
Riemannian
manifolds with

nontrivial
local

symmetry

Wouter van
Limbeek Riemannian manifolds with nontrivial

local symmetry

Wouter van Limbeek

University of Chicago
limbeek@math.uchicago.edu

21 October 2012

limbeek
math.uchicago.edu


Riemannian
manifolds with

nontrivial
local

symmetry

Wouter van
Limbeek

The problem

Let M be a closed Riemannian manifold.

Isom(M̃) contains the deck group π1(M).

Generically: [Isom(M̃) : π1M] <∞.

Problem

Classify M such that [Isom(M̃) : π1M] =∞.
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Example

M closed hyperbolic manifold.

Theorem (Bochner, Yano)

Isom(M) is finite.

But

Isom(M̃) = Isom(Hn) = O+(n, 1).

Note: M̃ is homogeneous.
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Farb-Weinberger theorem

Theorem (Farb, Weinberger (2008))

Let M be a closed aspherical manifold. Then either

1 [Isom(M̃), π1M] <∞ or

2 M is on a list.

Further, every item on the list occurs.

Applications

1 Differential geometry

2 Complex geometry

3 etc.
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The list

A finite cover of M is a ‘Riemannian orbibundle’
F → M ′ → B.

The fibers F are locally homogeneous.

[Isom(B̃) : π1B] <∞.
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The general (nonaspherical) case

Problems in general case

Proof of Farb and Weinberger fails:
M aspherical ⇒

(geometry of M̃) ↔ (geometry of π1(M)).

Crucial in F-W: Isom(M̃)0-orbits are of the same type.
Not true in general case.

More options for Isom(M̃): E.g. compact factors.

So the ‘list’ is more complicated.
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More complicated example

Example

H :=

 1 ∗ ∗
0 1 ∗
0 0 1

 ,Z (H) =

 1 0 ∗
0 1 0
0 0 1



Set N := H/Z.

Let Z (N) ∼= S1 act on S2 by rotations.

Let X := (S2 × N)/Z (N).

Orbits in X are of two types:
1 N (generic)
2 N/S1 = R2 (north/south poles)
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General fact about Lie groups

Theorem (Levi decomposition)

Let G be a connected Lie group. Then

There exists a solvable subgroup Gsol and

there exists a semisimple subgroup Gss such that

G = GsolGss.

Remark

This decomposition is essentially unique.
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Nonaspherical case

Theorem (VL)

Let M be a closed Riemannian manifold, G := Isom(M̃). Then
either

1 G 0 is compact or

2 G 0
ss is compact and G has infinitely many components or

3 M is on a ‘list’.
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Nonaspherical case: The list

The list

1 G 0
ss noncompact ⇒

M ‘virtually’ fibers over locally symmetric space.

2 G 0
ss is compact, #(components of G ) <∞ ⇒

M is ‘virtually’ an ‘iterated bundle’ over tori.
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G 0 is nilpotent: Outline

Proof.

Γ ⊆ G 0 lattice in nilpotent group  Map f1 : M → N

Γ starts ‘tower of lattices’ (Γq)q  Map fq : Mq → Nq

Arzelà-Ascoli  Limit f̃ : M̃ → Ñ

Smooth f̃ while keeping it equivariant.



Riemannian
manifolds with

nontrivial
local

symmetry

Wouter van
Limbeek

G 0 is nilpotent: Outline

Proof.

Γ ⊆ G 0 lattice in nilpotent group

 Map f1 : M → N

Γ starts ‘tower of lattices’ (Γq)q  Map fq : Mq → Nq
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G 0
ss noncompact: Outline

Find a lattice Λ in a semisimple Lie group
and a map Γ→ Λ.

 homotopy class of maps M → N
(N locally symmetric space for Λ).

Theorem (Eells, Sampson, Hartman, Schoen-Yau)

∃! harmonic f : M → N in this class.
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G 0
ss noncompact: Outline

Lift to f̃ : M̃ → Ñ.

Theorem (Frankel, 1994)

One can average f̃ .

 the fiber bundle M → N.

Remarks

Frankel’s method relies heavily on symmetric space theory.

This does not work if G 0
ss is compact.
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Open question

Question

Let M be a closed Riemannian manifold. Is it true that either

1 Isom(M̃)0 is compact or

2 M is virtually an iterated orbibundle, at each step with
locally homogeneous fibers or base?

More specifically:

Problem

Describe closed Riemannian manifolds M such that G has
infinitely many components and G 0

ss is compact.


