∗ : D → P is a projection. �

The following lemma shows that Sκ is not maximal among the κ-distributive
forcing notions. For a fat stationary set S ⊆ κ, let Club(S) be the forcing that

shoots a club through S using closed and bounded conditions. By [2], if κ<κ = κ,

then Club(S) is κ-distributive if and only if S is fat stationary set.

Lemma 23. Let S ⊆ T ⊆ κ be fat stationary sets. If the set of all α ∈ T \ S such that

T ∩ α contains a club at α is stationary, then T \ S stays stationary in V Club(T ) and

in particular there is no projection from Club(T ) to Club(S).

Remark. After adding a single Cohen set to κ, there is a partition of κ into κ many

disjoint fat stationary sets. Thus, the structure of the κ-distributive forcing notions

of size κ might be complicated in general, even when κ is a large cardinal.

Proof. Let C ⊆ T be a V -generic club for Club(T ). Assume that S is not stationary

in V [C] and let B
∼

be a name such that some p ∈ Club(T ) forces that B
∼

is a club

disjoint from T \ S. Let 〈Mi | i < κ〉 be an increasing and continuous chain of
elementary substructures of H(θ) for some large enough θ such that:

(1) p,B
∼
, S, T, Club(T ) ∈ M0.

(2) |Mi| < κ.

(3) xi := Mi ∩ κ ∈ κ.
(4) and xiMi ⊆ Mi+1.

Consider the club {α | xα = α}. There is α < κ such that xα = α ∈ T \ S and there

is a closed unbounded set D ⊆ T ∩ α. Let us construct an increasing sequence of

conditions 〈pi | i < θ〉 such that:

(1) p0 = p and pi ∈ Mα.
(2) [pi+1 \max(pi)] ∩D 6= ∅.

(3) there is max(pi) < yi ∈ Mα such that pi+1  yi ∈ B
∼

.

that 〈pi | i < j〉 is defined and let η = sup(max(pi) | i < j). If j is limit and η = α,

define θ = j and stop. Otherwise, there is r < α such that 〈pi | i < j〉 ⊆ Mr thus in
Mj+1. By closure of D, η ∈ D, hence it is safe to define

pj = ∪i<jpi ∪ {η} ⊆ T

which is definable in Mα. For the successor step, assume pi ∈ Mα is define. Work

inside Mα and let p′i+1 be a condition deciding a value yi ∈ B
∼

above max(pi). Since
D is unbounded, there is z ∈ D \ max(p′i+1) then pi+1 = p′i+1 ∪ {z} ∈ Mα is as

wanted. Finally, ∪i<θpi ∪ {α} ∈ Club(T ) must force that α ∈ B
∼

∩ (T \ S) which is

a contradiction. �
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5. IMPLICATIONS

In this section we will show that certain large cardinals weaker than κ-compacts

already imply an existence of a κ-complete ultrafilter extending the filters Dp(P).
Let us deal first with <κ-strategically closed forcing notion of size κ.

Recall that a cardinal κ is called superstrong if and only if there is an elementary

embedding j : V → M such that crit(j) = κ and Vj(κ) ⊆ M .

While j(κ) is always a strong limit cardinal, and inaccessible in M , it need not
be regular in V . Actually, κ+ ≤ cf(j(κ)) ≤ 2κ, for the first such cardinal, see [19].

However, if cf(j(κ)) > λ, then λj(κ) ⊆ M .

Theorem 24. Suppose that there is an elementary embedding j : V → M such that

crit j = κ and 2κj(κ) ⊆ M . Let P be a < κ-strategically closed forcing notion of size

κ.

Then for every p ∈ P there is a κ-complete ultrafilter that extends Dp(P).

Proof. Assume without loss of generality that P = κ. Fix p ∈ P. Denote 2κ by λ.

Clearly, λ < j(κ), since P(κ) ⊆ M and j(κ) is a measurable in M .
Let 〈Dα | α < λ〉 be an enumeration of all subsets of P in V which are dense above

p and open. In M , let Σ be a winning strategy for the game on j(P) of length λ+1.
Such Σ exists since j(P) is <j(κ)-strategically closed.

Let us pick by induction a sequence of conditions pα ∈ j(P) = j(κ), α < λ, such

that ∀α < β, pα ≤ pβ and pα+1 ∈ j(Dα).
First, let p0 = p. Each condition pα is played by Player I according to Σ and qα is

played by Player II, to be a condition stronger than pα in j(Dα).
While the sequence 〈j(Dα) | α < λ〉 might not be in M , the sequence 〈pα, qα |

α < λ〉 is in M , since λj(κ) ⊆ M , and it is a play which is played according to

the strategy Σ. Therefore, it has an upper bound p̃ which is stronger than all the
conditions pα, qα, α < λ. By construction, p̃ ∈

⋂

α<κ+ j(Dα).
Finally,

U = {X ⊆ κ | p̃ ∈ j(X)}

will be as desired. �

The assumption of the theorem cannot be optimal since Vκ+2 ⊆ M , and thus it

is true in M as well that for every <κ-strategically closed forcing notion P, there is
a κ-complete ultrafilter that extends its dense open filter. Thus, by reflection, the

conclusion holds for many cardinals below κ as well.

Next, we turn to the class of κ-distributive forcings. The upper bound in this
case is a 1-extendable cardinal:

Definition 25. A cardinal κ is called 1-extendible if there is a non-trivial elementary

embedding j : Vκ+1 → Vλ+1 such that crit(j) = κ.

Proposition 26. If κ is 1-extendible then for every κ-distributive forcing P of size κ
and every p ∈ P, the filter Dp(P) can be extended to a κ-complete ultrafilter.

Proof. Code 〈P,≤P 〉 and an order of κ. Thus we can assume without loss of general-
ity that 〈P,≤P 〉 ∈ Vκ+1. Recall that Dp(P) := {D ⊆ P | D is dense open above p}.

Then Dp(P) ⊆ Vκ+1 and it is definable from 〈P,≤P 〉. Since j(κ) = λ, and Vκ+1 |= κ
is inaccessible cardinal, by elementarity Vλ |= λ is an inaccessible cardinals, and
therefore λ is inaccessible cardinal in V . In particular, Vλ is closed under < λ se-

quences and the set j′′Dp(P) = {j(D) | D ∈ Dp(P)} ∈ Vλ+1. By elementarity

j(P) is λ-distributive, and since |j′′Dp(P)| = |Dp(P)| = 2k < λ, we conclude that

∩D∈Dp(P)j(D) is dense open in j(P). In particular it is non empty and we can fix

any p∗ ∈ ∩D∈Dp(P)j(D). Now in V we can define

F = {X ⊆ P | p∗ ∈ j(X)}
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As in previous arguments, this F is a κ-complete ultrafilter extending Dp(P) �

We deal here with the following weakening of κ-compactness:

For every κ-distributive forcing notion of cardinality κ, the filter of its dense open

subsets can be extended to a κ-complete ultrafilter.

In this context, the major difference between κ being κ-compact and κ being
1-extendible is that we do not need to extend every κ-complete filter on κ. For our

purposes we are only interested in extending filters which are definable using a

parameter which is a subset of κ. This distinction leads to the realm of subcompact
cardinals. Subcompact cardinals were defined by R. Jensen:

Definition 27. A cardinal κ is called subcompact if for every A ⊆ H(κ+), there are

ρ < κ, B ⊆ H(ρ+) and an elementary embedding

j : 〈H(ρ+),∈, B〉 → 〈H(κ+),∈, A〉

with critical point ρ, such that j(ρ) = κ.

The following strengthening was introduced by I. Neeman and J. Steel [18]:

Definition 28. κ is called Π1
1-subcompact if for every A ⊆ H(κ+) and for every

Π1
1-statement Φ, if 〈H(κ+),∈, A〉 |= Φ then there are ρ < κ and B ⊆ H(ρ+) such

that 〈H(ρ+),∈, B〉 |= Φ and there is an elementary embedding

j : 〈H(ρ+),∈, B〉 → 〈H(κ+),∈, A〉

with critical point ρ, such that j(ρ) = κ.

The third author showed in [13] the following:

Theorem 29. If κ is Π1
1-subcompact, then it is a κ-compact cardinal i.e. every κ-

complete filter over κ extends to a κ-complete ultrafilter.

On the other hand, if κ is κ-compact then �(κ) and �(κ+) fails.

The failure of square at two consecutive cardinals seem to have very high con-

sistency strength, which made the conjecture that κ-compactness is equiconsis-
tent with Π1

1-subcompactness plausible. However, a recent work of Larson and

Sargsyan, [15], casts doubt on this heuristic by showing that the consistency strength

of the failure of two consecutive squares at ω3 and ω4 is below a Woodin limit of
Woodin cardinals.

Let us start with the following observation:

Proposition 30. Let κ be a subcompact cardinal such the filter FQ of dense open

subsets of Q extends to a κ-complete ultrafilter over κ, for every κ-distributive poset Q

of size κ.

Then κ is a limit of cardinals with the same extension property.

Proof. Clearly it is enough to deal with posets which are partial orders on the set κ.
For every such Q, fix a κ-complete ultrafilter F ∗

Q over κ which extends FQ. The

ultrafilter F ∗
Q is a subset of P (κ) ⊆ H(κ+). Thus, one can code the set:

{〈Q, F ∗
Q〉 | Q ⊆ κ, is κ-distributive}

by a subset A of H(κ+) (for example, we can set A =
⋃

Q{Q} × F ∗
Q).

Now by the definition of subcompactness, with parameter A, there are ρ < κ
and B ⊆ ρ+ and an elementary embedding

j : 〈H(ρ+),∈, B〉 → 〈H(κ+),∈, A〉

with critical point ρ, such that j(ρ) = κ.
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Since the set of all ρ-distributive posets is definable in H(ρ+), and j is elemen-
tary, the set B is a code of the set:

{〈Q, F ∗
Q〉 | Q ⊆ ρ is ρ-distributive},

and in particular for every ρ-distributive poset of size ρ, Q, there is a ρ-complete
filter extending FQ. �

Let us consider now the lightface version of Definition 28:

Definition 31. A cardinal κ is called lightface Π1
1-subcompact if

for every Π1
1-statement Φ, if 〈H(κ+),∈ 〉 |= Φ then there is ρ < κ such that

〈H(ρ+),∈ 〉 |= Φ and there is an elementary embedding

j : 〈H(ρ+),∈ 〉 → 〈H(κ+),∈ 〉

with critical point ρ, such that j(ρ) = κ.

