Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

# Riemannian manifolds with nontrivial local symmetry

Wouter van Limbeek

University of Chicago limbeek@math.uchicago.edu

21 October 2012



# The problem

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

- Let M be a closed Riemannian manifold.
- Isom $(\tilde{M})$  contains the deck group  $\pi_1(M)$ .
- Generically:  $[\operatorname{Isom}(\tilde{M}) : \pi_1 M] < \infty$ .



#### Problem

Classify M such that  $[\operatorname{Isom}(\tilde{M}): \pi_1 M] = \infty$ .



# Example

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

• M closed hyperbolic manifold.

### Theorem (Bochner, Yano)

Isom(M) is finite.



But

$$\operatorname{Isom}(\tilde{M}) = \operatorname{Isom}(\mathbb{H}^n) = O^+(n, 1).$$

Note:  $\tilde{M}$  is homogeneous.



### Farb-Weinberger theorem

Riemannian manifolds with nontrivial local symmetry

Wouter van

### Theorem (Farb, Weinberger (2008))

Let M be a closed aspherical manifold. Then either

- M is on a list.

Further, every item on the list occurs.

### Farb-Weinberger theorem

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

### Theorem (Farb, Weinberger (2008))

Let M be a closed aspherical manifold. Then either

- M is on a list.

Further, every item on the list occurs.

#### **Applications**

- Differential geometry
- Complex geometry
- etc.

### The list

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

- A finite cover of M is a 'Riemannian orbibundle'  $F \to M' \to B$ .
- The fibers *F* are locally homogeneous.
- $[\operatorname{Isom}(\tilde{B}): \pi_1 B] < \infty$ .



Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Problems in general case

Proof of Farb and Weinberger fails:

$$M$$
 aspherical  $\Rightarrow$ 

(geometry of  $\tilde{M}$ )  $\leftrightarrow$  (geometry of  $\pi_1(M)$ ).

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Problems in general case

Proof of Farb and Weinberger fails:
M aspherical ⇒

(geometry of 
$$\tilde{M}$$
)  $\leftrightarrow$  (geometry of  $\pi_1(M)$ ).

• Crucial in F-W:  $\mathrm{Isom}(\tilde{M})^0$ -orbits are of the same type. Not true in general case.

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Problems in general case

Proof of Farb and Weinberger fails:
M aspherical ⇒

```
(geometry of \tilde{M}) \leftrightarrow (geometry of \pi_1(M)).
```

- Crucial in F-W:  $Isom(\tilde{M})^0$ -orbits are of the same type. Not true in general case.
- More options for  $Isom(\tilde{M})$ : E.g. compact factors.

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Problems in general case

Proof of Farb and Weinberger fails:
M aspherical ⇒

```
(geometry of \tilde{M}) \leftrightarrow (geometry of \pi_1(M)).
```

- Crucial in F-W:  $\mathrm{Isom}(\tilde{M})^0$ -orbits are of the same type. Not true in general case.
- More options for Isom( $\tilde{M}$ ): E.g. compact factors.
- So the 'list' is more complicated.

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Example

•

$$H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

#### Example

•

$$H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Set  $N := H/\mathbb{Z}$ .

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Example

0

$$H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



- Set  $N := H/\mathbb{Z}$ .
- Let  $Z(N) \cong S^1$  act on  $S^2$  by rotations.

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Example

0

$$H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



- Set  $N := H/\mathbb{Z}$ .
- Let  $Z(N) \cong S^1$  act on  $S^2$  by rotations.
- Let  $X := (S^2 \times N)/Z(N)$ .



Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Example

0

$$H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



- Set  $N := H/\mathbb{Z}$ .
- Let  $Z(N) \cong S^1$  act on  $S^2$  by rotations.
- Let  $X := (S^2 \times N)/Z(N)$ .
- Orbits in X are of two types:
  - N (generic)
  - $N/S^1 = \mathbb{R}^2$  (north/south poles)



### General fact about Lie groups

Riemannian manifolds with nontrivial local symmetry

Wouter van

#### Theorem (Levi decomposition)

Let G be a connected Lie group. Then

- There exists a solvable subgroup G<sub>sol</sub> and
- there exists a semisimple subgroup  $G_{ss}$  such that

$$G = G_{sol}G_{ss}$$
.

#### Remark

This decomposition is essentially unique.

