Change of Variables

1. Let $\Phi(u, v) = (u^2, v)$ is Φ one to one? If not determine a domain on which Φ is one to one. Find the image under Φ of:

- (a) The u and v axes
- (b) The rectangle $[-1, 1] \times [-1, 1]$
- (c) The line segment joining (0,0) and (1,1)
- (d) The triangle with vertices (0,0), (0,1) and (1,1)

2. Let $\Phi(u,v) = (2u+v, 5u+3v)$ be a map from the uv-plane to the xy-plane.

(a) Show that the image of the horizontal line v = c is the line $y = \frac{5}{2}x + \frac{1}{2}c$. What is the image of the line u = c.

(b)Describe the image of the line v = 4u under Φ .

(c) Show that the inverse of Φ is $\Phi^{-1}(x, y) = (3x - y, -5x + 2y)$

3. Calculate the Jacobian

 $(\mathbf{a})\Phi(u,v) = (3u + 4v, u - 2v)$ $(\mathbf{b})\Phi(u,v) = (ue^{v}, ve^{3u})$ $(\mathbf{c})\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$

4. Find a linear mapping Φ that maps $[0,1] \times [0,1]$ to the parallelogram in the xy-plane spanned by the vectors (2,3) and (4,1).