The definition does not allow us to add parameters from H(κ+) to the formula Φ,

and thus this large cardinal property is witnessed by a countable set of elementary
embeddings.

The next proposition is similar to 29:

Proposition 32. Let κ be a lightface Π1
1-subcompact. Then every κ-distributive forcing

P of size κ, and every p ∈ P, the filter Dp(P) can be extended to a κ-complete ultrafilter.

Proof. Assume otherwise, and let Φ be the statement that there is P = 〈κ,≤P〉 ∈
H(κ+) and no ulrafilter extending Dp(P). Φ is of the form

∃P
︸︷︷︸

First order

∀U
︸︷︷︸

Second order

µ(P, U)
︸ ︷︷ ︸

First order

Using AC, such a formula can be expressed as a Π1
1 formula [8, P. 153, Lemma 7.2].

Note that Φ is defined with no parameters, hence by a lightface Π1
1-subcompactness

of κ, there is ρ < κ an elementary embedding

j : H(ρ+) → H(κ+)

with critical point ρ such that j(ρ) = κ, such that H(ρ+) |= Φ.
Therefore there is Pρ which is a counterexample of a forcing of size ρ which is

ρ-distributive such that there is no κ-complete filter extending the filter Dp(Pρ) for

some p ∈ Pρ. Let us enumerate all dense open subsets of Pρ above p by 〈Di | i <
2ρ〉. The sequence 〈j(Di) | i < 2ρ〉 is in H(κ+), since 2ρ < κ. By elementarity, j(Pρ)
is j(ρ)- distributive and therefore

⋂

i<ρ+ j(Di) 6= ∅, so let x be an element in the

intersection. Then
{X ⊆ Pρ | x ∈ j(X)}

is a ρ-complete ultrafilter extending Dp(Pρ) — a contradiction to the choice of
Pρ. �

To see that the notion of a lightface Π1
1-subcompact is strictly weaker than Π1

1-
subcompact we have the following proposition:

Proposition 33. Let κ be Π1
1-subcompact. Then κ is a limit of lightfaceΠ1

1-subcompact

cardinals.

Proof. Suppose that κ is a Π1
1-subcompact cardinal. Let Φ be a Π1

1 statement (with

no parameters). If Φ holds in H(κ+) let

jΦ : 〈H(ρ+Φ),∈〉 → 〈H(κ+),∈〉

witness the reflection. Otherwise, let BΦ be a subset of H(κ+) witness the negation

of Φ. Let T ⊆ ω be the set of all Gödel number of true Π1
1-formulas in H(κ+), and

let kΦ be the Gödel number of Φ.
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For each Φ such that kΦ ∈ T , jΦ ⊆ H(ρ+Φ) × H(κ+) ⊆ H(κ+). There are
only countably many such formulas Φ, and thus we can code all those elementary

embeddings as a single subset AT ⊆ H(κ+)1.
Similarly, we can gather all the sets BΦ for Φ such that kΦ /∈ T , into a single

subset of H(κ+), B. Since the truth values of first order formulas is ∆1
1, we can

take a Π1
1-formula Λ with parameter k, using the predicate B such that Λ(k,B) if

and only if k is the Gödel number of a Π1
1-formula Φ and Bk is a counterexample

doe Φ.
Let A be a set coding T , AT and B.

There is a universal Π1
1-formula Ψ(y) where y is a first order free variable such

that for every regular cardinal β, every Π1
1 statement φ,

H(β) |= φ ⇐⇒ H(β) |= Ψ(k)

for some natural number k which is the Gödel numbering of formulas [8, p. 272,
Lemma 1.9]. In the language of the model 〈H(κ+),∈, A〉 we can formulate the

statement α(A) ”For every Π1
1-statement Φ, kΦ ∈ T implies Ψ(kΦ) and kα /∈ T

implies Λ(B, k)”. Now, 〈H(κ+),∈, A〉 |= α(A), apply Π1
1-subcompactness to A,

there are ρ < κ, B ⊆ H(ρ+) and an elementary embedding:

j : 〈H(ρ+),∈, B〉 → 〈H(κ+),∈, A〉

such that crit(j) = ρ, j(ρ) = κ and 〈H(ρ+),∈, B〉 |= α(B). Let us show that ρ
is lightface Π1

1-subcompact and we will be done. Let ζ be a Π1
1-statement, such

that 〈H(ρ+),∈〉 |= ζ, then kζ is coded in B1 and by elementarity of j also in A1,
hence 〈H(κ+),∈〉 |= ζ. So there is an embedding jζ coded by A. In particular for

ρζ < j(ρ),

〈H(κ+),∈, A〉 |= {x | 〈kζ , x, jζ(x)〉 ∈ A} = H(ρ+ζ )

by elementarity of j, there is ρ′ζ < ρ such that

〈H(ρ+),∈, B〉 |= {x | 〈kζ , x, jζ(x)〉 ∈ B} = H(ρ
′+
ζ ).

It must be that ρ′ζ = j(ρ′ζ) = ρζ , since the critical point is ρ. For every x ∈ H(ρ+ζ )

there is a unique y such that 〈kζ , x, y〉 ∈ B, define iζ(x) = y. So

iζ : 〈H(ρ+ζ ),∈ 〉 → 〈H(ρ+),∈ 〉

We claim that iζ is elementary, and that iζ(ρζ) = ρ. This will follow after we show

that j ◦ iζ = jζ . Indeed, 〈kζ , x, iζ(x)〉 ∈ B and be elementarity 〈kζ , j(x), j(iζ(x))〉 ∈
A but j(x) = x since ρ+ζ < ρ and therefore 〈kζ , x, j(iζ(x))〉 = 〈kζ , x, jζ(x)〉 in

particular j(iζ(x)) = jζ(x). �

6. LOWER BOUND

In this section we deal with the forcing notion for shooting a club through the

stationary set of singular ordinals below κ, i.e.

Q = {a ⊆ κ | |a| < κ, a is closed and each member of a is singular}

ordered by end-extension.
This forcing is < κ-strategically closed. In our framework, κ is strongly inacces-

sible and thus this forcing is of cardinality κ.

Our aim will be to show the following:

Theorem 34. Let us assume that there is a κ-complete ultrafilter which extending

D∅(Q).
Then either there is an inner model for ∃λ, o(λ) = λ++, or oK(κ) > κ+.

1indeed, AT is an element of H(κ+).
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We split the proof into three parts. First, we will derive some unconditional
claims that follow from the existence of such an ultrafilter. Then, we will focus in

the case that there is no inner model with a measurable λ of Mitchell order λ++,

and discuss the structure of the indiscernibles that follows from the hypothesis of
the theorem. Finally, we will combine those two paths and obtain a robust way to

extract some of the indiscernibles, from which we are going to get strength.

6.1. Combinatorial consequences. In order to prove Theorem 34, we will start

with a sequence of lemmas, establishing the existence of a certain elementary em-
bedding with some useful properties.

Let F be a κ-complete ultrafilter which extends D∅(Q). Consider the correspond-

ing elementary embedding jF : V → Ult(V, F ) ≃ MF . Let a = [id]F . Then

a ∈
⋂

{jF (D) | D ⊆ Q is dense open }

Let a∗ be a closed set of ordinals with minimal value of max(a∗), such that there is

an ultrafilter U = {X ⊆ Q | a∗ ∈ jU (X)} extending the filter of dense open subsets

of Q. Equivalently, a∗ ∈ jU (D), for every D ⊆ Q dense open.
Fix such a∗ and let U be a witnessing ultrafilter. So [id]U = a∗, by [12, Lemma

1.6], [3, Proposition 2.5].

Lemma 35. For every ξ < max(a∗), there is a dense open D such that a∗ ∩ (ξ + 1) /∈
jU (D).

Proof. Otherwise, let ξ < max(a∗) be the least ordinal such that a′ = a∗ ∩ (ξ + 1)
belongs to jU (D) for all D ⊆ Q dense open. Let

U ′ = {X ⊆ Q | a′ ∈ jU (X)}.

The ultrafilter U ′ is below U in the Rudin-Kiesler order. One way to illustrate that

is to pick a function g : Q → κ such that jU (g)(a
∗) = ξ + 1 and define the function

f(p) = p ∩ g(p). Then jU (f) = a′.
Let k : MU ′ → MU be the elementary embedding defined by k([f ]U ′) = jU (f)(a

′).
By standard arguments, k ◦ jU ′ = jU .

Consider in MU ′ the element b = [id]U ′ (note that Ub = U ′). By the properties of

k, k(b) = a′ = a∗ ∩ (ξ + 1), hence max(b) ≤ k(max(b)) ≤ ξ < max(a∗). To see that

b contradicts the minimality of a∗, note that for every dense open D, k(b) = a′ ∈
k(jU ′(D)) and by elementarity of k, b ∈ jU ′(D). �

Lemma 36. Let η < max(a∗) and q ⊆ η, q ∈ j(Q). For every dense open set D ⊆ Q,
the condition (a∗ \ η) ∪ q is in j(D).

Proof. Otherwise, let D1, η < max(a∗) and q′ be such that

a∗ \ η ∪ q′ /∈ j(D1)

By minimality of a∗, there is D2 ⊆ Q dense and open such that a∗ ∩ η /∈ j(D2).
Let D∗ be the set of all conditions p ∈ Q such that there is η < max(p), p∩η ∈ D1

and moreover for every condition q ∈ Q with max(q) ≤ η, q ∪ (p \ η) ∈ D2.

We claim that D∗ is dense open.

Let us show that D∗ is open. Let p1 ∈ D∗ and let p1 ≤ p2. Take η < max(p1) ≤
max(p2) witnessing p1 ∈ D∗ then

p1 ∩ η = p2 ∩ η ∈ D1

and if max(q) ≤ η then

q ∪ (p1 \ η) ≤ q ∪ (p2 \ η) ∈ D2

since D2 is open. Thus p2 ∈ D∗.
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Let us show that D∗ is dense. Let p ∈ Q be any condition, find p ≤ p1 ∈ D1.
denote max(p1) = η and note that 2η < κ. Let us enumerate all q ∈ Q with

max(q) ≤ η, 〈qi | i < 2η〉 and let Di
2 be the collection of all conditions r ∈ P such

that r \ η ∪ qi ∈ D2. For every i, Di
2 is dense open. P is κ-distributive and thus

⋂

i<2η D
i
2 is dense. Let us pick a condition p2 ≥ p1 in this intersection. Clearly,

p2 ∈ D∗.
Let us claim that a∗ /∈ j(D∗), and conclude the proof. For any ξ < max(a∗), if

ξ ≤ η then a∗ ∩ η /∈ j(D1) and if ξ > η then let p = a∗ ∩ (η, ξ) then q′ ∪ p /∈ j(D2)
since q′ ∪ a∗ ≥ q′ ∪ p. thus a∗ /∈ j(D∗) contradiction the choice of a∗. �

We conclude that for every η, a∗ \ η ∈ j(D) for all D ∈ V , dense open. In
particular, we may assume that min(a∗) > κ. Although, a∗ \ κ does not necessarily

generates U , we take b = [id]Ua∗\κ
, where

Ua∗\κ = {X ⊆ Q | a∗ \ κ ∈ jU (X)}

and b will be as wanted, since max(b) = max(a∗) but also min(b) ≥ κ. To see
this, assume otherwise that b ∩ κ 6= ∅. Let k : MUb

→ MU , then crit(k) ≥ κ and

k(b) = a∗ \ κ so b ∩ κ = k(b ∩ κ) ⊆ a∗ \ κ, contradiction.

