1. [6pt] There are 19 marbles in a container, of which 8 are white and the rest are black.
a). One person chooses 2 of the 19 marbles at random without replacement, what is the probability that both marbles chosen are white?

Denote $A_{1}=\{$ the first marble is white $\}, A_{2}=\{$ the second marble is white $\}$
then $\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\{$ both marbles are white $\}$
Then $\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{2} \mid \mathrm{A}_{1}\right)=(8 / 19) *(7 / 18)=0.164$
b). If he chooses $\mathbf{2}$ marbles out of $\mathbf{1 9}$ with replacement, what is the probability that at least one is black?

Denote $B=\{$ at least one is black $\}$, its complement is

$$
\bar{B}=\{\text { no black }\}=\{\text { both white }\}=\mathrm{A}_{1} \cap \mathrm{~A}_{2}
$$

If he chooses the marbles with replacement, that means the first draw is independent of the second draw. Then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right)=(8 / 19)^{*}(8 / 19)=0.177
$$

Then $\mathrm{P}(\mathrm{B})=1-\mathrm{P}(\bar{B})=1-\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right)=1-0.177=0.823$
2. [4pt] An airport metal detector buzzes with probability 0.98 if a person tries to carry a weapon through, and buzzes with probability 0.04 if a person does not try to carry a weapon through. Also, 0.005 of the people being scanned by the detector try to carry a weapon through. If a person makes the detector buzz, what is the probability that he is carrying a weapon?

Tree Diagram

$\mathrm{C}=\{$ carry a weapon $\} \quad \mathrm{B}=\{$ detector buzz $\}$
$C \mid B=\{$ the person carry a weapon if he
makes the detector buzz $\}$

$P(C \mid B)$
$=P(C \cap B) / P(B)$
$=(0.005 * 0.98) /\left(0.005^{*} 0.98+0.995 * 0.04\right)$
$=0.0049 / 0.0447$
$=0.1096$

