Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek # Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek University of Chicago limbeek@math.uchicago.edu March 15, 2015 Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek ### Question Given (M, g), can we bound $|\operatorname{Isom}(M, g)|$? Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |--------|----------|-------| |--------|----------|-------| Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |---------|------------|---------| | Hurwitz | Σ_g | 84(g-1) | Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |--------------|------------|------------| | Hurwitz | Σ_g | 84(g-1) | | Bochner-Yano | Ric < 0 | $< \infty$ | Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |------------------|---|---------------| | Hurwitz | Σ_g | 84(g-1) | | Bochner-Yano | Ric < 0 | $<\infty$ | | Kazhdan-Margulis | Locally symmetric space (e.g. hyperbolic) | C(n)vol (M) | Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |------------------|---|---| | Hurwitz | Σ_g | 84(g-1) | | Bochner-Yano | Ric < 0 | $< \infty$ | | Kazhdan-Margulis | Locally symmetric space (e.g. hyperbolic) | C(n)vol (M) | | Gromov | K < 0 | $\begin{array}{l} {\sf Dimension} \\ \kappa \ {\sf where} \ K \leq -\kappa^2 < 0 \\ {\sf Volume} \end{array}$ | Symmetry gaps in Riemannian geometry and minimal orbifolds | Author | Manifold | Bound | |------------------|---|---| | Hurwitz | Σ_g | 84(g-1) | | Bochner-Yano | $\mathrm{Ric} < 0$ | $< \infty$ | | Kazhdan-Margulis | Locally symmetric space (e.g. hyperbolic) | C(n)vol (M) | | Gromov | <i>K</i> < 0 | $ \begin{array}{l} {\rm Dimension} \\ \kappa \ {\rm where} \ K \leq -\kappa^2 < 0 \\ {\rm Volume} \end{array} $ | | Dai-Shen-Wei | Ric < 0 | Dimension
Ric
Injectivity radius
Diameter | ### First theorem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter vai #### Question What if M is **not** Ricci negatively curved? #### First theorem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Question What if M is **not** Ricci negatively curved? An obstruction: $S^1 \curvearrowright M \leadsto \text{No bound on } |\text{Isom}(M,g)|$ #### First theorem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek #### Question What if *M* is **not** Ricci negatively curved? #### An obstruction: $$S^1 \curvearrowright M \leadsto \text{No bound on } |\text{Isom}(M,g)|$$ #### Theorem (vL, 2014) Let Mⁿ be a closed Riemannian manifold, such that - $|Ric(M)| \leq \Lambda$, - $injrad(M) \ge \varepsilon$, - $diam(M) \leq D$, - M does not admit an S¹-action. Then $$|Isom(M)| \leq C(n, \Lambda, \varepsilon, D)$$. # More general problem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek Lift to the universal cover: # More general problem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Question Given (M, g), can we bound $|\operatorname{Isom}(M, g)|$? # More general problem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek #### Question Given (M, g), can we bound $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$? ### Higher genus surface Symmetry gaps in Riemannian geometry and minimal orbifolds Let $M = \Sigma_g$, $g \ge 2$. Theorem (Hurwitz) $|\mathit{Isom}(\Sigma_g)| \leq 84(g-1).$ # Higher genus surface Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek Let $$M = \Sigma_g$$, $g \ge 2$. #### Theorem (Hurwitz) $$|\mathit{Isom}(\Sigma_g)| \leq 84(g-1).$$ #### However: #### Example $$[\operatorname{Isom}(\mathbb{H}^2):\pi_1(\Sigma_g)]=\infty.$$ # Higher genus surface Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek Let $$M = \Sigma_g$$, $g \ge 2$. #### Theorem (Hurwitz) $$|\mathit{Isom}(\Sigma_g)| \leq 84(g-1).$$ #### However: #### Example $$[\operatorname{Isom}(\mathbb{H}^2):\pi_1(\Sigma_g)]=\infty.$$ $\implies \operatorname{Ric}(M) < 0$ does not yield a bound! ### Second theorem Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Theorem (vL, 2014) Let Mⁿ be a closed Riemannian manifold, such that - $|Ric(M)| \leq \Lambda$, - $injrad(M) \ge \varepsilon$, - $diam(M) \leq D$. - \widetilde{M} does not admit a proper action by a nondiscrete Lie group G such that $\pi_1(M) \subseteq G$. Then $|Isom(M)| \leq C(n, \Lambda, \varepsilon, D)$. Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek ### Theorem (Farb-Weinberger, 2008) #### Let M be - a closed, aspherical manifold, and not virtually a product, - $\pi_1(M)$ has no nontrivial normal abelian subgroups. ### Local symmetry ⇒ locally symmetric Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Theorem (Farb-Weinberger, 2008) #### Let M be - a closed, aspherical manifold, and not virtually a product, - $\pi_1(M)$ has no nontrivial normal abelian subgroups. #### Then TFAE - $[Isom(M, \widetilde{g}), \pi_1(M)] = \infty$, - (M,g) is isometric to a locally symmetric space. ### Local symmetry ⇒ locally symmetric Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek #### Theorem (Farb-Weinberger, 2008) #### Let M be - a closed, aspherical manifold, and not virtually a product, - $\pi_1(M)$ has no nontrivial normal abelian subgroups. #### Then TFAE - $[Isom(M, \widetilde{g}), \pi_1(M)] = \infty$, - (M,g) is isometric to a locally symmetric space. #### Conjecture (Farb-Weinberger, 2008) For the conclusion above, it suffices that $[\operatorname{Isom}(\widetilde{M},\widetilde{g}):\pi_1(M)] \geq C$ for some C only depending on M. Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek ### Theorem (Farb-Weinberger, 2008) Let M be - a closed, aspherical manifold, and not virtually a product, - $\pi_1(M)$ has no nontrivial normal abelian subgroups. #### Then TFAE - $[Isom(M, \widetilde{g}), \pi_1(M)] = \infty$, - (M,g) is isometric to a locally symmetric space. #### Conjecture (Farb-Weinberger, 2008) For the conclusion above, it suffices that $[\operatorname{Isom}(\widetilde{M},\widetilde{g}):\pi_1(M)] \geq C$ for some C only depending on M. #### Theorem (Farb-Weinberger, 2008) True if M is diffeomorphic to a locally symmetric space. Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek Theorem (vL, 2014) There exists $C(n, \Lambda, \varepsilon, D)$ such that if M^n is as in the conjecture, and Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Theorem (vL, 2014) There exists $C(n, \Lambda, \varepsilon, D)$ such that if M^n is as in the conjecture, and - $|Ric(M)| \leq \Lambda$, - $injrad(M) \ge \varepsilon$, - $diam(M) \leq D$, Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter van Limbeek #### Theorem (vL, 2014) There exists $C(n, \Lambda, \varepsilon, D)$ such that if M^n is as in the conjecture, and - $|Ric(M)| \leq \Lambda$, - $injrad(M) \ge \varepsilon$, - $diam(M) \leq D$, #### then either - $[Isom(\widetilde{M}, \widetilde{g}) : \pi_1(M)] \leq C$, or - (M, g) is isometric to a locally symmetric space. Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var Limbeek • Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$. Symmetry gaps in Riemannian geometry and minimal orbifolds - Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$. - Choose g_n such that $[\underbrace{\mathrm{Isom}(\widetilde{M},\widetilde{g_n})}_{G_n}:\underbrace{\pi_1(M)}_{\Gamma}] \to \infty.$ - Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$. - Choose g_n such that $[\underbrace{\mathrm{Isom}(\widetilde{M},\widetilde{g_n})}_{G_n}:\underbrace{\pi_1(M)}_{\Gamma}] \to \infty.$ - $\exists g : g_n \xrightarrow{C^1} g$. Set $G := \text{Isom}(\widetilde{M}, \widetilde{g})$. Easy facts: G is a Lie group, possibly with infinitely many components. $\Gamma \subseteq G$ is a cocompact lattice. - Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)].$ - Choose g_n such that $[\underbrace{\mathrm{Isom}(\widetilde{M},\widetilde{g_n})}_{G_n}:\underbrace{\pi_1(M)}_{\Gamma}] \to \infty.$ - $\exists g : g_n \xrightarrow{C^1} g$. Set $G := \text{Isom}(\widetilde{M}, \widetilde{g})$. Easy facts: G is a Lie group, possibly with infinitely many components. $\Gamma \subseteq G$ is a cocompact lattice. - Show: $[G_n : \Gamma] \to \infty \implies [G : \Gamma] = \infty$. - Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$. - Choose g_n such that $[\underbrace{\mathrm{Isom}(\widetilde{M},\widetilde{g_n})}_{G_n}:\underbrace{\pi_1(M)}_{\Gamma}] \to \infty.