Continuing, we would like to derive some more information about the size of
max(a∗).

Lemma 37. For any f : κ → κ and any τ < max(a∗), jU (f)(τ) < max(a∗).

Proof. Assume otherwise, then there is f, τ , witnessing the negation. By lemma 35,

there is a dense open set D such that a∗ ∩ (τ + 1) /∈ jU (D). Consider the set D∗

of all conditions p ∈ D such that for every ξ < max(p), if p ∩ (ξ + 1) /∈ D then

f(ξ) < max(p). Then D∗ is dense since for every p0, we take q ∈ D above p0, the

set {f(ξ) | ξ < max(q)} is bounded by some max(q) ≤ α < κ, then

p0 ≤ q ≤ q∗ := q ∪ {α} ∈ D∗

since if ξ < max(q∗) and q∗ ∩ (ξ + 1) /∈ D, then ξ < max(q) as q∗ ∩ (max(q) + 1) =
q ∈ D and D is open. so f(ξ) < α = max(q∗). Also D is open since is p ∈ D∗ and

p ≤ p1, then p1 ∈ D (since D is open and p ∈ D), but also for every ξ < max(p1),
id p1 ∩ (ξ + 1) /∈ D, then ξ < max(p). Thus f(ξ) < max(p) ≤ max(p1).

It follows that a∗ ∈ jU (D
∗), but this is a contradiction since τ < max(a∗),

a∗ ∩ (τ + 1) /∈ jU (D) and jU (f)(τ) ≥ max(a∗)

�

Lemma 38. κ+ ≤ cfV max(a∗) ≤ 2κ.

Remark. Note that 2κ > κ+ already implies, by Mitchell [16], that o(κ) ≥ κ++,

since κ is a measurable. Thus, assuming our anti-large cardinal hypothesis, we get
cf max(a∗) = κ+.

Proof. First let us show that cfV max(a∗) ≥ κ+.
Otherwise, let 〈ζδ | δ < δ∗〉 be cofinal at max(a∗), δ∗ ≤ κ. For every δ < δ∗, there

is a dense open set Dδ ∈ V such that a∗ ∩ (ζδ + 1) /∈ Dδ.

Let D∗ be the set of all condition p ∈ D such that there is ξ < max p such that
p ∩ ξ ∈

⋂

δ<min p Dδ. Clearly, D∗ is dense open. Let us show that a∗ /∈ jU (D∗).

Indeed, we assume that min a∗ > κ and therefore if a∗ ∈ jU (D∗) then there is

some ξ < κ∗ such that a∗ ∩ ξ ∈ jU (Dδ) for all δ < δ∗ ≤ κ, which contradicts our
assumption.

Let us show now that cfV (max(a∗)) ≤ 2κ. Indeed, let us fix some elementary

submodel H of sufficiently large H(θ) of cardinality 2κ that contains a∗ and for

every D ⊆ Q, j(D) ∈ H . It follows that for every D ⊆ Q dense open in V , the
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minimal ordinal ρ < max(a∗) such that a∗ ∩ ρ ∈ j(D) belongs to H . In particular,
sup(max(a∗)∩H) = max(a∗), by the minimality of max(a∗). Since |H∩max(a∗)| ≤
2κ, we conclude that cf(max(a∗)) ≤ 2κ. �

Next, we would like to get a parallel of Claim 12. Since we only assume the

existence of an ultrafilter extending D∅(Q), we have to be a bit more careful. We

could use the homogeneity of Q and derive an extension of Dp(Q) for all p, but we
would like to get a relatively concrete representation of the generic, which would

be useful during the proof.

Since |Q| = κ, there is a bijection f : κ → Q. Denote δa∗ = j(f−1)(a∗) and
define

W = {X ⊆ κ | δa∗ ∈ j(X)}

then W is a κ-complete ultrafilter on κ, U ≡RK W . MW = MU and [g]U 7→ [g ◦ f ]W
is the unique isomorphism between the two ultrapowers.

Lemma 39. Let 〈κn | n < ω〉 be a generic Prikry sequence for W . Then
⋃

n<ω
an is a

generic club for Q where an = f(κn). Moreover, there is N < ω such that for every

N ≤ n < ω, max(an) < min(an+1).

Proof. Let π : Q → κ be such that κ = [π]U = [π ◦ f ]W be the projection to normal.

In V , define the set

A = {α < κ | ∀β < π(f(α)), max(f(β)) < min(f(α))},

then A ∈ W . To see this note that

MU |= ∀β < κ = j(π)(a∗), max(j(f)(β)) < min(a∗)

since j(f)(β) = f(β) < κ ≤ min(a∗). Now a∗ = [id]U , to see this, note that

j(π)(a∗) = j(π ◦ f)(δa∗), min(a∗) = min(j(f)(δa∗))

thus δa∗ ∈ j(A) and A ∈ W . Let 〈κn | n < ω〉 be a Prikry sequence for W . Then
there is N such that for every N ≤ n < ω, κn < π(κn+1) and κn ∈ A. By the

definition of A it follows that max(an) < min(an+1). Denote by pn = a0∪· · ·∪an ∈
P, then for every n ≥ N , pn ≤ pn+1. We claim that CG = ∪

n<ω
an is a generic club

though the singulars of V . To see this, let D ⊆ P be dense open, then by claim 36,
a∗ ∈ j(D) and for every ξ < max(a∗), q ⊆ ξ, a∗ \ ξ ∪ q ∈ j(D), this property reflects

on a set in W i.e.

B = {α < κ | ∀ξ < max(f(α))∀q ⊆ ξ, f(α) \ ξ ∪ q ∈ D} ∈ W

and therefore there is N ≤ M < ω such that for every n ≥ M , κn ∈ B and so
pn ∈ D. �

We denote C(Q) =
⋃

n<ω an to be the V -generic club for Q.

The idea is that properties of a∗ reflect in some sense to the generic club C(Q).
This will be useful later, when we encounter some more delicate properties of a∗,

using Mitchell’s analysis of indiscernibles.

6.2. Mitchell’s indiscernibles. Recall that K is the Mitchell’s core model, under

the anti-large cardinal hypothesis, ¬∃λ, o(λ) = λ++.

For the convenience of the reader, we include here the statements of the basic
definitions and results which we are going to use in the course of the proof, which

we cite from [17].

Definition 40. (1) Let U be a measure, then crit(U) is the measurable κ such

that U is a measure over κ.
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(2) Let ~U be a sequence of measures and let γ′ < γ in dom(~U), denote by

cohγ′,γ = f for the least function in the well ordering of K = L[~U ] such

that γ′ = [f ]~Uγ
∈ Ult(K, ~Uγ).

(3) A system of indiscernibles for K is a sequence C such that:

(a) dom(C) ⊆ dom(~U) and ∀γ ∈ dom(C), Cγ ⊆ crit(~Uγ).
(b) For every f ∈ K, there is a finite sets a ⊆ On such that for every

γ ∈ dom(~U):

∀ν ∈ Cγ \ sup(a ∩ crit(~Uγ)).∀X ∈ f ”(ν × {crit(~Uγ)})

ν ∈ X ↔ X ∩ crit(~Uγ) ∈ ~Uγ

(4) A sequence C of indiscernibles for K is said to be h− coherent if h ∈ K is a

function and:

(a) ∀ν ∈ ∪γ∈dom(C)Cγ , there is a unique ξ ∈ h′′ν such that ν ∈ Cξ.

(b) If ν ∈ Cγ ∩ Cγ′ where γ 6= γ′ and γ ∈ h′′ν, then crit(~Uγ′) ∈ Cγ′′ for

some γ′′ < γ with crit(~Uγ′′) = crit(~Uγ).
(c) If ν ∈ Cγ , γν = cohγ′, γ(ν) for γ′ < γ, and γ′ ∈ h′′ν, then Cγν

=
Cγ′ ∩ (ν \ ν′) where ν′ is the least such that γ ∈ h′′ν′

(5) Let x be any set and h a function. Then set h′′(x; C) is the smallest set X
such that x ⊆ X and X = h′′[X ∪ (

⋃

γ∈X Cγ)].
(6) Suppose that C is a g-coherent system of indiscernibles. Define:

(a) SC(γ, ξ) = min(Cγ \ ξ + 1).
(b) SC

∗ (γ, ξ) = min(
⋃

γ′≥γ Cγ \ ξ + 1).

(c) If X is any set, and γ ∈ dom(C) ∩X . An accumulation point of Cγ in
X is an ordinal ν ∈ X such that for every γ′ ∈ X ∩ γ ∩ g′′ν, the

⋃

{Cγ′′ | γ′′ ≥ γ′, crit ~Uγ′′ = crit ~Uγ}

is unbounded in ν. Let aC,X(γ, ξ) is the least accumulation point of Cγ
in X above ξ.

Theorem 41 (Mitchell’s Covering Lemma). Assume there is no inner model with

∃λ.o(λ) = λ++. Let κ, κ′ be a K-cardinal such that κ′ ≥ max{κ, o(κ)}. Also let X be

a set such that κ 6⊆ X = Y ∩ Kκ′ where Y ≺1 H(κ
′+). Then there is ρ < κ, h ∈ K

and C such that:

(1) C is an h-coherent system of indiscernibles for K.

(2) dom(C) ⊆ X and ∪γCγ ⊆ X .

