Planes, Vectors and Automobiles

1. Given a vector $\vec{v}=(a, b)$ the formulas for the following
(a) A unit vector parallel to \vec{v}
(b) A vector perpendicular to \vec{v}
(c) The magnitude of \vec{v}
2. Without looking at notes, write the geometric equations for dot product and cross product.
3. True or False: Is $(\vec{v} \times \vec{u}) \times \vec{w}=\vec{v} \times(\vec{u} \times \vec{w})$. If true, prove, if false, give a counter example.
4. Write an equation of the plane with normal vector n passing through the given point
(a) $n=\langle 1,3,2\rangle,(4,-1,1)$
(b) $n=i,(3,1,-9)$
5. Find an equation of the plane passing through the three points
(a) $(1,2,3),(3,2,1),(2,1,3)$
(a) $(0,0,0),(1,0,0),(2,0,0)$
6. Find the intersection of the line and plane
(a) $x+y+z=14, r(t)=\langle 1,1,0\rangle+t\langle 0,2,4\rangle$
(b) $z=12, r(t)=t\langle-6,9,36\rangle$
7. Compute the angle between the two planes
(a) $2 x+3 y+7 z=2$ and $4 x-2 y+2 z=4$
(b) The plane through $(1,0,0),(0,1,0),(0,0,1)$ and the \mathbf{y}-plane
