Solution

1. A random sample of $\mathbf{n}=16$ observations from a normal distribution $N\left(\mu, \sigma^{2}\right)$ leads to sample mean $\bar{X}=70$, sample variance $s^{2}=576$.
(a).[2pt] Determine a $\mathbf{9 0 \%}$ confidence interval for population mean $\boldsymbol{\mu}$.

$$
n=16, d . f .=n-1=15, \alpha / 2=0.05, t(0.05,15)=1.753
$$

C.I. for $\boldsymbol{\mu}: \bar{x} \pm t(0.05,15) \frac{s}{\sqrt{n}}=70 \pm(1.753 \cdot 6)=70 \pm 10.518$
(b). [3pt] Find a $\mathbf{9 0 \%}$ confidence interval for population variance $\boldsymbol{\sigma}^{\mathbf{2}}$.
d.f. $=15, \alpha / 2=0.05, \chi^{2}(0.05,15)=24.996, \chi^{2}(0.95,15)=7.261$
C.I. for $\boldsymbol{\sigma}^{\mathbf{2}}$:

$$
\left[\frac{(n-1) s^{2}}{\chi^{2}(0.05,15)}, \frac{(n-1) s^{2}}{\chi^{2}(0.95,15)}\right]=\left[\frac{15 \cdot 576}{24.996}, \frac{15 \cdot 576}{7.261}\right]=[345.65,1189.92]
$$

2. [3pt] The makers of a medicated facial skin cream are interested in determining the percentage of people in a given age group who may benefit from the ointment. A random sample of 68 people results in 42 successful treatments. Give a 99\% confidence interval for the proportion of people in the given age group who may be successfully treated with the facial cream.

$$
\mathrm{y}=42, \mathrm{n}=68, \hat{p}=\frac{y}{n}=\frac{42}{68}=.6176, \quad \alpha=0.01, \alpha / 2=0.005, z_{0.005}=2.576
$$

C.I. for p :

$$
\hat{p} \pm z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.6176 \pm 2.576 \cdot \sqrt{\frac{0.6176 \cdot(1-0.6176)}{68}}=0.6176 \pm 0.1518
$$

3. [2pt] Let Y be $\operatorname{Binomial}(n, p)$. Find the sample size n such that we are 95% confident that the estimate $\hat{p}=y / n$ is within 0.2 units of \boldsymbol{p} given that \boldsymbol{p} is unknown.

Margin of error $B=0.2$, i.e. $\quad z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{p(1-p)}{n}}=0.2$

$$
(1-\alpha)=0.95, \alpha / 2=0.025, z_{0.025}=1.96
$$

Then $n=\frac{z^{2} \alpha / 2 \cdot p(1-p)}{B^{2}} \leq \frac{z^{2} \alpha / 2}{4 B^{2}}=\frac{1.96^{2}}{4(0.2)^{2}}=24.01 \quad \nearrow 25$