(3) X = h′′(X ∩ ρ; C) and hence X ⊆ h′′(ρ; C).
(4) For every ν ∈ X ∩ κ, either ν ∈ h′′[X ∩ ν], or ν ∈ Cγ for some γ in which

case there is ξ ∈ X ∩ ν such that either ν = SC(γ, ξ) = SC
∗ (γ, ξ) or there is

γ < γ′ ∈ h′′[X ∩ ν] such that ν = aC,X(γ′, ξ).
(5) If X ′ is another set satisfying is another set satisfying the assumption of the

theorem then there is a finite set a ⊆ On such that for every ξ, γ ∈ X ∩ X ′

such that a ∩ crit(~Uγ) ⊆ ξ and ξ > max{ρX , ρX′} then:

SC(γ, ξ) = SC′

(γ, ξ)

SC
∗ (γ, ξ) = SC′

∗ (γ, ξ)

aC,X(γ, ξ) = aC
′,X′

(γ, ξ)

whenever either is defined.

A Covering model is a set X satisfying the assumptions of the theorem 41. In the

discussion ahead, we will not distinguish between a model and its set of ordinals.



THE VARIETY OF PROJECTIONS OF A TREE-PRIKRY FORCING 19

Thus, we will freely take elementary substructures in some model of ZFC, that do
not contain all ordinals below some ζ and call them covering models.

The elementary embedding jU ↾ K : K → KMU is an iterated ultrapower of

K by its measures. Let us denote the iteration by 〈jα,β | α ≤ β ≤ l∗〉 where
jα,β : Kα → Kβ . We can assume that the iteration is normal i.e. 〈λi | i < l∗〉
is increasing where λi = crit(ji,i+1). Hence λ0 = κ. Let 〈κα | α ≤ α∗〉 be the
strictly increasing list of images of κ under this iteration. In particular, κ0 = κ and

κα∗ = jU (κ), and α∗ ≤ l∗.

Lemma 42. Let η < α∗ and let η0 be the least ordinal such that κη ≤ λη0 . Also let

ξη < l∗ be such that jξη (κ) = κη Then jξη ,η0(κη) = κη

Proof. By elementarity, N0 := Kξα |= κη is measurable. Let us define an internal

iteration of the measures of N0, i : N0 → N∗
0 , 〈iα,β | α ≤ β ≤ θ∗〉 defined as

follows:
At limit steps we simply take a direct limit. At successor step γ + 1, assume that

i0,γ : N0 → Nγ is defined and Uβ is a measure of ζβ for β < γ are the measures

applied at stage β.
Let

ζ̄γ = sup
β<γ

(ζβ + 1).

We split into cases:

• If cfN0(γ) > κ or γ is successor ordinal, consider the first measurable ζγ ≥
ζ̄γ in Nγ and apply U(ζγ , 0).

• If cfN0(γ) ≤ κ and γ is a limit ordinal, we take the least Nγ-measurable
ζ = ζγ , such that for some ρ, the set {β < γ | iβ,γ(Uβ) = U(ζ, ρ)} is

bounded in γ, assuming that there is one. If there is no such ζ, take γ = θ∗

and halt.

Let us claim that the elementary embedding jξη ,l∗ : N0 → KMU can be completed

to N∗. Indeed, in the comparison process between the models N∗ and KMU , the
model N∗ will not move since measurable cardinal in N∗ are critical points of steps

of the iteration of cofinality at most κ and MU is closed under κ-sequences.

Hence there is an iteration 〈σα,β | α ≤ β ≤ ρ∗〉 such that σρ∗ ◦ jξη ,l∗ = i. We
are only interested in the part of the iteration which have critical points below κη,

and the iteration σ ◦ jξη ,l∗ is equivalent to a normal one. Let β0 be the least such
that crit(iβ0,β0+1) ≥ κη, then there is γ0 such that σγ0 ◦ jη0,ξη = iβ0. Since iβ0 is

an internal iteration of N0 with critical points below κη which is measurable in N0,

i(κη) = κη.
Hence

κη ≤ jη0,ξη (κη) ≤ σγ0(jη0,ξη (κη)) = κη.

We conclude that jξη ,η0(κη) = κη. �

Corollary 43. {κα | α ≤ α∗} ⊆ {λi | i ≤ l∗} ∪ {jU (κ)}.

Proof. Assume that κα /∈ {λi | i ≤ l∗}, let us show that κα = jU (κ). Let ξα to be

the least such that jξα(κ) = κα. Consider α0 to be the minimal such that κα ≤ λα0 .
If α0 = l∗, then we are done. Otherwise we actually get the conclusion by using

the assumption that κα < λα0 = crit(jα0,l∗). Clearly, ξα ≤ α0, otherwise, since
crit(jα0,ξα) = λα0 > κα (again, this is clear in case α0 = l∗), jξα,α0(κα) = κα =
jξα,α0(jα0(κ)), hence κα = jα0(κ), contradiction the minimality of ξα. By lemma

42, jα0,ξα(κα) = κα, hence

jU (κ) = jl∗,α0(jα0,ξα(jξα(κ))) = jα0,l∗(jξα,α0(κα)) = jα0,l∗(κα) = κα

�
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Claim 44. If κα ≤ δ < κα+1 then there is h ∈ (κκ)K such that δ ≤ jU (h)(κα) <
κα+1.

Proof. Assume κα ≤ δ < κα+1 decompose the iteration

jU ↾ K = jξα+1,l∗ ◦ jξα+1,ξα+1 ◦ jξα,ξα+1 ◦ jξα

where

jξα : K → Kξα , crit(jξα) = κ

jξα,ξα+1 : Kξα → Kξα+1, crit(jξα,ξα+1) = κα, and jξα,ξα+1(κα) = κα+1

jξα+1,ξα+1 : Kξα+1 → Kξα+1 , crit(jξα+1,ξα+1) = λξα+1

jξα+1,l∗ : Kξα+1 → KMU , crit(jξα+1,l∗) = κα+1

First consider only the iteration jξα+1, there is f ∈ (κκ)K such that

jξα+1(f)(λi1 , . . . , λin) = δ

where λi1 , . . . , λin ≤ κα. Now let us define h : κ → κ by

h(α) = sup(f(~ξ) | ~ξ ∈ [α+ 1]n)

h ∈ K as it is definable. It follows that δ ≤ jξα+1(h)(κα) < κα+1. Further iteration

might move jξα+1(h)(κα), but not past κα+1. Indeed, by lemma 42,

κα+1 ≤ jξα+1,ξα+1(κα+1) ≤ jξα+1(κα+1) = κα+1

Hence κα+1 = jξα+1,ξα+1(κα+1). It follows that

jU (h)(κα) = jξα+1,l∗(jξα+1(h)(κα)) = jξα+1(h)(κα) =

= jξα+1,ξα+1(jξα+1(h)(κα)) < jξα+1,ξα+1(κα+1) = κα+1

�

There is a close connection between the critical points of the iteration jU and
indiscernibles of covering models from Mitchell’s covering lemma.

Lemma 45. Let N = hN ”(ρ;CN ) be a covering model where CN is a hN -coherent

system of indiscernibles for KMU
where hN ∈ KMU is a Skolem function. Suppose that

κγ0 ∈ N for some γ0 < α∗.

Then for all but finitely many c ∈ ∪{CN
γ | crit(CN

γ ) = κγ0}, c ∈ {κα | α ≤ γ0}.

Proof. Suppose otherwise. Let 〈δn | n < ω〉 be an increasing sequence in

∪{CN
γ | crit(CN

γ ) = κγ0} \ {κα | α ≤ α∗}

Set

αn = max({α ≤ α∗ | κα < δn}).

By Claim 44 there is fn : κ → κ in K increasing such that

δn < jU (fn)(καn
) < καn+1.

Consider {fn | n < ω}. While this set might not be a member of K, we are above to
bound it. Let 〈tξ | ξ < κ+〉 be the canonical enumeration in K of (κκ)K. For every

n < ω, let ξn be the unique ordinal such that fn = tξn . Both κ and κ+ = (κ+)K are

regular in V (here we are using the covering theorem, and the measurability of κ
in V ). So, there is a ⊆ κ+, a ∈ K, |a| < κ which covers {ξn | n < ω}. To find such

a set, let ξ = supn ξn < κ+. Let p : κ → ξ be a bijection in K. Since cfV κ = κ > ω,

sup p−1(ξn) = β′ < κ. Then take a = p ”β′ ∈ K.

Define a function f : κ → κ in K as follows:

f(ν) = sup{tξ(ν) | ξ ∈ a},

for every ν < κ. Then, for every n < ω, ν < κ,

κ > f(ν) > fξn(ν).
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Now, in the ultrapower, for every n < ω,

καn+1 > jU (f)(καn
) > δn.

Let δ∗ = supn<ω δn ≤ κγ0 . If δ∗ = κγ0 , then the function jU (f) ” ν in is KMU .

Note that δn ∈ jU (f) ”καn
. For high enough n, this will contradicts Definition 40,

3b and the indiscernibility of δn’s. If δ∗ < κα+1, then it is also indiscernible and by

definition 40, 4c, the δn’s are part of the indiscernibles for δ∗. Then we again reach
a contradiction to 40, 3b. �

Lemma 46. For every α < α∗, κα+1 is regular in MU .

Proof. Otherwise, it is singular in MU , denote by λ = cfMU (κα+1) < κα+1.
Work in MU , let H ≺ H(θ+) be an elementary submodel for some high enough

θ, closed to λ sequences, such that |H | < κα+1. Apply Mitchell’s covering lemma
41, find a covering model H ∩ K ⊆ N of cardinality less than κα+1. It is of the

form hN ”(δN ,CN ), where δN < κ∗, CN is a hN -coherent system of indiscernibles

for KMU
and hN ∈ KMU is a Skolem function. We can assume also that λ ⊆ H .

The indescernibles for κα+1 in N are unbounded in κα+1. On the other hand,

all but finitely many indiscernables for κα+1 are among {κβ | β ≤ α}. This is a

contradiction. �

Consider κ∗ = sup(max(a∗) + 1 ∩ {κα | α ≤ α∗}). Then there is α∗∗ < α∗ such
that κ∗ = κα∗∗ .

α∗∗ ≥ κ.

In particular, the length of the sequence 〈κα | α ≤ α∗〉 is at least κ, and hence,
oK(κ) ≥ κ. We will not pursuit that direction here, as the next lemma gives a

strictly stronger result.

Lemma 47. κ∗ = max(a∗).

Proof. Otherwise, κ∗ < max(a∗) < κα∗∗+1. By claim 36, for every D dense open,
a∗ \ κ∗ ∈ j(D). Also, by minimality of a∗, there is a dense open set D0 such that

a∗ ∩ (κ∗ + 1) /∈ D0.

Let h : κ → κ be such that j(h)(κ∗) ≥ max(a∗) which exists by claim 44. Con-
sider

C = {α < κ | ∀β < α, h(β) < α},

the club of all closure points of h.

