Vector Fields

1. Compute and sketch the vector assigned to the given points by the given vector field.
(a) $P=(1,2), Q=(-1,-1)$, by the vector field $F=\left\langle x^{2}, x\right\rangle$.
(b) $P=(0,1,1), Q=(2,1,0)$ by the vector field $F=\left\langle x y, z^{2}, x\right\rangle$.
2. Sketch the following planar vector fields by drawing the vectors attached to points with integer coordinates in the rectangle $-2 \leq x, y \leq 2$. Instead of drawing the vectors with their true lengths, scale them if necessary to avoid overlap.
(a) $F=\langle 1,0\rangle$
(b) $F=\langle 0, x\rangle$
(c) $F=\langle 1,1\rangle$
(d) $F=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle$
(e) $F=\left\langle\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}\right\rangle$

Line Integrals

1. Let $f(x, y, z)=x+y z$ and let C be the line segment from $P=(0,0,0)$ to $(6,2,2)$.
(a) Calculate $f(c(t))$ and $d s=\left\|c^{\prime}(t)\right\| d t$ for the parametrization $c(t)=(6 t, 2 t, 2 t)$ for $0 \leq t \leq 1$.
(b) Evaluate $\int_{C} f(x, y, z)$.
2. Let $F=\left\langle y^{2}, x^{2}\right\rangle$ and let C be the $y=x^{-1}$ for $1 \leq x \leq 2$, oriented from left to right.
(a) Calculate $F(c(t))$ and $d s=c^{\prime}(t) d t$ for the parametrization $c(t)=\left(t, t^{-1}\right)$.
(b) Calculate the dot product $F(c(t)) \dot{c}^{\prime}(t) d t$ and evaluate $\int_{C} F \dot{d} s$.
3. Calculate the integral of the given scalar function or vector field over the curve $c(t)=(\cos t, \sin t, t)$ for $0 \leq t \leq \pi$.
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
(b) $F=\langle x, y, z\rangle$
4. Calculate the total mass of a circular piece of wire of radius 4 cm centered at the origin whose mass density is $\rho(x, y)=x^{2} \mathbf{g} / \mathrm{cm}$.
5. Compute the line integral of the scalar function over the curve.
(a) $f(x, y, z)=z^{2}$, for the line $c(t)=(2+t, 2-t, 2 t)$ for $-2 \leq t \leq 1$.
(b) $f(x, y, z)=\sqrt{1+9 x y}$, for the line $y=x^{3}$ for $0 \leq x \leq 1$.
(c) $f(x, y, z)=x e^{z^{2}}$, piecewise linear path from $(0,0,1)$ to $(0,2,0)$ to $(1,1,1)$
(d) $f(x, y, z)=2 x^{2}+8 z$, for the line $c(t)=\left(e^{t}, t^{2}, t\right)$, for $0 \leq t \leq 1$.
6. Compute the line integral of the vector field over the oriented curve
(a) $F=\left\langle x^{2}, x y\right\rangle$, line segment from $(0,0)$ to $(2,2)$.
(b) $F=\langle x y, x+y\rangle$, circle $x^{2}+y^{2}=9$ oriented clockwise
(c) $F=\langle x y, x+y\rangle, c(t)=\left(t+t^{2}, \frac{1}{3} t^{3}, 2+t\right)$ for $0 \leq t \leq 2$.
(d) $F=\left\langle 3 z y^{-1}, 4 x,-y\right\rangle, c(t)=\left(e^{t}, e^{t}, t\right)$ for $-1 \leq t \leq 1$.
