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1. INTRODUCTION

There is no general prescribed format for writing a mathematical proof. Some methods of proof, such
as Mathematical Induction, involve the same steps, though the steps themselves may require their own
methods of proof.

A mathematical statement may also have several proofs using different methods. One method is generally
preferred over another if it is shorter, simpler or clearer.

Proofs are often arrived at by trial and error, writing and revision. They may involve a ‘creative step’ or
‘new idea’.

Here we discuss some general rules for writing proofs and an overview of techniques of proof.

1.1. General rules for writing proofs. All written proofs should begin by establishing notation and re-
calling assumptions. We may also recall a definition if it is used within a proof.

A useful rule to keep in mind is that each new mathematical claim that is not well known should be justified
by reasoning or a reputable reference.

Here are some general rules to remember when writing proofs.

‚ The audience for a written proof should be considered to be a group of one’s peers.
‚ It is customary to declare your method of proof in order to inform the reader. ‘For the sake of

contradiction, we assume that. . . ’
‚ Always define a new symbol: ‘Let x denote a natural number...’ .
‚ Never reuse the same letter for a different meaning in the same proof.
‚ We may reuse a letter after a proof is complete, but it should always be redefined in its new context.
‚ A proof must read as a logical sequence of steps.
‚ It must make sense in English when read out aloud.
‚ A proof should read as a balance of words and symbols.
‚ A proof must be grammatically correct in English.
‚ Do not begin a sentence with a mathematical symbol.
‚ The status of each mathematical statement should be explicitly declared: ‘We assume that. . . ’,

‘We must show that. . . ’, ‘We conclude that. . . ’, ‘From our previous argument. . . ’
‚ Quantifiers should be used to indicate the truth of a statement: ‘For all x P Z we have. . . ’, ‘There

exists x P Z satisfying. . . ’
‚ Any method of proof may use earlier theorems. They should be cited by a reputable source. For

example you may refer to the lecture notes or other class material.
‚ Inform the reader when the proof is complete: ‘This completes the proof.’ Or use QED or ˝
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2. METHODS OF PROOF

We can’t know in advance what method of proof is the most suitable to use for any given mathemati-
cal statement. A successful proof is often the result of several attempts, possibly having tried different
methods.

2.1. Direct proof. A direct proof is a proof that establishes the result using direct arguments and deduc-
tions that are natural consequences of the definitions and assumptions.

If the statement under consideration is of the form ‘If P then Q’ or ‘P ùñ Q’, a direct method of proof
begins by assuming that P is true. This is followed by a sequence of statements and deductions using
definitions, assumptions and logical equivalences that lead to a conclusion that Q is true.

2.2. The contrapositive form of a direct implication. The direct implication P ùñ Q is logically
equivalent to its contrapositive form. This is the statement

 Q ùñ  P

where  P is the negation of the statement P . To prove a direct implication P ùñ Q, we may prove
instead the contrapositive form  Q ùñ  P .

In some cases, a proof of the contrapositive form of an implication is easier to obtain than a proof of the
direct implication itself. This is often the case if the conclusion Q is a compound statement using the
connectives ^ or _.

That is, if we wish to prove propositions of the form

P ùñ Q^R

or
P ùñ Q_R

it may be more convenient to prove the contrapositive forms

 Q_ R ùñ  P

or
 Q^ R ùñ  P

respectively.

The term contraposition is often used for the method of proof which involves proving the contrapositive
form of a direct implication.

2.3. Proof by contradiction. To prove a conclusion Q under assumptions A, we first suppose that A is
true but Q is false. We follow the natural deductions from these assumptions and reach an inconsistency
called a contradiction, often in the form of a statement and its opposite both holding. We deduce that under
assumptions A, the conclusion Q must be true.

In particular, to prove that P ùñ Q is true using proof by contradiction, we proceed by assuming that
P ùñ Q is false and obtaining a contradiction. This is equivalent to assuming P and the negation of Q,
that is, assuming that P is true and Q is false and obtaining a contradiction.

2.4. ‘Sketch proofs’. A ‘sketch proof’ is an intuitive outline of a proof to give an overview of the main
ideas when the full details are beyond scope.
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2.5. Proving a bi-conditional statement. Recall that the symbol ðñ denotes mathematical equiva-
lence. That is, if P and Q are mathematical statements, then P ðñ Q is defined as

pP ùñ Qq and pQ ùñ P q.

That is, to prove a statement of the form P ðñ Q, or P if and only if Q, it is necessary to prove the
implications P ùñ Q and Q ùñ P. A statement of the form P ðñ Q is called a ‘bi-conditional
statement’.

It is not enough to prove only one of the implications P ùñ Q or Q ùñ P . This is because the truth of
one of these implications is not related to the truth of the other. They must both be verified independently.

Within a proof of a bi-conditional statement, you may use any method to prove the implications P ùñ Q
and Q ùñ P .

2.6. Disproving by counterexamples. A counterexample is an exception to a proposed general rule.

The rule may be true in many instances, but if there is a single example where it fails, we say that the rule
is false in general. We may thus disprove a mathematical statement by demonstrating a single counterex-
ample.

2.7. Correcting a statement that has counterexamples. A statement that has counterexamples can often
be repaired so as to eliminate the counterexamples. For example, we may restrict the universe of values
for which the statement holds, or restrict the conclusion to give a true statement in the given universe.

2.8. Proof by cases. Sometimes a proof can be carried out by breaking the possibilities up into several
cases and writing a separate proof for each case. Natural choices of cases for statements involving n P Z
could be n P E and n P O, or n ă 0 and n ě 0.

2.9. Constructive proof. A constructive proof demonstrates the existence of a mathematical object by
constructing it explicitly and showing that it has the required properties. More explicitly, this is a proof of
a statement of the form pDx P AqpP pxqq. Such a proof involves constructing an element x in a set A and
showing that it satisfies property P pxq.

2.10. Existential proof. An existential proof establishes the existence of a mathematical object satisfying
certain properties without constructing it explicitly. More explicitly, this is a proof of a statement of the
form pDx P AqpP pxqq. Such a proof argues the existence of such an element x in a set A satisfying
property P pxq but does not show how to construct x.
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