Let D be the dense open set of all conditions p ∈ Q such that there are

η < η′ < max p

such that p ∩ η ∈ D0 and η′ ∈ C. Let us claim that a∗ /∈ j(D), and thus obtain a

contradiction. Indeed, the least η such that a∗ ∩ η ∈ D0 is above κ∗ + 1 and the
next element of j(C) above κ∗ + 1 is at least max a∗. �

Claim 48. For every α < α∗, and a function f : κα → κα in KMU , there is a function

g ∈ K such that j(g)(ζ) ≥ f(ζ) for all ζ < κα, except for a bounded error.

Proof. Fix in K = KV a sequence 〈hτ | τ < κ+〉 of functions such that for every

τ < τ ′ < κ+ the following hold in K:

(1) hτ : κ → κ,

(2) hτ < hτ ′ mod bounded,
(3) for every g : κ → κ there is ρ < κ+ such that g < hρ mod bounded.

Note that 2κ = κ+ in K, hence it is easy to construct such a sequence. Apply
the iteration jU ↾ K to the list 〈hτ | τ < κ+〉. Let us denote by K′ the iterated

ultrapower of K, and i : K → K′ the iteation, so that i(κ) = κα, and the critical

point of the rest of the iteration is ≥ κα.
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Note that i ”κ+ is cofinal at i(κ+). Moreover, κ+ = (κ+)K, by the anti-large
cardinal assumptions made. Hence 〈i(hτ ) | τ < κ+〉 will be dominating family of

functions from κα to κα in K′. As the critical point of the rest of the iteration is

high enough, j(hτ ) ↾ κα = i(hτ ). �

6.3. Isolating the indiscernibles. Recall that 〈κβ | β ≤ α∗∗〉 is the sequence of

images of κ under the iterated ultrapower jU ↾ K. In particular, each κβ+1 is the
image of κβ under the ultrapower embedding using a measure over κβ , κ0 = κ and

κα∗∗ = κ∗.
The following lemma provides a sufficient condition for the main theorem of this

section:

Lemma 49. Let A(η) = {κγ | κγ < η} ∩ acc(a∗).

If there function t ∈ (κ
∗

κ∗)K
MU

and γ < κ∗ such that A(κ∗) \ γ = Ct ∩ acc(a∗) \ γ,

then oK
MU (κ∗) ≥ (κ∗)+,

Proof. Assume otherwise that oK
MU

(κ∗) < (κ∗)+. Using Claim 48, we find some
t∗ ∈ K such that jU (t

∗) dominates t. Find disjoint sets 〈Xi | i < oK(κ)〉 such that

Xi ∈ U(κ, i). Since oK(κ) < κ+ there is a bijection π : oK(κ) → κ. Define g : κ → κ
by g(ν) = π(i) for the unique i such that ν ∈ Xi. Let us argue that

(⋆) A∗ := {ν < κ | g(ν) < ν} ∈ ∩ξ<oK(κ)U(κ, ξ).

Let ξ < oK(κ), then in the ultrapower Ult(K, U(κ, ξ)), jU(κ,ξ)(g) is defined similarly

using jU(κ,ξ)(π) : jU(κ,ξ)(o
K(κ)) → jU(κ,ξ)(κ) and the sequence

jU(κ,ξ)(〈Xi | i < oK(κ)〉) = 〈X ′
i | i < jU(κ,ξ)(o

K(κ))〉

Note that κ ∈ jU(κ,ξ)(Xξ) = X ′
jU(κ,ξ)(ξ)

hence

jU(κ,ξ)(g)(κ) = jU(κ,ξ)(π)(jU(κ,ξ)(ξ)) = jU(κ,ξ)(π(ξ)) = π(ξ) < κ

which is what we needed.
By (⋆), we can deduce that that ∀α < α∗∗, jU (g)(κα) < κα. In particular

(⋆⋆) MU |= jU (g) is regressive on acc(a∗) ∩ jU (Ct∗)

Using our hypothesis again, acc(a∗) ∩ jU (Ct∗) consists of the indiscernibles of
κ∗. In particular, if 〈αn | n < ω〉 is a sequence of ordinals below α∗∗, such that

jU (g)(καn
) is fixed, then jU (g)(supκαn

) is strictly higher.
Let 〈an | n < ω〉 be a Prikry sequence for U obtained by lemma 39 and let

C(Q) = ∪n<ωan be the generic club induced for Q. By reflecting (⋆⋆), we get that

for every n ≥ n0, g is regressive on acc(an)∩Ct∗ . Hence in V [C(Q)], g is regressive
on a final segment of C(Q)∩Ct∗ which is a club in V [C(Q)]. Since κ remains regular

in the generic extension V [C(Q)], there is a stationary subset S ⊆ Ct∗ ∩ accC(Q)
of ordinals of countable cofinality, on which g is fixed. But, in particular, there is a
continuous copy of ω + 1 that consists of elements of S—a contradiction. �

Note that if oK
MU (κ∗) ≥ (κ∗)+, then o(κ) > κ+. Indeed, κ∗ = max(a∗) < jU (κ).

It follows that there is ξ < l∗ such that κ∗ = crit(jξ,ξ+1). This means that oKξ(κ∗) >

oK
MU (κ∗) ≥ (κ∗)+. By elementarity, oK(κ) > κ+.

So, in order to conclude the proof, we need to prove that the hypothesis of
Lemma 49 holds.

Lemma 50. For every η ≤ α∗∗, such that κη ∈ acc(a∗), there are tη ∈ (κηκη)
KMU

and γη such that A(η) \ γη = (Ctη ∩ a∗ ∩ κη) \ γη.
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Proof. First note that if η is a limit ordinal and t is any function from κη to κη in

KMU , then for every sufficiently large α < η, κα ∈ Ct. This is true, by the arguments
of the proof of Claim 44 — each such function t is obtained by plugging into a an

j-image of a function in K, finitely many ordinals below κη, and restricting it to κη.

We prove by induction in η ≤ α∗∗ such that κη ∈ acc(a∗).
Assume inductively that the claim holds for all η′ < η. Since a∗ is closed, κη ∈ a∗,

thus κη is singular in MU . Let us denote by λ = cfMU (κη) < κη and split into cases:

Case 1: Assume that λ > ω. Since κη is measurable in KMU and singular in MU

there is a Prikry-Magidor sequence in 〈ci | i < λ〉 ∈ MU witnessing the singularity

of κη. We can cover {ci | i < λ} with a covering model N for κη of cardinality less

than κη such that all the ci’s are indiscernibles for κ∗ is N . By lemma 45, for all but
finitely many indiscernibles for κη, ci ∈ {κγ | γ < η}. By removing a bounded piece

if necessary, we can assume that ci = κηi
, for some ordinals ηi.Since both a∗ ∩ κη

and {κηi
| i < λ} are clubs in κη inside MU , and the cofinality of κη is λ > ω, we

my also assume that each κηi
is a limit point of a∗. Apply the inductive hypothesis

to each of the points κηi
and obtain a function tηi : κηi

→ κηi
in KMU such that for

some νi < κηi
,

Ctηi ∩ acc(a∗) \ νi = A(ηi) \ νi.

By Mitchell’s covering lemma, 41, N = hN ”(δN ,CN ), where δN < κη, CN is a

sequence of indiscernibles and hN ∈ KMU is a Skolem function.
In order to find a single function that works for κη we will prove that we can

choose these functions tηi so that they are definable in the covering model N .

First let us argue that A(ηi) is definable in MU from the parameters κηi
and a∗,

up to an initial segment, and this definition is uniform.

Lemma 51. Let ξ ≤ α∗∗ and suppose that 〈ci | i < λ〉 ∈ MU be an increasing
sequence, cofinal in κξ.

Let N ′ be a covering model for κξ with {ci | i < λ} ⊆ N ′. Suppose that 〈ci | i < λ〉
are indiscernibles in N ′ for κξ. Then ci ∈ {κβ | β < ξ}, for all but finitely many i’s.

Proof. Similar to Lemma 45. �

Now we can formulate the crucial property of subsets of κξ in MU : (∗)(B)

(1) B ⊆ κξ ∩ acc(a∗).
(2) For every covering model N ′ for κξ there is ρ < κξ such that for every

indiscernible c > ρ for κξ in N ′, if c is a limit point of a∗, then c ∈ B.

(3) For every sequence 〈ci | i < θ〉 ∈ MU of elements of B, cofinal in κξ, there

is a covering model N ′ for κξ and an ordinal θ′ < θ such that 〈ci | θ′ ≤ i <
θ〉 are indiscernibles for κξ in N ′.

Lemma 52. (∗)(A(ξ)) holds.

Proof. Requirement (1) is clear. Requirement (2) follows from Lemma 51. Let us

show requirement (3).
Indeed, for every function g : κ<ω

ξ → κξ in KMU there is a function f ∈ K such

that

g(x̄) = j(f)(ρ0, . . . , ρm−1, x̄),

for some fixed ρ0, . . . , ρm−1 < κξ. This follows from the iterated ultrapower rep-
resentation. Thus, every κα which is larger than max(ρ0, . . . , ρm−1) would be a

closure point of this function. In particular, taking g to be the Skolem function of
any covering model N ′ for the sequence 〈ci | i < θ〉 and taking θ′ to be the least

index in which ci > max(ρ0, . . . , ρm−1). we conclude that each of the elements ci
must be an indiscernible, by Theorem 41. �
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Lemma 53. If (∗)(B1) and (∗)(B2) hold, then B1 agrees with B2 on a final segment,

i.e. there is ν < κξ such that B1 \ ν = B2 \ ν.

Proof. Suppose otherwise. By symmetry, let us assume that there is a cofinal in κξ

sequence {ei | i < θ} ∈ B1 \ B2, in MU . By the first clause of (∗)(B1), each ei is a
limit point of a∗.

By (∗)(B1)(3), there will be a covering model N ′ for κξ with {ei | i < θ} ⊆ N ′

such that for some θ′ < θ, 〈ei | θ′ ≤ i < θ〉 are indiscernibles for κξ in N ′. Apply

now (∗)(B2)(2) to N ′ and 〈ei | θ′ ≤ i < θ〉. We will have then that a final segment

of 〈ei | θ′ ≤ i < θ〉 is in B. Contradiction. �

Claim 54. If there is a function t ∈ (κξκξ)
KMU

and some γ < κξ such that A(ξ) \ γ =
Ct ∩ acc(a∗) \ γ then there is a uniformly definable function in MU , tξ : κξ → κξ ∈
KMU , with parameters κξ, a

∗, such that for some µ < ξ, (Ctξ ∩ acc(a∗) ∩ κη) \ µ =
A(η) \ µ.

