Lagrange Multipliers

1. Use Lagrange multipliers to find the extreme values of the function $f(x, y)=$ $2 x+4 y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-5=0$.
(a) Show that the Lagrange equations $\nabla f=\lambda \nabla g$ gives $\lambda x=1$ and $\lambda y=2$.
(b) Show that these equations imply $\lambda \neq 0$ and $y=2 x$.
(c) Use the constraint equation to determine the possible critical points (x, y).
(d) Evaluate $f(x, y)$ at the critical points and determine the minimum and maximum values.
2. Apply the method of Lagrange multipliers to the function $f(x, y)=\left(x^{2}+1\right) y$ subject to the constraint $x^{2}+y^{2}=5$.
Hint: First show that $y \neq 0$, then treat the case $x=0$ and $x \neq 0$ separately
3. Find the minimum and maximum values of the functions subject to the given constraint.
(a) $f(x, y)=x^{2}+y^{2}, 2 x+3 y=6$.
(b) $f(x, y)=x y, 4 x^{2}+9 y^{2}=32$.
(c) $f(x, y)=x^{2}+y^{2}, x^{4}+y^{4}=2$.
(d) $f(x, y, z)=3 x+2 y+4 z, x^{2}+2 y^{2}+6 z^{2}=1$
4. Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm .
5. Find the minimum value of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to two constraints, $x+2 y+z=3$ and $x-y=4$.

Review

Do the following WITHOUT looking at notes or a textbook. Try to answer at least fifty percent of the questions.

1. Evaluate the limit or prove that it does not exist

$$
\begin{array}{r}
\lim _{(x, y) \rightarrow(1,-3)}\left(x y+y^{2}\right) \\
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y^{2}+x^{2} y^{3}}{x^{4}+y^{4}}
\end{array}
$$

2. Compute f_{x} and f_{y}
(a) $f(x, y)=2 x+y^{2}$
(b) $f(x, y)=\sin (x y) e^{-x-y}$
3. Compute $f_{x x y z}$ for $f(x, y, z)=y \sin (x+z)$
4. Find an equation of the tangent to the graph of $f(x, y)=x y^{2}-x y+3 x^{3} y$ at $P=(1,3)$.
5. Suppose that the plane $z=2 x-y-3$ is tangent to the graph of $z=f(x, y)$ at $P=(2,4)$
(a) Determine $f(2,4), f_{x}(2.4)$, and $f_{y}(2.4)$.
(b) Approximate $f(2.2,3.9)$.
6. Compute $\frac{d}{d t} f(c(t))$ where $f(x, y)=x+e^{y}, c(t)=\left(3 t-1, t^{2}\right)$ at $t=2$.
7. Compute the directional derivative at P in the direction of $v, f(x, y)=x^{3} y^{4}$, $P=(3,-1), v=2 i+j$.
8. Let $f(x, y)=(x-y) e^{x}$. Use the chain rule to calculate $\frac{\delta f}{\delta u}$ where $x=u-v$ and $y=u+v$.
9. Find all local min, max and saddle points of $f(x, y)=x^{4}-2 x^{2}+y^{2}-6 y$
9.Use Lagrange multipliers to find the minimum and maximum value of $f(x, y)=$ $3 x-2 y$ on the circle $x^{2}+y^{2}=4$.
10. Use Lagrange multipliers to find the dimensions of a cylindrical can of fixed volume V with minimal surface area (including the top and bottom of the can)
