1 Conservative Fields

1.1 Verify that $F=\nabla \phi$ and evaluate the line integral of F over the given path.
(a) $F=\langle 3,6 y\rangle, \phi(x, y)=3 x+3 y^{2} ; c(t)=\left(t, 2 t^{-1}\right)$ for $1 \leq t \leq 4$.
(b) $F=\left\langle x y^{2}, x^{2} y\right\rangle, \phi(x, y)=\frac{1}{2} x^{2} y^{2}$; upper half of the unit circle centered at the origin oriented counterclockwise.
(c) $F=\left\langle y e^{z}, x e^{z}, x y e^{z}\right\rangle, \phi(x, y, z)=x y e^{z} ; c(t)=\left(t^{2}, t^{3}, t-1\right)$ for $1 \leq t \leq 2$.
1.2 Determine whether the vector field is conservative and if so, find a potential function.
(a) $F=\langle z, 1, x\rangle$
(b) $F=\langle 0, x, y\rangle$
(c) $F=\left\langle y^{2}, 2 x y+e^{z}, y e^{z}\right\rangle$
(d) $F=\left\langle y, z, z^{3}\right\rangle$
(e) $F=\langle\cos (x z), \sin (y z), x y \sin (z)\rangle$
(f) $F=\langle\cos (z), 2 y,-x \sin (z)\rangle$

2 Green's Theorem

2.1 Verify Green's Theorem for the line integral $\oint_{C} x y d x+y d y$ where C is the unit circle, oriented counterclockwise.
2.2 Use Green's Theorem to evaluate the line integral. Orient the curve counterclockwise unless otherwise indicated
(a) $\oint_{C} y^{2} d x+x^{2} d y$, where C i the boundary of the unit square $0 \leq x, y \leq 1$.
(b) $\oint_{C} x^{2} y d x$, where C is the unit circle centered at the origin.
(c) $\oint F \cdot d s$, where $F=\left\langle x^{2}, x^{2}\right\rangle$ and C consists of the $\operatorname{arcs} y=x^{2}$ and $y=x$ for $0 \leq x \leq 1$
2.3 Use Green's Theorem to calculate the area of the given region
(a) The circle of radius 3 centered at the origin
(b) The region between the x -axis and the cycloid parametrized by $c(t)=(t-\sin t, 1-$ $\cos t$) for $0 \leq t \leq 2 \pi$.