$ - $\exists g : g_n \xrightarrow{C^1} g$. Set $G := \text{Isom}(\widetilde{M}, \widetilde{g})$. Easy facts: G is a Lie group, possibly with infinitely many components. $\Gamma \subseteq G$ is a cocompact lattice. - Show: $[G_n : \Gamma] \to \infty \implies [G : \Gamma] = \infty$. $\implies G^0 \neq 1$ where G^0 is the connected component of the identity. Symmetry gaps in Riemannian geometry and minimal orbifolds - Suppose there is no bound on $[\operatorname{Isom}(\widetilde{M}, \widetilde{g}) : \pi_1(M)]$. - Choose g_n such that $[\underbrace{\mathrm{Isom}(\widetilde{M},\widetilde{g_n})}_{G_n}:\underbrace{\pi_1(M)}_{\Gamma}] \to \infty.$ - $\exists g : g_n \xrightarrow{C^1} g$. Set $G := \text{Isom}(\widetilde{M}, \widetilde{g})$. Easy facts: G is a Lie group, possibly with infinitely many components. $\Gamma \subseteq G$ is a cocompact lattice. - Show: $[G_n : \Gamma] \to \infty \implies [G : \Gamma] = \infty$. $\implies G^0 \neq 1$ where G^0 is the connected component of the identity. - Show: Γ contains no nontrivial normal abelian subgroups $\implies G^0$ is semisimple. Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter var • We have G_n with $[G_n : \Gamma] \to \infty$, and G_n 'converge' to G such that G^0 is semisimple. Symmetry gaps in Riemannian geometry and minimal orbifolds - We have G_n with $[G_n : \Gamma] \to \infty$, and G_n 'converge' to G such that G^0 is semisimple. - Rough idea: Find $G'_n \subseteq G_n$ that are 'discrete approximations' of $G^0 \subseteq G$. Symmetry gaps in Riemannian geometry and minimal orbifolds - We have G_n with $[G_n : \Gamma] \to \infty$, and G_n 'converge' to G such that G^0 is semisimple. - Rough idea: Find $G'_n \subseteq G_n$ that are 'discrete approximations' of $G^0 \subset G$. - Should be impossible: A semisimple Lie group does not admit arbitrarily large lattices (Kazhdan-Margulis). Symmetry gaps in Riemannian geometry and minimal orbifolds Wouter va Limbeek • Set $\Gamma_0 := \Gamma \cap G^0$. Show: Symmetry gaps in Riemannian geometry and minimal orbifolds - Set $\Gamma_0 := \Gamma \cap G^0$. Show: - **①** $\Gamma_0 \subseteq G^0$ is a cocompact lattice $\Longrightarrow [G'_n : \Gamma_0] < \infty$. Symmetry gaps in Riemannian geometry and minimal orbifolds - Set $\Gamma_0 := \Gamma \cap G^0$. Show: • Set $$\Gamma_0 := \Gamma \cap G^0$$. Show: • • $$\varphi_n: G'_n \to \operatorname{Comm}(\Gamma_0) \longrightarrow G'_n \to G^0$$. - Set $\Gamma_0 := \Gamma \cap G^0$. Show: - **1** $\Gamma_0 \subseteq G^0$ is a cocompact lattice $\implies [G'_n : \Gamma_0] < \infty$. - • $\varphi_n: G'_n \to \operatorname{Comm}(\Gamma_0) \longrightarrow G'_n \to G^0.$ - Set $\Gamma_0 := \Gamma \cap G^0$. Show: - **①** $\Gamma_0 \subseteq G^0$ is a cocompact lattice $\Longrightarrow [G'_n : \Gamma_0] < \infty$. - $\mathbf{0} \leadsto \varphi_n : G'_n \to \operatorname{Comm}(\Gamma_0) \leadsto G'_n \to G^0.$ - Kazhdan-Margulis and ② $\implies \ker(\varphi_n) \neq 1$ for $n \gg 1$. - Any $g \in \ker \varphi_n$ centralizes a finite index subgroup of $\Gamma_0 \rightsquigarrow$ homotopically trivial isometry of a finite cover of M. - Set $\Gamma_0 := \Gamma \cap G^0$. Show: - • $\varphi_n : G'_n \to \operatorname{Comm}(\Gamma_0) \longrightarrow G'_n \to G^0$. - Kazhdan-Margulis and ② $\implies \ker(\varphi_n) \neq 1$ for $n \gg 1$. - Any $g \in \ker \varphi_n$ centralizes a finite index subgroup of $\Gamma_0 \leadsto$ homotopically trivial isometry of a finite cover of M. - Borel: Any nontrivial isometry of M is homotopically nontrivial. Wouter var - Set $\Gamma_0 := \Gamma \cap G^0$. Show: - **1** $\Gamma_0 \subseteq G^0$ is a cocompact lattice $\Longrightarrow [G'_n : \Gamma_0] < \infty$. - \bullet $\varphi_n: G'_n \to \operatorname{Comm}(\Gamma_0) \longrightarrow G'_n \to G^0.$ - Any $g \in \ker \varphi_n$ centralizes a finite index subgroup of $\Gamma_0 \rightsquigarrow$ homotopically trivial isometry of a finite cover of M. - Borel: Any nontrivial isometry of M is homotopically nontrivial. - Contradiction!