Change of Variables

1. Let $\Phi(u, v)=\left(u^{2}, v\right)$ is Φ one to one? If not determine a domain on which Φ is one to one. Find the image under Φ of:
(a) The u and v axes
(b) The rectangle $[-1,1] \times[-1,1]$
(c) The line segment joining $(0,0)$ and $(1,1)$
(d) The triangle with vertices $(0,0),(0,1)$ and $(1,1)$
2. Let $\Phi(u, v)=(2 u+v, 5 u+3 v)$ be a map from the $u v$-plane to the $x y$-plane.
(a) Show that the image of the horizontal line $v=c$ is the line $y=\frac{5}{2} x+\frac{1}{2} c$. What is the image of the line $u=c$.
(b)Describe the image of the line $v=4 u$ under Φ.
(c) Show that the inverse of Φ is $\Phi^{-1}(x, y)=(3 x-y,-5 x+2 y)$
3. Calculate the Jacobian
(a) $\Phi(u, v)=(3 u+4 v, u-2 v)$
(b) $\Phi(u, v)=\left(u e^{v}, v e^{3 u}\right)$
(c) $\Phi(r, \theta)=(r \cos \theta, r \sin \theta)$
4. Find a linear mapping Φ that maps $[0,1] \times[0,1]$ to the parallelogram in the xy-plane spanned by the vectors $\langle 2,3\rangle$ and $\langle 4,1\rangle$.