Proof. By assumption, t satisfies the above equality, and by the previous claim, we

let tξ be the least function t in the order of KMU such that (∗)(Ct ∩ acc(a∗)) holds.
This is formulated in MU using the parameters κξ and a∗. �

Back to κηi
’s, by the induction hypothesis and by claim 54, fix the function tηi

which is definable with parameters κηi
, a∗.

Lemma 55. Assume that N0 is a covering model for κη and hN0 ∈ KMU the associated

Skolem function. Consider h̃N0 : κη → κη ∈ KMU defined as follows:

h̃N0(ρ) = sup({hN0(~ξ) | ~ξ ∈ [ρ+ 1]<ω and hN0(~ξ) < κ∗}).

Suppose η′ < η is such that κη′ , a∗ ∈ N0 and tη
′

is definable as above.

Then for all but boundedly many ν < κη′ , h̃N0(ν) ≥ tη
′

(ν).

Proof. We use the elementarity of N0 and the definability of tη
′

to conclude that

tη
′

∈ N0 ∩KMU . Note that tη
′

= hN0(~c), for a finite sequence of N0-indiscernibles ~c
≤ κη′ . By the construction of the covering model N0, we can find t ∈ N0, t : κη →

κη such that t ↾ κη′ = tη
′

and t = hN (~c′) where ~c′ are all indiscernables strictly
below κη′ .

Hence by the definition of h̃N0 , for every max(~c′) ≤ ν < κη′ , tη
′

(ν) ≤ h̃N0(ν).

It follows then by the definition of h̃N0 that for all but boundedly many ν < κη′ ,

h̃N0(ν) ≥ tη
′

(ν). �

For every i < λ, apply lemma 55 to κηi
and the model N to find νi < κηi

such

that for every νi ≤ ν < κηi
, h̃N (ν) ≥ tηi(ν).

Then, by pressing down, and since λ > ω, there will be a stationary Z ⊆ λ and

ν∗ < λ such that for every ν, ν∗ ≤ ν < κηξ
, ξ ∈ Z the inequality h̃N (ν) ≥ tηξ(ν)

holds.
Now, shrinking Z more if necessary, we will get ν∗∗ < κ∗ such that

Ch̃N ∩ acc(a∗) \ ν∗∗ = A(η) \ ν∗∗.

Case 2: Suppose that λ = ω.
Once again, since κη ∈ a∗ we can find an increasing and cofinal sequence in κη,

〈κηn
| n < ω〉 ∈ MU . Let us add points to this sequence. If κηn

∈ acc(a∗), apply the

induction hypothesis, find tηn and let νn < κηn
be minimal such that

Ctηn ∩ acc(a∗) \ νn = A(ηn) \ νn.
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Find ξn < l∗ be such that crit(jξn,ξn+1) = κηn
, then tηn ∈ Kξn . We can represent

tηn in the iteration using some fn ∈ (κκ)K and some intermediate critical points
λ1, . . . , λm < κηn

, jξn(fn)(λ1, . . . , λm) = tηn . Let

max(({κα | ηn−1 < α < ηn} ∩ {λ1, . . . , λm}) ∪ {κηn−1}) = κηn,1

By minimality of νn, there is ηn,2 < ηn such that κηn,2 ≤ νn ≤ κηn,2+1. If ηn,2 ≤ ηn,1
then add ηn,1 to the sequence and set η(1) = ηn,1. Otherwise, add κηn,2 to the

sequence and set η(1) = κηn,2 . If κηn
/∈ acc(a∗), denote by

νn = sup(a∗ ∩ κηn
) < κηn

There is η′ < ηn such that κη′ ≤ νn < κη′+1 and there is a function tηn ∈
(κηnκηn

)Kξn such that νn ≤ tηn(κη′). Indeed, by lemma 44, there is f ∈ (κκ)K

such that jξ+1(f)(κη′) ≥ νn, where ξ < ξn is the step of the iteration such that κη′

is a critical point. Then we can set tηn = jξn(f). Let η(1) = η′.

In any case, if η(1) ≤ ηn−1 we are done. Otherwise, we move to κη(1) and repeat

the above. After finitely many steps, defining η(k) < η(k−1) < · · · < η(1) < ηn
we reach ηn−1. After adding these new points, we obtain a sequence still of order

type ω. Without loss of generality, this was the sequence 〈κηn
| n < ω〉 that we

started with. During the construction we have defined a sequence of functions

〈tηn | n < ω〉, such that tηn ∈ (κηnκηn
)K

MU
and by closure 〈tηn | n < ω〉 ∈ MU .

Clearly, tηn ∈ Kξn . Let ξ∗ = sup ξn, then crit(jξ∗,l∗) ≥ κη.

Claim 56. There is φ ∈ (κκ)K such that ∀n < ω, and every κηn−1 ≤ ν < κηn

tηn(ν) < jξn(φ)(ν)

Proof. By construction of the sequence 〈κηn
| n < ω〉, either κηn

/∈ acc(a∗) in

which case there is fn ∈ K such that tηn = jξn(fn) (no parameters needed). If

κηn
∈ acc(a∗), then by the construction of the sequence κηn

, there is a function
fn ∈ K and critical points

λ1 < · · · < λk < κηn−1 < θ1 < · · · < θm < κηn−1+1 ≤ κηn

such that

tηn = jξn(fn)(λ1, . . . , λk, κηn−1 , θ1, .., θm).

Since θm < κηn−1+1, by lemma 44, there is bn ∈ (κκ)K such that

θm < jξn−1(bn)(κηn−1) ≤ jξn(bn)(κηn−1) ≤ jU (bn)(κηn−1) < κηn
.

In K, define φn : κ → κ by

φn(α) = sup{fn(~ρ)(ξ) | ~ρ ∈ [bn(α)]
<ω ∩ dom(fn) ∧ ξ ≤ α} + 1.

Then for every κηn−1 ≤ ν < κξn ,

jξn(fn)(
~λ, κηn−1 ,

~θ)(ν) ≤ sup{jξn(fn)(~ξ)(ξ) | ~ξ ∈ [jξn(bn)(ν)]
<ω ∧ ξ ≤ ν}.

Hence tηn(ν) = jξn(fn)(
~λ, κηn−1 ,

~θ)(ν) < jξn(φn)(ν). We proceed as in lemma 45.

Suppose that 〈di | i < κ+〉 is an enumeration of (κκ)K and that φn = dµn
There is

a set a ⊆ κ+ such that a ∈ K, |a| < κ and {µn | n < ω} ⊆ a. Define in K, φ : κ → κ
by

φ(α) = sup{di(α) | i ∈ a}

Since κ is regular in K, φ is well defined and for every n < ω, φ dominates φn

everywhere. By elementarity of jξn , φ will be as desired �

Denote by tη = jU (φ) ↾ κη ∈ KMU . Note that tη ↾ κηn
= jξn(φ). Let us prove

that tη is as wanted:

Claim 57. There is γη < κη such that

(Ctη ∩ acc(a∗) ∩ κη) \ γη = A(η) \ γη.
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Proof. As we claimed before, {κγ | γη ≤ γ < η} is a weak Prikry-Magidor sequence

for KMU and Ctη is a club in KMU , there is γη such that {κγ | γη ≤ γ < η} ⊆ Ctη .
This proves the inclusion from right to left. For the other direction, assume that

δ ∈ Ctη \ κγη
such that δ /∈ {κγ | γη ≤ γ < η}, let us argue that a∗ ∩ δ is bounded

below δ. Fix any n < ω such that κηn
< δ < κηn+1 . We split into cases. If

κηn+1 /∈ acc(a∗), then

sup(a∗ ∩ δ) ≤ sup(a∗ ∩ κηn+1) = νn ≤ tηn+1(κηn
)

By claim 56, tηn+1(κηn
) < jξn(φ)(κηn

) = tη(κηn
). Since κηn

< δ ∈ Ctη , we conclude

that sup(a∗ ∩ δ) < δ and δ is not a limit point of a∗.
If κηn+1 ∈ acc(a∗), then by the construction of κηn

we have that Ctηn+1 ∩acc(a∗)\
κηn

= A(ηn+1) \ κηn
. By assumption, δ /∈ {κα | γη ≤ α < η}, hence δ /∈ A(ηn+1).

Since κηn
< δ, it follows that δ /∈ Ctηn+1 ∩ acc(a∗). �

This conclude that proof of lemma 49, and the proof of theorem 34. �

It is possible to try to proceed further and to deal with the situation when o(κ∗) =
(κ∗)+. If, as a result, κ∗ remain regular (which is typical forcing situation) then a∗

must be bounded in κ∗, since no regular cardinal can be in a∗, and so we are

basically in the situation considered above.

However, κ∗ can change cofinality — there are forcing construction in which it
changes cofinality to ω. In this case a finer analysis of indiscernibles seems to be

needed, and Mitchell’s accumulation points may appear.

Our conjecture is that the result above is not optimal and it can be strengthened.

7. COMPACTNESS FOR MASTERABLE FORCING NOTIONS

In this section we will isolate a subclass of forcing notions that consistently

include many important forcing notions (such as all the complete subforcings of
Add(κ, 1) and more), such that it is possible to force from a measurable cardinal

that for any forcing P in this class, there is a κ-complete ultrafilter extending D(P).

Lemma 58. Let Q be a κ-distributive forcing of size κ.
Suppose that there is a generic elementary embedding

j : V Q → M

with crit j = κ. Then, in M , there is a single condition m ∈ j(Q) which is stronger

than j(p) for any condition p in the generic filter for Q.

Proof. Without loss of generality we can assume that Q = κ, i.e. the set of condi-

tions of the forcing Q is just κ. Let G ⊆ Q be the generic filter. By elementarity,
M = M ′[j(G)], where ∀p ∈ G, j(p) ∈ j(G). Note that since G ⊆ κ and crit(j) = κ,

G = j(G)∩κ ∈ M . By the distributivity of Q over V and by elementarity of j, j(Q)
is also j(κ)-distributive over M ′, hence G ∈ M ′. In particular, the set

D = {q ∈ j(Q) | ((∀p ∈ G)(q ≥ j(p))) ∨ ((∃p ∈ G)(q ⊥ j(p)))}

is dense open in M ′. Clearly, any condition m ∈ j(G) from this set will witness the
validity of the lemma, since j(G) ⊇ j ”G = G. �

Define now a subclass of κ-distributive forcing of size κ.

