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Given (M, g), can we bound |Isom(M, g)|?
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First theorem

What if M is not Ricci negatively curved? \

An obstruction:
St A M ~~ No bound on [Isom(M, g)|

Theorem (vL, 2014)

Let M"™ be a closed Riemannian manifold, such that
o |Ric(M)| <A,
e injrad(M) > ¢,
e diam(M) < D,

@ M does not admit an S-action.

Then |Isom(M)| < C(n, A, e, D).
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More general problem

Lift to the universal cover:

Given (M, g), can we bound [Isom(M,g) : 71 (M)]?
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Theorem (Hurwitz)

However:

[Isom(H?2) : 71(Xz)] = oo.

— Ric(M) < 0 does not yield a bound!
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o |Ric(M)| <A,
e injrad(M) > ¢,
e diam(M) < D.

o M does not admit a proper action by a nondiscrete Lie
group G such that (M) C G.

Then |Isom(M)| < C(n,A, e, D).
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Then TFAE
o [Isom(M,g), m(M)] = o,
e (M, g) is isometric to a locally symmetric space.
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Local symmetry — locally symmetric

Theorem (Farb-Weinberger, 2008)
Let M be
@ a closed, aspherical manifold, and not virtually a product,
e m1(M) has no nontrivial normal abelian subgroups.
Then TFAE
o [Isom(M,g), m(M)] = o,
e (M, g) is isometric to a locally symmetric space.

Conjecture (Farb-Weinberger, 2008)

For the~conc|usion above, it suffices that
[Isom(M, g) : m1(M)] > C for some C only depending on M.

v
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Then TFAE

o [Isom(M,g), m1(M)] = oo,

@ (M, g) is isometric to a locally symmetric space.

Conjecture (Farb-Weinberger, 2008)

For the~conclusion above, it suffices that
[Isom(M, g) : m1(M)] > C for some C only depending on M.

v

Theorem (Farb-Weinberger, 2008)

True if M is diffeomorphic to a locally symmetric space.
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and minimal There exists C(n, A, e, D) such that if M" is as in the
conjecture, and

o |Ric(M)| <A,
e injrad(M) > ¢,
e diam(M) < D,




Local symmetry — locally symmetric
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Riemannian Theorem (VL, 2014)
geometry

and minimal There exists C(n, A, e, D) such that if M" is as in the
conjecture, and

o |Ric(M)| <A,
e injrad(M) > ¢,
e diam(M) < D,

then either

o [Isom(M,g) : m(M)] < C, or

e (M, g) is isometric to a locally symmetric space.
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components. [ C G is a cocompact lattice.

@ Show: [G,:T] 200 = [G:[]=00.
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1 ~
e dg: g, <, g. Set G :=Isom(M,g).
Easy facts: G is a Lie group, possibly with infinitely many
components. [ C G is a cocompact lattice.

@ Show: [G,:T] 200 = [G:[]=00.
—> G # 1 where GO is the connected component of
the identity.



Symmetr . o~
s in Suppose there is no bound on [Isom(M, g) : w1 (M)].
Riemannian
geometry
and minimal

orbifolds o Choose g, such that [lsom(M, &) : m1(M)] — .
Wonter . — Y~
vVoL ,‘, Gn r

1 ~
e dg: g, <, g. Set G :=Isom(M,g).
Easy facts: G is a Lie group, possibly with infinitely many
components. [ C G is a cocompact lattice.

@ Show: [G,:T] 200 = [G:[]=00.
—> G # 1 where GO is the connected component of
the identity.

@ Show: I contains no nontrivial normal abelian subgroups
= GO is semisimple.
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@ Rough idea:
Find G C G, that are 'discrete approximations’ of
GO C G.

@ Should be impossible:
A semisimple Lie group does not admit
arbitrarily large lattices (Kazhdan-Margulis).
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o @~ ¢,: G = Comm(ly) ~ G,— G°

e Kazhdan-Margulis and @ = ker(p,) # 1 for n>> 1.

@ Any g € ker p, centralizes a finite index subgroup of [y ~~
homotopically trivial isometry of a finite cover of M.
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Set g := TN GO Show:
© Iy C GYis a cocompact lattice = [G], : [o] < oo.

Q [G°: Ty = = [G] : T[] = <.
0

e @~ ¢,: G — Comm(lh) ~ G, — G°

e Kazhdan-Margulis and @ = ker(p,) # 1 for n > 1.

Any g € ker ¢, centralizes a finite index subgroup of Iy ~~
homotopically trivial isometry of a finite cover of M.

Borel: Any nontrivial isometry of M is homotopically
nontrivial.
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Set g := TN GO Show:
© Iy C GYis a cocompact lattice = [G], : [o] < oo.

Q [G°: Ty = = [G] : T[] = <.
Q@ ¢,: G — Comm(ly) ~ G — GO
Kazhdan-Margulis and @ = ker(y¢,) # 1 for n>> 1.

Any g € ker ¢, centralizes a finite index subgroup of Iy ~~
homotopically trivial isometry of a finite cover of M.

Borel: Any nontrivial isometry of M is homotopically
nontrivial.

Contradiction!



