Review for Midterm I - STAT 411

Chap 3. Some Special Distributions

§1 Special Distributions

— Bernoulli distribution with parameter p (success rate), 0 < p < 1:

plz) =p"(1-p)"2=01
Mean and Variance: p = p, 0? = p(1 — p). MGF: M(t) = (1 — p) + pe'.

— Binomial distribution with parameters n and p, 0 < p < 1:
Let X be the number of successes in n independent Bernoulli trials, then
X ~ B(n,p) with pmf

p(x) = (n>px(]'_p)n_m7'r:0’1727"' ’n
x

Mean and Variance: p = np, 0 = np(1—p). MGF: M(t) = [(1—p)+pet]"
If Xy,...,X,, are independent and X; ~ B(n;,p), i = 1,... ,m, then
Y =X, +---+ X, has B(>", n;, p) distribution.

— Poisson distribution with rate parameter A > 0, denoted by Poisson(\) :

AI‘
p(z) = e’)‘—wx =0,1,2,...
x!

Mean and Variance: p = 0> = AMGF: M (t) = e}~V
If Xi,...,X, are independent and X; ~ Poisson()\;), then >0 X; ~
Poisson (31, A;).

— Normal distribution with mean ; and variance o2, denoted by N (u, o%)

f(:E)ZleXp{—l <x_u>2},—oo<x<oo

2mo 2 o

MGF: M(t) = exp {,ut + %02752}7 —00 <t < 0.
Standard normal distribution: N(0,1) with pdf and cdf:
1 2 Z
TR 9(2) = / d
e , D(z x)d.
= 0 = [ o)

Standardization: Z = (X — u)/o ~ N(0,1)
If Xp,...,X, areiid. ~N(0,1), then Y =37, X2 ~ x*(n) .
If Xi,...,X, are independent and X; ~ N(u;,02),i=1,...,n, then

Y =Y aX; ~ N aips,»_ aio?).
i=1 i=1 i=1

¢(2) =



§2 The I' and Y? Distributions

— Gamma function: I'(a) = [(*y* e Vdy, a > 0
Properties: T'(x + 1) = zI'(z);T(n) = (n — 1)! for positive integer n;
(1) =1,T(0.5) = /7.

— Gamma distribution with parameters o > 0 and g > 0:

1
T = Taype

Mean and Variance: u = af3, 0 = af8?. MGF: M(t) = (1-8t) %, t < %
If Xi,...,X, are independent and X; ~ I'(y,5), i« = 1,...,n, then

Y =X+ -+ X, hasI'(3", o, B) distribution.

— Chi-square distribution with parameter r (degrees of freedom), de-
noted by x2(r) = T'(r/2,2), where r is a positive integer. Mean and
Variance: p =r, 0% = 2r
If Xi,...,X, are independent and X; ~ x?(r;), i = 1,...,n, then
Y =X;+ -+ X, has x*(3, r;) distribution.

2 e B 0 < 1 < 00

83 t and F-Distributions

— t-distribution with r degrees of freedom: Let W ~ N(0,1), V ~ x*(r),
W and V be independent, then —— ~ #(r) .

N
— Student’s theorem: Let Xi,...,X, be iid. ~ N(u,0%). Let X =
Ly Xy and 87 = =3 (X; — X)% Then
(a) X ~ N (,u, %2), (b) X and S? are independent;
(¢) (n—1)5%/0% ~ x*(n — 1); (d) 374 ~ t(n—1).

— F-distribution: Let U ~ x%(ry), V ~ x2(r2), U and V be independent.

Then U? Lo~ F(ry, 7o) .

Chapter 5. Consistency and Limiting Distribution

51 Expectations of Functions

— Let Xi,..., X, be random variables. Let p; and o7 be the mean and
variance of X;, 7 =1,... ,n . Let the correlation coefficient of X; and X;
be Pij; i 7£ J

Cov(X;, Xj)

Pij =
’ \/Var ) Var(X;)
where COV(Xi, XJ> =F (Xz - EX1> (XJ — EXJ) .



— Let Y = a1 X1+ asXo+---+a,X,. Then E(Y') = a1 +agpo+- -+ anpin;
Var(Y) = 30, a?Var(X;) + 23, a;a,Cov(X;, X;)

In particular, if X;,... , X, are independent, then Var(Y) = Y"1 a?o?

— Let X4,..., X, be arandom sample from the distribution of X. In other
words, Xq,...,X, areiid.~ X .

— Unbiasedness: Let X be a random variable with cdf F' (z, ), where
0 € Q. Let Xq,...,X, be a random sample from the distribution of X

and let T denote a statistic. Then we say T is an unbiased estimator of
gift E(T) =0, for all 6 € Q.

§2 Convergence in Probability

— Let Xy,...,X,,... be a sequence of random variables and let X be a
random variable.

We say that X, converges in probability to X if for all € > 0,
lim,, o P[| X, — X| > €] =0, denoted by X, 5 x.

— Weak law of large numbers: Let X;,..., X, ... be iid.~ (u, o?).
Let X, = 13" X, Then X, 5 p.

— Consistency: Let X be a random variable with cdf F'(x,0), where
0 € Q. Let Xq,...,X, be arandom sample from the distribution of X
and let 7T, denote a statistic. Then we say T}, is a consistent estimator

of 6 if T, 5 6.
— Properties of convergence in probability:
1] aniaifan—)a
2] X, +Y, 5 X +Yif X, —>XandY Ly,
3] X,.Y, —>cX1fX —>XandY B¢
[4] g(X ) g(a) if X, 2 @ and ¢ is continuous at a.
83 Convergence in Distribution

— Let X4,...,X,,... be a sequence of random variables and let X be a
random variable. Let F,, and F' be the cdfs of X,, and X respectively.
Let C(F) be the set of all points where F' is continuous.