Definition 59. A forcing notion Q is called masterable if

(1) Q is a κ-distributive forcing of size κ,

(2) there is a forcing notion R∼ ∈ V Q such that
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(a) In V Q∗R∼, there is an elementary embedding

j : V Q → M

with crit j = κ.

(b) Q∗R∼ contains a dense subset of size ≤ κ and Q∗R∼ is <κ-strategically

closed.

Let Nκ denotes the class of all masterable forcing notions.

Claim 60. Nκ is closed under complete subforcings.

Proof. Assume Q is a complete subforcing of P ∈ Nκ. Then |Q| ≤ |P| ≤ κ and let R∼
witness propery (2) for P. Let R′

∼
= P/GQ

∼
∗ R∼ where P/GQ

∼
is then quotient forcing.

Now Q ∗ R′
∼

≃ P ∗ R∼ and so condition (2) holds for Q. �

Theorem 61. Assume GCH and let κ be a measurable cardinal.

Then there is a cofinality preserving forcing extension in which for any Q ∈ Nκ,

there is a κ-complete ultrafilter U extending Dp(Q) for every p ∈ Q.

Proof. Let Pκ be a Easton support iteration of length κ, 〈Pα,Q∼β | α ≤ κ, β < κ〉.
At each step, Q

∼α is either the trivial forcing, if α is not inaccessible, or the lottery

sum of all <α-strategically closed forcing notions of size α (were the trivial forcing
is included).

Let Gκ ⊆ Pκ be a generic. We argue that the model V [Gκ] is as desired.

Let Q be a forcing notion in
(
Nκ

)V [Gκ]
and p ∈ Q. Let U be a normal, κ-complete

ultrafilter over κ. Let j1 : V → N1
∼= Ult(V, U) be the ultrapower maps using U .

Let κ1 = j1(κ).
Let us extend, in V [Gκ], the embedding j1 to an elementary embedding

j∗1 : V [Gκ] → N1[Gκ1 ].

Indeed, j(Pκ) = Pκ ∗ j(P)[κ,j(κ)). By picking the trivial forcing at κ, the rest of the

iteration is κ+-strategically closed in V (by the closure of N1 to κ-sequences). The

number of dense open sets of the tail forcing is κ+ (as enumerated in V ) and thus
one can construct in V [Gκ] an N1[Gκ]-generic filter for the tail forcing j(P)κ,j(κ).
Let Gκ1 be the generic filter for N1.

By elementarity, j∗1 (Q) ∈ (Nκ1)
N1[Gκ1 ], thus by condition (2) there is a R∼ and

a dense subset X ⊆ j∗1 (Q) ∗ R∼ such that N1[Gκ1 ] |= |X | ≤ κ1. By GCH , from

the point of view of V [Gκ], there are κ+ dense open sets to meet in order to gen-

erate a generic filter for j∗1 (Q). By condition (2), j∗1 (Q) ∗ R∼ is <κ1-strategically
closed in N1[Gκ1 ], again by closure of N1[Gκ1 ] to κ sequences from V [Gk], it is

κ+-strategically closed from the point of view of V [Gκ]. Hence, one can find a
N1[Gκ1 ]-generic filter, Gj∗1 (Q) ∗ GR∼ ∈ V [Gκ] with j∗1 (p) ∈ Gj∗1 (Q). Since j∗1 (Q) is

masterable using the forcing R∼ in the extension N1[Gκ1 ][Gj∗1 (Q) ∗ GR∼] there is an

elementary embedding

k : N1[Gκ1 ][Gj∗1 (Q)] → N∗

such that critk = κ1. Let m be a condition in k(j1(Q)) such that m is stronger

than k(p) for all p ∈ Gj∗1 (Q) which exists by applying lemma 58 to j∗1 (Q). In V [Gκ],
define

U = {A ⊆ Q | m ∈ k(j∗1 (Aξ))}

It is clear that U is a κ-complete ultrafilter that extends Dp(Q). �

Corollary 62. Consider Nκ of the model of the previous theorem V [Gκ]. Then

(1) Add(κ, 1) ∈ Nκ, and hence, by the claim above, all its complete subforcings

are in Nκ ( for example: adding a Suslin tree to κ, adding a non-reflecting

stationary subset of a given stationary set etc.).
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(2) Club(S) ∈ Nκ for all S ⊆ κ that contains all the singular cardinals and is of

measure one in a normal measure over κ.

Proof. For (1), we wish to prove that Q = Add(κ, 1) ∈ (Nκ)
V [Gκ]. Let f be V [Gκ]-

generic for Add(κ, 1), We will extend in V [Gκ][f ] the elementary embedding jU :
V → MU to

j∗ : V [Gκ][f ] → MU [Gκ1 ][f
′]

Then we can take R∼ to be the trivial forcing in the definition of masterable. the

generic Gκ1 will be made of Gκ followed by f as generic for Qκ, then a M [Gκ ∗ f ]-
generic filter for the rest of the forcing P(κ,κ1], can be constructed in V [Gk][f ] using
the strategic closure of of the forcing as we did in theorem 61. Also we can find the

generic fκ1 ∈ V [Gκ][f ] for (Add(κ1, 1))
M [Gκ1 ], and fκ1 ↾ κ = f . Note that this is a

condition in Add(κ1, 1)
M [Gκ1 ]. Above this condition, we can construct the generic

fκ1 since again Add(κ1, 1)
M [Gκ1 ] as κ+ many dense open subsets from the point of

view of V [Gκ][f ] and is it k+-closed since the model is closed under κ-sequences.
For (2), Let S ⊂ κ be a stationary set that contains all singular cardinals and

let us assume that S ∈ W , for normal measure W over κ. We need to show that
Club(S) ∈ (Nκ)

V [Gκ]. Indeed, the forcing Club(S) is <κ-strategically closed. Let

H ⊆ Club(S) be V [Gκ]-generic. Let us show that in V [Gκ][H ], the elementary

embedding jW , which corresponds to W , extends to an elementary embedding:

j′W : V [Gκ] → NW [G′
κ1
],

where κ1 = jW (κ), by taking the generic of j(Pκ) ↾ κ + 1 to be Gκ ∗ H and

extending it to a generic filter G′
κ1

, using the κ+-strategically closure of the tail
forcing in V [Gκ][H ].

Since crit j′W = κ, for any p ∈ Club(S), j′W (p) = p. Also, since κ ∈ j′W (S).

m = {κ} ∪
⋃

p∈H

p ∈ j′W (Club(S)).

Using the same arguments as before, we can find an NW [Gκ1 ]-generic filter H ′ ∈
V [Gκ][H ] for j′W (Club(S)) such that m ∈ H ′. We conclude that the embedding j′1
extends to an embedding:

j′′W : V [Gκ][H ] → N1[Gκ1 ][H
′].

Therefore, we can take R∼ to be the trivial forcing. �

Note that in general Add(κ, 1) might not be masterable. For example, if we force
above L[U ] with Add(κ, 1) the κ is no longer measurable.

Let us deduce now one more corollary that relates to the result of section 6.

Corollary 63. Consider, in V [Gκ], the forcing for adding a club through singulars and

inaccessibles which are not Mahlo, i.e.

Q = {a ⊆ κ | |a| < κ, a is closed and each member of

a is either a singular cardinal or an inaccessible which is not a Mahlo}

ordered by end-extension. Then Q ∈ Nκ.

Proof. Let G(Q) be a V [Gκ]-generic subset of Q. Clearly, Q is a <κ-strategically
closed forcing of cardinality κ. Let R∼ be the forcing for adding a club through

singulars over V [Gκ, G(Q)]. Again Q ∗ R∼ is a <κ-strategically closed forcing of

cardinality κ.
Let G(R∼) be a generic subset of R∼ over V [Gκ, G(Q)]. We shall argue that in

V [Gκ, G(Q), G(R∼)] there is an elementary embedding

i : V [Gκ, G(Q)] → M,
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with crit(i) = κ and (κM) ∩ V [Gκ, G(Q)] ⊆ M .
Let U be a normal ultrafilter over κ in V and j : V → N the corresponding

elementary embedding. Work in V [Gκ, G(Q), G(R∼)] and extend it to an elementary

embedding
i : V [Gκ, G(Q)] → N [Gj(κ), G(j(Q))]

as follows. Set Gj(κ) ↾ κ = Gκ. Now let Qκ = Q ∗R∼ and take G(Q) ∗G(R∼) to be its
generic subset.

Note that κ was a Mahlo cardinal in V [Gκ, G(Q)], and hence, in N [Gκ, G(Q)],
but G(R) destroys its Mahloness. We complete building Gj(κ) using the strategic
closure of the relevant forcing.

Let G(j(Q)) starts with
⋃
G(Q) ∪ {κ}. κ is not Mahlo anymore, and so, can be

added. Finally, complete building Gj(Q) using the strategic closure of the forcing

j(Q) i.e. we have κ+ many dense open sets to meet, the bad player starts with

playing G(Q)∪ {κ} and then using the strategy we meet the rest of the dense open

sets.
This completes the proof of Q ∈ Nκ. �

8. OTHER EXAMPLES

The next interesting examples should be of forcings of size κ, which are κ-

distributive, but not <κ-strategically closed nor masterable.
Let start with two simple general observations.

Proposition 64. Let κ > ℵ1, η < κ be a regular cardinals. Assume that for every

λ < κ, λ<η < κ. Suppose that 〈Q,≤Q 〉 is an η + 1-strategicaly closed forcing notion.

Then 〈Q,≤Q 〉 preserves stationary subsets of κ which concentrate on cofinality η i.e.

For any set S such that S ⊂ {ν < κ | cf(ν) = η} is stationary, Q Ṡ is stationary.

Proof. Let S ⊆ {ν < κ | cf(ν) = η} be stationary. Suppose that for some generic

subset G(Q) of Q, S is non-stationary in V [G(Q)]. Let C ⊆ κ be a club disjoint from
S. Let C

∼
be a Q-name for C.

Then, back in V there are q ∈ G(Q) such that

q  (C
∼

⊆ κ is a club and S ∩ C
∼

= ∅).

Fix a winning strategy σ for the Player I in plays of the length η + 1 for Q.

Pick now an elementary submodel N of Hθ, with θ large enough, such that

(1) N ⊇ η + 1 and Q,S, σ, C
∼
, q ∈ N .

