1.[5pt] If we draw a card randomly from a deck of cards (total 52), let event $\mathrm{A}=$ face card, event $\mathrm{B}=$ club card
a.Are the above events A and B disjoint? Why?

No, the intersection of the two events is not empty

$$
A \cap B=\{\mathrm{J} \in \mathrm{Q} \bullet, \mathrm{~K} \boldsymbol{\bullet}\} \neq \phi
$$

b. Find the probability that the card drawn is a face card or a club card.

$$
\begin{aligned}
& P(A)=12 / 52, P(B)=13 / 52 \\
& P(A \cap B)=3 / 52
\end{aligned}
$$

Use the additive law,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{12}{52}+\frac{13}{52}-\frac{3}{52}=\frac{22}{52}=0.423
$$

2. [5pt] A batch of 9 parts contains 4 defective parts and 5 good parts. An inspector plans to choose a random sample of 3 of the parts for inspection.

a. What's the probability that two parts are good and one part is defective?

$\mathrm{P}($ all three good $)=\frac{\binom{5}{2}\binom{4}{1}}{\binom{9}{3}}=\frac{40}{84}=0.476$

b. What is the probability that at least one part is good?

Let event $\mathrm{A}=$ \{at least one part is good\} the complement of A, $\bar{A}=\{$ no one is good $\}=\{$ all three defective $\}$

$$
\mathrm{P}(\bar{A})=\frac{\binom{5}{0}\binom{4}{3}}{\binom{9}{3}}=\frac{4}{84}=0.0476, \mathrm{P}(\mathrm{~A})=1-\mathrm{P}(\bar{A})=1-0.0476=0.9524
$$

