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Discretizing group actions (Vigolo, '16)

m [ f.g. group

I
m M closed Riem. manifold N Family of graphs
m [~ M (bi-Lipschitz) (Xt)e>0

Roe's Warped Cone

— Assembles all X;
~ E(F M),

Mesh < t—1
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From now on:

m M = G compact semisimple Lie

m [ C G dense, fin. pres.



Theorems

Coarse geometry of cones N Dynamics of T ~ M



Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat—Vigolo, Sawicki '17)
Warped cones are QI = Groups are Stably QI



Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat—Vigolo, Sawicki, '17)
Warped cones are QI = Groups are Stably QI
‘ﬁ(r % M) ~QI cg(/\ N N) — [ x RImM ~QI A x RImN,



Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat—Vigolo, Sawicki, '17)
Warped cones are QI = Groups are Stably QI
‘ﬁ(r % M) ~QI cg(/\ N N) — [ x RImM ~QI A x RImN,

Does the QI type of the cone capture any of the action?



Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat—Vigolo, Sawicki, '17)

Warped cones are QI = Groups are Stably QI
‘ﬁ(r &% M) EQ/ (5(/\ &% N) — [ x RdimM 2(\)/ N x RdimN,

Does the QI type of the cone capture any of the action?
Theorem (Fisher-Nguyen—vL, '17)

Warped cones are QI = actions are commensurable



Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat-Vigolo, Sawicki, '17)

Warped cones are QI = Groups are Stably QI
%(F &% M) EQ/ (5(/\ &% N) — [ x RdimM 2(\)/ N x RdimN,
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Warped cones are QI = actions are commensurable

Similar result for graphs —
Theorem (Fisher—Nguyen—vL, '17)

There exist continua of QI disjoint expanders.