(2) κ > |N | ≥ η,

(3) sup(N ∩ κ) ∈ S,

(4) <ηN ⊆ N ,

This is possible since we can construct an continuous and increasing sequence of
models 〈Ni | i < η〉 satisfying (1), (2), <ηNi ⊆ Ni+1 and sup(Ni ∩ κ) < κ. Since η
is regular and η<η = η we can construct such a sequence and ∪i<ηNi = N∗

0 . Then

N∗
0 satisfy (1), (2), (4). We keep defining increasing and continuous models

〈N∗
i | i < κ〉

satisfying (1), (2) and at successor points also (4). In this definition we exploit the
cardinal assumption that for every λ < κ, λ<η < κ. The set

{sup(N∗
i ∩ κ) | i < κ}

is a club at κ thus there is i < κ such that α = sup(N∗
i ∩ κ) ∈ S. Note that

the cofinality of α is η and therefore (N∗
i )

<η ⊆ N∗
i . Let N = N∗

i , then N satisfy
(1)− (4).

Let 〈ξi | i < η〉 be a cofinal sequence in sup(N ∩ κ). By (4), every initial segment

of it is in N .
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Using σ it is easy to define an increasing sequence of conditions 〈qi | i ≤ η〉 in Q
such that

(1) q0 = q.

(2) qi ∈ N , for every i < η.

(3) There is αi ≥ ξi such that qi+1  α̇i ∈ C
∼

.

Since qi ∈ N , αi ∈ N ∩ κ such 〈αi | i < η〉 form an increasing and continuous
sequence in α. Let pη = σ(〈piqi | i < η〉), then

qη  sup(N ∩ κ) ∈ C
∼
,

since it also forces that C
∼

is closed.

This is impossible, since sup(N ∩ κ) ∈ S, Contradiction. �

Proposition 65. Let κ > ℵ1, η < κ be a regular cardinals. Assume that for every

λ < κ, λ<η < κ. Suppose that 〈P,≤P 〉 is a forcing notion that destroys stationarity

of a subset of κ which concentrate on cofinality η. Then P is not masterable.

Proof. Suppose otherwise. Then there is a forcing notion R∼ such that P ∗ R∼ is <κ-

strategically closed. In particular, P ∗ R∼ is η + 1-strategically closed.
By the previous proposition, then P ∗ R∼ preserves stationary subsets of κ which

concentrate on cofinality η.
This is impossible since already 〈P,≤P 〉 is a forcing notion that destroys station-

arity of some stationary subset S ⊆ κ which concentrate on cofinality η, hence the

witnessing club which is disjoint from S will also be present in extensions of P ∗ R∼,
Contradiction. �

Now we deal with a particular example. Let S be a fat subset of κ such that

{ν < κ | cf(ν) = η} \ S

is stationary.
Then, the forcing Club(S) is κ-distributive (since S is fat). Club(S) shoots a club

through S and therefore distroys the stationarity of {ν < κ | cf(ν) = η} \ S. It

follows that Club(S) is not < −κ-strateginaly closed (even not η + 1-strateginaly
closed ) and not masterable.

Note that if we force a Cohen function f : κ → κ, then for every δ < κ the set

Sf
δ = {ν < κ | f(ν) = δ}

will be a fat stationary subset of κ such that for every regular η < κ, the set

Sf
δ ∩ {ν < κ | cf(ν) = η}

is co-stationary. The next lemma shows that a similar method to the one used for

masterable forcings, can be used to extend Dp(Q) for this kind of fat stationary
sets.

Lemma 66. Let κ be measurable cardinal and assume GCH . There is a cofinality
preserving extension V [Gκ] in which the following holds:

After forcing a Cohen function f : κ → κ with Add(κ, 1)V [Gκ], for every δ < κ and

p ∈ Club(Sf
δ ), Dp(Club(Sf

δ )) can be extended to a κ-complete ultrafilter.

Proof. Let us use the same Easton support iteration 〈Pα, Q
∼

β | α ≤ κ, β < κ〉 as

for masterable forcing, where Qβ
∼

is the trivial forcing for accessible ordinals and

the lottery sum over all <β-strategically closed forcings of size ≤ β for inaccessible
β. Let Gκ ⊆ Pκ be V -generic. We claim that the model V [Gκ] is as wanted. Let

fκ be a V [Gκ]-generic function for Add(κ, 1)V [Gκ]. In V [Gκ][fκ] we shell extend

Dp(Club(Sfκ
δ )) for some δ < κ and p ∈ Club(Sfκ

δ ). First let U ∈ V be some normal

measure on κ,

j1 : V → M1 ≃ Ult(V, U)
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is the corresponding elementary embedding and

j1,2 : M1 → M2 ≃ Ult(M1, j1(U))

is the second iteration. Denote by j2 = j1,2 ◦ j1, κi = ji(κ) for i = 1, 2.
Secondly, by the same arguments as in 62, by picking Add(κ, 1) at Q

∼
κ, we can

construct the generic

Gκ ∗ fκ ∗G(κ,κ1)
︸ ︷︷ ︸

Gκ1

∗ fκ1 ∈ V [Gκ][fκ]

which is M1-generic for j(Pκ ∗Add(κ1)) = Pκ ∗Q
∼

κ ∗ P(κ,κ1) ∗Add(κ1, 1). Then the
embedding j1 : V → M1 lifts to

j∗1 : V [Gκ][fκ] → M1[Gκ1 ][fκ1 ]

Next, we claim that the forcing Add(β, 1)∗Club(Sf
β ) is <β-strategically closed when

β is inaccessible. To see this, let λ < β, Then the good player can always play

conditions of the form 〈g, ȧ〉 ∈ Add(β, 1) ∗Club(Sf
β) where ȧ is the canonical name

for some closed set such that max(a) = dom(g). The strategy is defined as follows,

σλ(〈〈gi, ȧi〉, 〈fi, bi∼
〉 | i < θ〉) = 〈g, ȧ〉

where for limit steps θ,

g =
⋃

i<θ

gi ∪ {〈ν, δ〉}, a = ∪i<θai ∪ {ν}

ν being supi<θ(sup(dom(gi))). This will form an element of Add(β, 1)∗Club(Sf
β) by

the definition at successor points θ = τ +1, in which case g will simply fill the miss-
ing points in dom(fτ ) with some value different then δ up to sup(dom(fτ )), if there

is a maximal element in dom(fτ ) let ν = max(fτ ) + 1 otherwise ν = sup(dom(fτ ))
and define g(ν) = δ. bτ

∼
will be extended to a canonical name ȧ according to g.

Using this strategically closure of the forcing

Add(κ1, 1) ∗ Club(S
fκ1

δ )
∼

and the usual arguments of number of dense open sets, in V [Gκ][fκ] we can find

a M1[Gκ1 ][f ]-generic club H for Club(S
fκ1

δ )M1[Gκ1 ][fκ] with j1(p) ∈ H . Let C =

∪H ⊆ S
fκ1

δ be the generic club.

Next we shell extend j1,2 : M1 → M2 to

j∗1,2 : M1[Gκ1 ][fκ1 ][H ] → M2[Gκ2 ][fκ2 ][H
′′]

To do this, note that

j2,1(Pκ1 ∗Add(κ1, 1) ∗Club(S
fκ1

δ )
∼

= Pκ1 ∗Q∼
κ1 ∗ P(κ1,κ2) ∗Add(κ2, 1) ∗ club(S

fκ2

δ ))
∼

For Pκ1 ∗Q∼
κ we take Gκ1 ∗ (fκ1 ∗H). For the forcing P(κ1,κ2) we can find a generic

G(κ1,κ2) ∈ M1[Gκ][f
′][H ] which is M2[Gκ1 ][f

′][H ]-generic for P(κ1,κ2). Finally, note
that the condition

〈fκ1 ∪ {〈κ1, δ〉}, C ∪ {κ1}〉 ∈ Add(κ2, 1) ∗ Club(S
fκ2

δ ))
∼

and once again by the strategically closure and GCH we can extend this condition

to a generic fκ2 ∗H
′ ∈ M1[Gκ1 ][fκ1 ][H ]. So the embedding j1,2 : M1 → M2 is lifted

to

j∗1,2 : M1[Gκ1 ][fκ1 ][H ] −→ M2[Gκ1 ][fκ1 ][H ][G(κ1,κ2))][fκ2 ][H
′]

By lemma 58 there is a condition m ∈ H ′ such that for every q ∈ H j∗U (p) ≤ m. In

V [Gκ][f ], define

W = {x ⊆ Club(Sf
δ ) | m ∈ j∗2,1(j

∗
1 (X)}

This κ-complete ultrafilter extends Dp(Club(Sf
δ )). �
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9. OPEN PROBLEMS

The following question looks natural:

Question 1. What is the exact strength of the following assertion: For every κ-
distributive forcing notion of size κ the filter of its dense open subsets can be ex-

tended to a κ-complete ultrafilter?

This question is twofold. We can ask what is the consistency strength of this

assertion and we can also inquire which large cardinals imply it.
Let Q be the forcing for shooting a club through the singulars.

Question 2. Assume that D(Q) can be extended to a κ-complete ultrafilter is it
consistent that ∃λ. o(λ) = λ++?

A natural candidate for a forcing for which extending the dense open filter to
an ultrafilter might require a higher consistency strength is the forcing of adding a

club through a fat stationary set S ⊆ κ.

However, as it was shown above, depending on the fat stationary set, it may require
a measurable alone.

A. Brodsky and A. Rinot [5] give a different way to produce many fat stationary

sets. They showed that �(κ) implies that κ can be partitioned into κ many disjoint
fat stationary sets. In our context, κ is a measurable, and so �(κ) fails. It is likely

that still in L[E]-type models there will be interesting fat sets.
The next question relates to theorem 13. Recall that an abstract Prikry type

forcing, is a forcing notion 〈Q,≤,≤∗ 〉 such that ≤∗⊆≤, and the Prikry property

holds:

For every statement in the forcing language σ, and any condition q ∈ Q,

there is q ≤∗ q∗ ∈ Q, such that q∗ decide σ

To obtain interesting Prikry type forcing we usually require that the order ≤∗ has
high closure or directness degree.

Question 3. Is there an abstract generalization of theorem 13 to Prikry type forc-
ing? Namely, assume there is a projection from a Prikry type forcing Q, for which

≤∗ is sufficiently closed or directed onto a distributive forcing P. Can the filter

Dp(P) be extended to a κ-complete ultrafilter?

As we noted after the proof of Theorem 13, the current formulation does not

quite give us an equivalence, as we do not know if the Prikry forcing can be pro-
jected onto a distributive forcing notion of size larger than κ.

Question 4. Is there a tree of measures on κ such that the corresponding tree
Prikry forcing, projects onto a σ-distributive forcing notion of size > κ.
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