Riemannian manifolds with nontrivial local symmetry

Wouter van

### Theorem (VL)

Let M be a closed Riemannian manifold,  $G := Isom(\tilde{M})$ . Then either

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

### Theorem (VL)

Let M be a closed Riemannian manifold,  $G := \mathit{Isom}(\tilde{M})$ . Then either

 $\bullet$   $G^0$  is compact or

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

### Theorem (VL)

Let M be a closed Riemannian manifold,  $G := \mathit{Isom}(\tilde{M})$ . Then either

- $\bullet$   $G^0$  is compact or
- ${\bf Q} G_{\rm ss}^0$  is compact and G has infinitely many components or

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

### Theorem (VL)

Let M be a closed Riemannian manifold,  $G := \mathit{Isom}(\tilde{M})$ . Then either

- $\bullet$   $G^0$  is compact or
- ${\bf Q} G_{\rm ss}^0$  is compact and G has infinitely many components or
- 3 M is on a 'list'.

### Nonaspherical case: The list

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek



### Nonaspherical case: The list

Riemannian manifolds with nontrivial local symmetry

#### The list

**1**  $G_{ss}^0$  noncompact  $\Rightarrow$ 

*M* 'virtually' fibers over locally symmetric space.



### Nonaspherical case: The list

Riemannian manifolds with nontrivial local symmetry

#### The list

**1**  $G_{ss}^0$  noncompact  $\Rightarrow$ 

*M* 'virtually' fibers over locally symmetric space.



②  $G_{ss}^0$  is compact,  $\#(\text{components of } G) < \infty \Rightarrow M$  is 'virtually' an 'iterated bundle' over tori.



Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek



Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek



Riemannian manifolds with nontrivial local symmetry

Wouter van



Riemannian manifolds with nontrivial local symmetry

Wouter van



Riemannian manifolds with nontrivial local symmetry

Wouter van



Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek



- $\Gamma \subseteq G^0$  lattice in nilpotent group  $\leadsto$
- $\Gamma$  starts 'tower of lattices'  $(\Gamma_q)_q \rightsquigarrow$
- Arzelà-Ascoli →

- $\mathsf{Map}\ \mathit{f}_1:\mathit{M}\to\mathit{N}$
- Map  $f_q:M_q o N_q$ 
  - $\mathsf{Limit}\ \tilde{\mathit{f}}:\tilde{\mathit{M}}\to\tilde{\mathit{N}}$



Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

#### Proof.

- $\Gamma \subseteq G^0$  lattice in nilpotent group  $\leadsto$  Map  $f_1: M \to N$ 
  - ullet f starts 'tower of lattices'  $(\Gamma_q)_q \leadsto \mathsf{Map}\ f_q : M_q o N_q$
  - ullet Arzelà-Ascoli  $\leadsto$  Limit  $ilde{f}: ilde{M} o ilde{N}$
  - ullet Smooth  $ilde{f}$  while keeping it equivariant.



# $G_{ss}^0$ noncompact: Outline

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

- Find a lattice  $\Lambda$  in a semisimple Lie group and a map  $\Gamma \to \Lambda$ .
- $\leadsto$  homotopy class of maps  $M \to N$  (N locally symmetric space for  $\Lambda$ ).

Theorem (Eells, Sampson, Hartman, Schoen-Yau)

 $\exists ! \ \textit{harmonic} \ f : M \rightarrow N \ \textit{in this class}.$ 

# $G_{ss}^0$ noncompact: Outline

Riemannian manifolds with nontrivial local symmetry

Wouter var

• Lift to  $\tilde{f}: \tilde{M} \to \tilde{N}$ .

### Theorem (Frankel, 1994)

One can average  $\tilde{f}$ .

•  $\rightsquigarrow$  the fiber bundle  $M \rightarrow N$ .

#### Remarks

- Frankel's method relies heavily on symmetric space theory.
- This does not work if  $G_{ss}^0$  is compact.

### Open question

Riemannian manifolds with nontrivial local symmetry

> Wouter van Limbeek

#### Question

Let M be a closed Riemannian manifold. Is it true that either

- Isom $(\tilde{M})^0$  is compact or
- M is virtually an iterated orbibundle, at each step with locally homogeneous fibers or base?

More specifically:

#### Problem

Describe closed Riemannian manifolds M such that G has infinitely many components and  $G_{ss}^0$  is compact.