Riemannian manifolds with nontrivial local symmetry

Wouter van Limbeek

University of Chicago
limbeek@math.uchicago.edu

21 October 2012
The problem

- Let M be a closed Riemannian manifold.
- $\text{Isom}(\tilde{M})$ contains the deck group $\pi_1(M)$.
- Generically: $[\text{Isom}(\tilde{M}) : \pi_1 M] < \infty$.

Problem

Classify M such that $[\text{Isom}(\tilde{M}) : \pi_1 M] = \infty$.
Example

- M closed hyperbolic manifold.

Theorem (Bochner, Yano)

$\text{Isom}(M)$ is finite.

- But

 $\text{Isom}(\tilde{M}) = \text{Isom}(\mathbb{H}^n) = O^+(n, 1)$.

 Note: \tilde{M} is homogeneous.
Riemannian manifolds with nontrivial local symmetry

Wouter van Limbeek

Farb-Weinberger theorem

Theorem (Farb, Weinberger (2008))

Let M be a closed aspherical manifold. Then either

1. $[\text{Isom}(\tilde{M}), \pi_1 M] < \infty$ or
2. M is on a list.

Further, every item on the list occurs.
Farb-Weinberger theorem

Theorem (Farb, Weinberger (2008))

Let M be a closed aspherical manifold. Then either

1. $[\text{Isom}(\tilde{M}), \pi_1 M] < \infty$ or
2. M is on a list.

Further, every item on the list occurs.

Applications

1. Differential geometry
2. Complex geometry
3. etc.
The list

- A finite cover of M is a ‘Riemannian orbibundle’ $F \to M' \to B$.

- The fibers F are locally homogeneous.

- $[\text{Isom}(\tilde{B}) : \pi_1 B] < \infty$.
Problems in general case

- Proof of Farb and Weinberger fails:
 \[M \text{ aspherical} \Rightarrow \]
 \[
 \text{(geometry of } \tilde{M} \text{)} \leftrightarrow \text{(geometry of } \pi_1(M)\text{)}.
 \]

Crucial in F-W: Isom(˜M) -orbits are of the same type.
Not true in general case.
More options for Isom(˜M): E.g. compact factors.
So the 'list' is more complicated.
The general (nonaspherical) case

Problems in general case

- Proof of Farb and Weinberger fails: M aspherical \Rightarrow

 $$(\text{geometry of } \tilde{M}) \leftrightarrow (\text{geometry of } \pi_1(M)).$$

- Crucial in F-W: $\text{Isom}(\tilde{M})^0$-orbits are of the same type. Not true in general case.
The general (nonaspherical) case

Problems in general case

- Proof of Farb and Weinberger fails:
 \[M \text{ aspherical} \Rightarrow \]
 \[(\text{geometry of } \tilde{M}) \leftrightarrow (\text{geometry of } \pi_1(M)).\]

- Crucial in F-W: Isom(\(\tilde{M}\)^0)-orbits are of the same type. Not true in general case.

- More options for Isom(\(\tilde{M}\)): E.g. compact factors.
The general (nonaspherical) case

Problems in general case

- Proof of Farb and Weinberger fails: M aspherical \Rightarrow

 $$(\text{geometry of } \tilde{M}) \leftrightarrow (\text{geometry of } \pi_1(M)).$$

- Crucial in F-W: $\text{Isom}(\tilde{M})^0$-orbits are of the same type. Not true in general case.

- More options for $\text{Isom}(\tilde{M})$: E.g. compact factors.

- So the ‘list’ is more complicated.
More complicated example

Example

\[H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \quad Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
More complicated example

Example

-\[
H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \quad Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

- Set \(N := H/\mathbb{Z} \).
More complicated example

Example

\[H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \quad Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

- Set \(N := H/\mathbb{Z} \).
- Let \(Z(N) \cong S^1 \) act on \(S^2 \) by rotations.
More complicated example

Example

\[
H := \begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix},
\]
\[
Z(H) = \begin{pmatrix}
1 & 0 & * \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- Set \(N := H / \mathbb{Z} \).
- Let \(Z(N) \cong S^1 \) act on \(S^2 \) by rotations.
- Let \(X := (S^2 \times N) / Z(N) \).
More complicated example

Example

\[H := \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \quad Z(H) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

- Set \(N := H/\mathbb{Z} \).
- Let \(Z(N) \cong S^1 \) act on \(S^2 \) by rotations.
- Let \(X := (S^2 \times N)/Z(N) \).
- Orbits in \(X \) are of two types:
 1. \(N \) (generic)
 2. \(N/S^1 = \mathbb{R}^2 \) (north/south poles)
General fact about Lie groups

Theorem (Levi decomposition)

