1 Conservative Fields

1.1 Verify that $F = \nabla \phi$ and evaluate the line integral of F over the given path.

(a) $F = \langle 3, 6y \rangle$, $\phi(x, y) = 3x + 3y^2$; $c(t) = (t, 2t^{-1})$ for $1 \le t \le 4$.

(b) $F = \langle xy^2, x^2y \rangle$, $\phi(x, y) = \frac{1}{2}x^2y^2$; upper half of the unit circle centered at the origin oriented counterclockwise.

- (c) $F = \langle ye^z, xe^z, xye^z \rangle$, $\phi(x, y, z) = xye^z$; $c(t) = (t^2, t^3, t 1)$ for $1 \le t \le 2$.
- 1.2 Determine whether the vector field is conservative and if so, find a potential function.
- (a) $F = \langle z, 1, x \rangle$
- (b) $F = \langle 0, x, y \rangle$
- (c) $F = \langle y^2, 2xy + e^z, ye^z \rangle$
- (d) $F = \langle y, z, z^3 \rangle$
- (e) $F = \langle \cos(xz), \sin(yz), xy \sin(z) \rangle$
- (f) $F = \langle \cos(z), 2y, -x\sin(z) \rangle$

2 Green's Theorem

- 2.1 Verify Green's Theorem for the line integral $\oint_C xydx + ydy$ where C is the unit circle, oriented counterclockwise.
- 2.2 Use Green's Theorem to evaluate the line integral. Orient the curve counterclockwise unless otherwise indicated
- (a) $\oint_C y^2 dx + x^2 dy$, where C i the boundary of the unit square $0 \le x, y \le 1$.
- (b) $\oint_C x^2 y dx$, where C is the unit circle centered at the origin.
- (c) $\oint F \cdot ds$, where $F = \langle x^2, x^2 \rangle$ and C consists of the arcs $y = x^2$ and y = x for $0 \le x \le 1$

2.3 Use Green's Theorem to calculate the area of the given region

(a) The circle of radius 3 centered at the origin

(b) The region between the x-axis and the cycloid parametrized by $c(t) = (t - \sin t, 1 - \cos t)$ for $0 \le t \le 2\pi$.