Math 549 — HW 1 Solutions

Problem 1-1: Note that on any interval contained in one of the two horizontal lines, the quotient map is a
homeomorphism. So M is locally Euclidean. To show M is second countable, note that a basis is given by
the images of balls with rational nonzero centers and rational radii, together with the balls with rational
radii centered at the two “origins”. You should check this is a basis.

M is not Hausdorff since for any open neighborhoods Uy containing the two “origing” [(0,£1)], their
pre-images in X will be open neighborhoods V4 of (0,+1) that are saturated with respect to the equivalence
relation. Let € > 0 be small such that (¢,1) € V. Then (¢,—1) € V as well (since V. consists of
equivalence classes). For € small enough, we have (¢, —1) € V_ as well. This shows Uy NU_ # &. O

Problem 1-3: To show second countable implies o-compact: Since X is locally Euclidean, every x € X has
an open neighborhood U, homeomorphic to an open ball via a chart y,, say of radius 1. Let V, be the
pre-image of the ball of radius 1/2 (so V is compact). Then {V,.}, is an open cover, so by Proposition A.16,
it has a countable subcover {V,, },>1. Then

X=|JVa,

n>1

is a countable union of compact subsets.

To show o-compact implies second countable: Write X as a countable union of compact subspaces
K,,n>1. Let {(Uy, pa)}aca be an atlas for X. For each n, we can choose a finite subcollection 4,, C A
such that {Us}aea, is a cover of K,,. Set A’ := U, A4,, so A is countable. A countable base for the topology
of X is given by pre-images (under ¢, ) of balls with rational centers and rational radii in ¢, (U,) for

a € A’. You should check this is actually a base. O

Problem 1-6: Note that F has inverse F;/,. Since both are continuous, we see Fj is a homeomorphism.
For 0 < s < 1 however, Fy is not smooth at the origin (e.g. because Fj(te;) = t®e;, so it does not even have
partial derivatives at the origin).

Now define smooth structures on the ball via the charts (B, F) for s > 0. These are not smoothly
compatible since the transition functions are Fy o F[l =FsoFy) and Fy o F;1 = Fyo Fy,. Again on a
coordinate axis these transition functions raise to the power s/t and t/s. If s < t then the former transition
function is not smooth and if s > t then the latter is not smooth.

For a general manifold M, the idea is to change the smooth structure around a single point p € M using the
above on a chart around p. Let A be a maximal smooth atlas and choose a chart (U, ¢) € A around p such
that o(U) = B™ and ¢(p) = 0. Now define a new atlas .4, by manually removing p from all charts of A and
then adding in (U, F, 0 ), i.e. set A, i= {(V\{p},dlvp) | (V.w) € A} U{(U, F\ 0 9)}.

Now one should check Aj is a smooth atlas (the key point is that Fy and F, ! are smooth everywhere except
at the origin, and no chart other than (U, ) contains p = ¢ ~1(0)). Further one checks that A, and A; are
not smoothly compatible for s # t because Fyopo (Fyop)™l = F,0 F} /¢ is not smooth at 0. O

Problem 1-7:

(a) We just do the computation for o. The line from N to x is parameterized by ¢ — N + ¢(N — z). The
last coordinate is given by 1+ ¢(1 — z,41) and hence vanishes for t =ty := 1/(1 — x,,4+1). Reading off
the first n coordinates with ¢t = ¢ gives —tgx = (1 — xn+1)_1m, as desired.

(b) Tt is not hard to verify 0 o 0~! = id and 0~ o o = id (for both, you need to use the identity
2] =1 =27 41).

(c) Tt is not hard to compute & o 0~ !(u) = ||u/| ~?u and a similar formula for o o =. The image of o of the
overlap of the two charts (i.e. of the complement of the two poles) is R™\0. Since the transition function
is rational with its only pole at the origin, the transition function is smooth on its domain. So the
stereographic coordinates define a smooth structure.

(d) We need to verify that the stereographic coordinates are smoothly compatible with the coordinates from
the example given by ¢’ (x) = (21,...,%i,...,2T,). We have

oo (u) = (L4 [full®) ™ (2u, s 2ug, o 20, [fu” = 1),



This map is rational with no poles so it is smooth. For the inverse we compute

oo (@) Hu) = (1 —up) ur, ..oy /1T —|Jull?, .. un_1)

which is smooth on the unit ball (which is the image of ¢ ). Similarly, the transition functions between
% and ¢ are smooth.

Problem 1-9: Hausdorflness: The base of the quotient topology on CP™ is given by images of open cones
in C"*1\{0}. Given two complex lines /1, /5, we can take disjoint small open cones around each which give
disjoint open neighborhoods of ¢1, /5 € CP™.

The definition of the charts is exactly the same as for RP™ (except we are now working with complex
numbers). In particular, CP" is locally Euclidean and the transition functions are smooth.

A point-set topology argument shows that CP™ = §27+1/G%. This proves compactness. Using Problem 1-3,
this also shows second countability.

Problem 1-11: Here is a solution that does not use the hint (but there are many ways do this problem).
We extend the stereographic projection to the interior of the ball, enlarging its codomain to H™, so that it
maps the interior of the ball into the open upper half space {z,4+1 > 0}, e.g. consider

@:B"\{N} - H"

defined by ¢(z) = (o(x/||z||),1 — ||z||*). Here the first part refers to the first n — 1 coordinates and the
second part is the last (i.e. nth) coordinate. We define a similar map @ using stereographic projection from
the south pole. For the transition functions we have

o tu)=(Goo (uy,... yUn—1), Up)-

This clearly extends to a smooth function on an open neighborhood of H" (the last coordinate extends by
the same expression, and the first n coordinates extend with the same expression as well, see Problem 1-7(c)
for a exact formula.

To check that on the interior this gives the same as the standard smooth structure on B", we use the
identity chart on B", and note that ¢ and ¢! are smooth on the interior of their domains when these are
viewed as subsets of R".