Let G be a connected Lie group. Then

- There exists a solvable subgroup G_{sol} and
- there exists a semisimple subgroup G_{ss} such that

$$G = G_{sol}G_{ss}.$$

Remark

This decomposition is essentially unique.
Nonaspherical case

Theorem (VL)

Let M be a closed Riemannian manifold, $G := \text{Isom}(\tilde{M})$. Then either

1. G is compact
2. G_0 is compact and G has infinitely many components
3. M is on a list
Nonaspherical case

Theorem (VL)

Let M be a closed Riemannian manifold, $G := Isom(\tilde{M})$. Then either

1. G^0 is compact or
Theorem (VL)

Let M be a closed Riemannian manifold, $G := \text{Isom}(\tilde{M})$. Then either

1. G^0 is compact or

2. G^0_{ss} is compact and G has infinitely many components or
Let M be a closed Riemannian manifold, $G := Isom(\tilde{M})$. Then either

1. G^0 is compact or
2. G^0_{ss} is compact and G has infinitely many components or
3. M is on a ‘list’.
Nonaspherical case: The list

1. $G_{0, ss}$ noncompact $\Rightarrow M$ 'virtually' fibers over locally symmetric space.

2. $G_{0, ss}$ is compact, $\#(\text{components of } G) < \infty \Rightarrow M$ is 'virtually' an 'iterated bundle' over tori.
Nonaspherical case: The list

<table>
<thead>
<tr>
<th>The list</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{ss}^0 noncompact \Rightarrow M ‘virtually’ fibers over locally symmetric space.</td>
</tr>
</tbody>
</table>
Nonaspherical case: The list

1. G^0_{ss} noncompact \Rightarrow

 M ‘virtually’ fibers over locally symmetric space.

2. G^0_{ss} is compact, $\#(\text{components of } G) < \infty \Rightarrow$

 M is ‘virtually’ an ‘iterated bundle’ over tori.
Proof.

G^0 is nilpotent: Outline

Proof.
Proof.

- $\Gamma \subseteq G^0$ lattice in nilpotent group
Proof.

- $\Gamma \subseteq G^0$ lattice in nilpotent group \leadsto Map $f_1 : M \to N$
Proof.

- $\Gamma \subseteq G^0$ lattice in nilpotent group \mapsto Map $f_1 : M \to N$
- Γ starts ‘tower of lattices’ $(\Gamma_q)_q$

![Diagram showing the tower of lattices](image)
\(G^0 \) is nilpotent: Outline

Proof.

- \(\Gamma \subseteq G^0 \) lattice in nilpotent group \(\leadsto \) Map \(f_1 : M \rightarrow N \)
- \(\Gamma \) starts ‘tower of lattices’ \((\Gamma_q)_q \leadsto \) Map \(f_q : M_q \rightarrow N_q \)
G^0 is nilpotent: Outline

Proof.

- $\Gamma \subseteq G^0$ lattice in nilpotent group \rightsquigarrow Map $f_1 : M \to N$
- Γ starts ‘tower of lattices’ $(\Gamma_q)_q \rightsquigarrow$ Map $f_q : M_q \to N_q$
- Arzelà-Ascoli \rightsquigarrow Limit $\tilde{f} : \tilde{M} \to \tilde{N}$
G^0 is nilpotent: Outline

Proof.

- $\Gamma \subseteq G^0$ lattice in nilpotent group \leadsto Map $f_1 : M \to N$

- Γ starts ‘tower of lattices’ $(\Gamma_q)_q$ \leadsto Map $f_q : M_q \to N_q$

- Arzelà-Ascoli \leadsto Limit $\tilde{f} : \tilde{M} \to \tilde{N}$

- Smooth \tilde{f} while keeping it equivariant.
G^0_{ss} noncompact: Outline

- Find a lattice Λ in a semisimple Lie group and a map $\Gamma \rightarrow \Lambda$.

- \sim homotopy class of maps $M \rightarrow N$ (N locally symmetric space for Λ).

Theorem (Eells, Sampson, Hartman, Schoen-Yau)

$\exists!$ harmonic $f : M \rightarrow N$ *in this class.*
G_{ss}^0 noncompact: Outline

- Lift to $\tilde{f} : \tilde{M} \rightarrow \tilde{N}$.

Theorem (Frankel, 1994)

One can average \tilde{f}.

- \rightsquigarrow the fiber bundle $M \rightarrow N$.

Remarks

- Frankel’s method relies heavily on symmetric space theory.
- This does not work if G_{ss}^0 is compact.
Open question

Question
Let M be a closed Riemannian manifold. Is it true that either
1. $\text{Isom}(\tilde{M})^0$ is compact or
2. M is virtually an iterated orbibundle, at each step with locally homogeneous fibers or base?

More specifically:

Problem
Describe closed Riemannian manifolds M such that G has infinitely many components and G_{ss}^0 is compact.