Solution

$1[4 \mathrm{pt}]$. If a sample from a normal population with mean μ and variance σ^{2}, the average \bar{X} with sample size n follows Normal distribution. While for any other shape of population, the Central Limit Theorem holds for large enough sample size, $\mathrm{n} \geq \underline{\mathbf{3 0}}$.

Mean $E(\bar{X})=\underline{\mu} \quad$, standard deviation $\operatorname{SD}(\bar{X})=\sigma / \sqrt{n}$
2. [3 pt$]$ A researcher plans to collect data from a normal population with unknown mean and known standard deviation, and then to compute a confidence interval for the mean. Which of the following will produce the narrowest interval?
A) $\mathrm{n}=10,90$ percent confidence level
B) $\mathrm{n}=30,90$ percent confidence level C) $n=30,95$ percent confidence level
D) $n=10,95$ percent confidence level

Confidence interval: $\bar{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
Answer: B
3. [3 pt] The Food and Drug Administration (FDA) needs to estimate the average content of an additive in a given food product. A random sample of 16 portions of the product has average 8.9 units. Suppose the standard deviation of population is known $\sigma=0.4$ units. The 95% confidence interval for the average number of units of additive in the population of portions of this food product is 8.9 ± 0.2. Which statement of the following is a reasonable representation of the confidence interval?
A) The content of the additive in about 95% of all portions is between 8.7 and 9.1 .
B) About 95% of sample averages of portions based on the samples with size 16 will be between 8.7 and 9.1.
C) Based on all the samples with size 16 , about 95% of confidence intervals will cover the true average content μ.
D) The true average content μ will fall into the interval $(8.7,9.1)$ with probability 95%.

Answer: C