We say that X,, converges in distribution to X if lim, . F,(z) =
F(z), for all z € C(F), denoted by X,, > X.
— Properties of convergence in distribution:
1 x, 8 xif x, 5 X;
2] g(X,) 2 g(X) if X,, B X and g is continuous on the support of X:;
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[3] Let M, (t) and M (t) be the mgfs of X,, and X respectively.

If limy, o0 M, (t) = M(t) < 0o for —h <t < h, then X,, 3 X.

[4] Slutsky’s theorem: If X, = X,Y, EN a, and Z, RN b, then Y, +
Z, Xy 5 a+bX.

84 Central Limit Theorem

— Central limit theorem: Let Xi,...,X,,... beiid. X ~ (u,0?) and
let X, = % * 1 X, then

X, — X =
Vi(Xa — ) 2 N(0,1), or Zl—l\/_mb B N(0,1).
o no

Chapter 4. Statistical Inference

§ 1 Sampling and Statistics

— Random sample: The random variables Xi,..., X, constitute a ran-
dom sample from a random variable X if they are independent and have
identical distribution as X, which is denoted by

Xip,..., X, areiid ~ F(x) or f(z),

where F'(x) and f(z) are the cdf and pdf of X respectively.
— Statistic: Function of the sample {X;,... , X, }: T, = T(Xy,... , X,)
— Point estimator: The statistic 7,, is called a point estimator of the
unknown parameter 6 if the value of 7T}, can be used to estimate 6.
— Unbiasedness: T, is an unbiased estimator of 0 if Ey(T},) = 6,V0,¥n .
— Consistency: T, is a consistent estimator of 6 if T), converges to 6 in
e P
probability, i.e. T,, — 6.
— Confidence interval: An interval based on the statistic 7,, is called a

100 (1 — a))% confidence interval for € if the probability of the event that
the interval covers 6 is (1 — «).

§ 2 Quantiles

— Quantile: For 0 < p < 1, the pth quantile of a random variable X is
& = F~'(p), where F(z) is the cdf of X. Note: If F(z) is not monotone,
we may define F~'(p) = min{z : F(z) > p} .

— Order statistics: Let X,..., X, denote a random sample. Rewrite the
sample in ascending order and obtain X () < X3 < -+ X(,), which are
called the order statistics of the sample.
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Chapter 6. Maximum Likelihood Methods

§ 6.1 Maximum Likelihood Estimation

— Likelihood function: L(0) = [[, f(z;;6), if Xi,...,X, areiid ~
f(:0).
— Log likelihood function: [(#) =log L(0) = Y%, log f(z4;6)

— M.L.E.: The value of § which maximizes L(f) or [() is called the max-
imum likelihood estimator of 6, denoted by 0 or 0,1 .

— Theorem 6.1.1: Let 6y be the true value of . Under regularity conditions,

lim Py, [L(00; X) > L(6; X)] = 1, for all § # 6,

— Theorem 6.1.2 (Functional Invariant): Suppose 0 is the mle of 0, then
g(0) is the mle of g(6).

— Theorem 6.1.3 (Consistency): Under regularity conditions, the likeli-
hood equation

%1(9) = 0 has a solution 6, such that 6, EN 0o .

Corollary 6.1.1: Under regularity conditions, if the likelihood equation
has a unique solution 6,,, then 6, is a consistent estimator of 6, .

— For practice: Example 6.1.1, Example 6.1.2, Example 6.1.5, Example 6.1.6
§ 6.2 Rao-Cramér Lower Bound and Efficiency

— Let X be a random variable with pdf f(z;0), 8 € Q. Under regularity
conditions,

Elalogf(X;Q)

90 ]:0’ E

(810ggéX; 0))2] o [82 logaJ;X;Q)]

— Fisher information of a single random variable X:

(alog FX: 9))2 . <alog f(X;9)> _ PQ log f<X;9>]

Ho)=kE 90 o0 902

Fisher information of a random sample X, ..., X,: I,(0) = nl(0)

— Theorem 6.2.1 (Rao-Cramér Lower Bound): Let Xj,..., X, be iid
~ f(x;0). Let Y = u(Xy,...,X,) be a statistic with mean k(). Under
regularity conditions,

& (0))°

nl(0)

Var(Y) >



— Corollary 6.2.1: Under the assumptions of Theorem 6.2.1, if Y is an
unbiased estimator of 0, then Var(Y) > #@ :

— Efficient estimator: Let Y be an unbiased estimator of #. Y is called
an efficient estimator of 0 if Var(Y') attains the Rao-Cramér lower bound.

— Efficiency: Let Y be an unbiased estimator of . Then #w) [Var(Y)] ™
is called the efficiency of Y.

— Theorem 6.2.2: Assume X,..., X, are iid with pdf f(z;6p). Suppose
0 < I(0y) < oo and 6, is a consistent estimator of fy such that %l(@n) = 0.
Under regularity conditions,

v, —6y) 2 N <0, ](100)>

Corollary 6.2.2 (Delta Method): Suppose g(z) is differentiable at 6, and
g'(6p) # 0. Under the assumptions of Theorem 6.2.2,

Valg(6,) - (60 25 5 (0. L)

Practice Problems

e Chapter 4: §4.1-5,6;§4.2-4,7,16; § 4.4 -5, 6.
e Chapter 5: § 5.1-2,3;8§5.2-1, 11, 18.

e Chapter 6: § 6.1 -1 ,9; § 6.2 -2, 11, 12.



