STAT 411 : Statistical Theory Final Exam – 31576, 31577 December 10, 2010, 10:30 -12:30 PM

Name: _____

UIN: _____

- 1. This is a closed book, closed-notes examination. You may have a calculator.
- 2. In order to receive full credit for a problem, you should show all of your work and explain your reasoning. Good work can receive substantial partial credit even if the final answer is incorrect, so show your reasoning.
- 3. Please provide the answers in the space provided. If you do not have enough space, please use the back of a nearby page. In this case, write a note to tell us where to find the additional work; otherwise you may not get credit for the work.
- 4. In most cases the later parts of a question do not require the answers to earlier parts. You should try all parts of a problem even if you get stuck on an early part. If necessary, state and assume a value from an earlier part.

Question	Points	Score
Question 1	28	
Question 2	20	
Question 3	18	
Question 4	34	
Total	100	

1. [28 points] Given that random sample X_1, X_2, \ldots, X_n is drawn from a Poisson distribution $X \sim Poisson(\theta)$, where $\theta > 0$ with probability function

$$f(x,\theta) = \frac{\theta^x}{x!}e^{-\theta}, x = 0, 1, 2, \dots$$

It is known that $E(X) = Var(X) = \theta$.

(a). [8 points] Find the maximum likelihood estimator (mle) $\hat{\theta}$ of parameter θ .

(b). [8 points] Calculate the Fisher information $I(\theta)$ and Rao-Cramer lower bound. Is the mle estimator $\hat{\theta}$ efficient for θ ? (c). [6 points] What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta_0)$ for a given $\theta_0 > 0$?

(d). [6 points] If we are interested in a new parameter $\eta = \theta^2$, find its mle $\hat{\eta}$. Is it unbiased for θ^2 ?

2. [20 points] Suppose X_1, \ldots, X_n are iid with the pdf

$$f(x;\theta) = e^{-(x-\theta)}, \quad \theta \le x < \infty,$$

where $-\infty < \theta < \infty$.

(a). [8 points] Show that $X_{(1)} = \min \{X_1, \ldots, X_n\}$ is a sufficient statistic for θ .

 $(b)\,.$ [8 points] Is $X_{(1)}$ also a minimal sufficient statistic for $\theta?$

(c). [4 points] The parameter θ in the distribution function is a location parameter or a scale parameter? Why? Find its standard distribution.

3. [18 points] Sample $X_1, ..., X_n$ is following a Bernoulli distribution $f(x, \theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1$ with $0 < \theta < 1$.

(a). [8 points] Find a complete and sufficient statistic for θ .

(b). [6 points] Based on (a), construct a MVUE for θ .

(c). [4 points] Find a MVUE for $\theta (1 - \theta)$.

4. [34 points] Sample $X_1, ..., X_n$ is following a normal distribution $N(\theta, 1)$,

$$f(x,\theta) = \left(\sqrt{2\pi}\right)^{-1} \exp\left\{-(x-\theta)^2/2\right\}$$

where $-\infty < \theta < +\infty$.

(a). [8 points] Based on Neyman-Pearson Theorem, find the best critical region for $H_0: \theta = 0$ vs. $H_1: \theta = 1$ given significance level $0 < \alpha < 1$.

(b). [6 points] Calculate the power of the best test in (a) given that n = 16 and significance level $\alpha = 0.05$. [Stat tables are attached.]

(c). [6 points] Find a uniformly most powerful critical region of size $\alpha = 0.05$ for testing $H_0: \theta = 0$ against $H_1: \theta > 0$

(d). [8 points] Construct the likelihood ratio test statistic Λ for testing $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$. Find its distribution or distribution of an equivalent statistic of Λ under the null hypothesis.

(e). [6 points] Find c such that the null hypothesis $H_0: \theta = 0$ is rejected when $\Lambda \leq c$ with significance level $\alpha = 0.05$. [Stat tables are attached.]