
Review for Midterm I - STAT 411

Chap 3. Some Special Distributions

§1 Special Distributions

– Bernoulli distribution with parameter p (success rate), 0 < p < 1:

p(x) = px(1− p)1−x, x = 0, 1

Mean and Variance: µ = p, σ2 = p(1− p). MGF: M(t) = (1− p) + pet.

– Binomial distribution with parameters n and p, 0 < p < 1:
Let X be the number of successes in n independent Bernoulli trials, then
X ∼ B(n, p) with pmf

p(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

Mean and Variance: µ = np, σ2 = np(1−p). MGF: M(t) = [(1−p)+pet]n

If X1, . . . , Xm are independent and Xi ∼ B(ni, p), i = 1, . . . ,m, then
Y = X1 + · · ·+Xm has B(

∑m
i=1 ni, p) distribution.

– Poisson distribution with rate parameter λ > 0, denoted by Poisson(λ) :

p(x) = e−λ
λx

x!
, x = 0, 1, 2, . . .

Mean and Variance: µ = σ2 = λ.MGF: M(t) = eλ(et−1)

If X1, . . . , Xn are independent and Xi ∼ Poisson(λi), then
∑n
i=1 Xi ∼

Poisson(
∑n
i=1 λi).

– Normal distribution with mean µ and variance σ2, denoted byN(µ, σ2)

f(x) =
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2
}
,−∞ < x <∞

MGF: M(t) = exp
{
µt+ 1

2
σ2t2

}
, −∞ < t <∞.

Standard normal distribution: N(0, 1) with pdf and cdf:

φ(z) =
1√
2π
e−z

2/2, Φ(z) =
∫ z

−∞
φ(x)dx.

Standardization: Z = (X − µ)/σ ∼ N(0, 1)

If X1, . . . , Xn are i.i.d. ∼ N(0, 1), then Y =
∑n
i=1X

2
i ∼ χ2(n) .

If X1, . . . , Xn are independent and Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n, then

Y =
n∑
i=1

aiXi ∼ N(
n∑
i=1

aiµi,
n∑
i=1

a2
iσ

2
i ).
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§2 The Γ and χ2 Distributions

– Gamma function: Γ(α) =
∫∞

0 yα−1e−ydy, α > 0
Properties: Γ(x + 1) = xΓ(x); Γ(n) = (n − 1)! for positive integer n;
Γ(1) = 1,Γ(0.5) =

√
π.

– Gamma distribution with parameters α > 0 and β > 0:

f(x) =
1

Γ(α)βα
xα−1e−x/β, 0 < x <∞

Mean and Variance: µ = αβ, σ2 = αβ2. MGF: M(t) = (1− βt)−α, t < 1
β

If X1, . . . , Xn are independent and Xi ∼ Γ(αi, β), i = 1, . . . , n, then
Y = X1 + · · ·+Xn has Γ(

∑n
i=1 αi, β) distribution.

– Chi-square distribution with parameter r (degrees of freedom), de-
noted by χ2(r) = Γ(r/2, 2), where r is a positive integer. Mean and
Variance: µ = r, σ2 = 2r
If X1, . . . , Xn are independent and Xi ∼ χ2(ri), i = 1, . . . , n, then
Y = X1 + · · ·+Xn has χ2(

∑n
i=1 ri) distribution.

§3 t and F -Distributions

– t-distribution with r degrees of freedom: Let W ∼ N(0, 1), V ∼ χ2(r),
W and V be independent, then W√

V/r
∼ t(r) .

– Student’s theorem: Let X1, . . . , Xn be i.i.d. ∼ N(µ, σ2). Let X̄ =
1
n

∑n
i=1Xi and S2 = 1

n−1

∑n
i=1(Xi − X̄)2. Then

(a) X̄ ∼ N
(
µ, σ2

n

)
; (b) X̄ and S2 are independent;

(c) (n− 1)S2/σ2 ∼ χ2(n− 1); (d) X̄−µ
S/
√
n
∼ t(n− 1).

– F -distribution: Let U ∼ χ2(r1), V ∼ χ2(r2), U and V be independent.

Then U/r1
V/r2

∼ F (r1, r2) .

Chapter 5. Consistency and Limiting Distribution

§1 Expectations of Functions

– Let X1, . . . , Xn be random variables. Let µi and σ2
i be the mean and

variance of Xi, i = 1, . . . , n . Let the correlation coefficient of Xi and Xj

be ρij, i 6= j

ρij =
Cov(Xi, Xj)√

Var(Xi)Var(Xj)

where Cov(Xi, Xj) = E (Xi − EXi) (Xj − EXj) .
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– Let Y = a1X1+a2X2+· · ·+anXn. Then E(Y ) = a1µ1+a2µ2+· · ·+anµn;
Var(Y ) =

∑n
i=1 a

2
iVar(Xi) + 2

∑
i<j aiajCov(Xi, Xj)

In particular, if X1, . . . , Xn are independent, then Var(Y ) =
∑n
i=1 a

2
iσ

2
i .

– Let X1, . . . , Xn be a random sample from the distribution of X. In other
words, X1, . . . , Xn are i.i.d.∼ X .

– Unbiasedness: Let X be a random variable with cdf F (x, θ) , where
θ ∈ Ω. Let X1, . . . , Xn be a random sample from the distribution of X
and let T denote a statistic. Then we say T is an unbiased estimator of
θ if E (T ) = θ, for all θ ∈ Ω.

§2 Convergence in Probability

– Let X1, . . . , Xn, . . . be a sequence of random variables and let X be a
random variable.

We say that Xn converges in probability to X if for all ε > 0,

limn→∞ P [|Xn −X| ≥ ε] = 0, denoted by Xn
P→ X .

– Weak law of large numbers: Let X1, . . . , Xn, . . . be i.i.d.∼ (µ, σ2).

Let X̄n = 1
n

∑n
i=1Xi. Then X̄n

P→ µ.

– Consistency: Let X be a random variable with cdf F (x, θ) , where
θ ∈ Ω. Let X1, . . . , Xn be a random sample from the distribution of X
and let Tn denote a statistic. Then we say Tn is a consistent estimator

of θ if Tn
P→ θ.

– Properties of convergence in probability:

[1] an
P→ a if an → a;

[2] Xn + Yn
P→ X + Y if Xn

P→ X and Yn
P→ Y ;

[3] XnYn
P→ cX if Xn

P→ X and Yn
P→ c;

[4] g(Xn)
P→ g(a) if Xn

P→ a and g is continuous at a.

§3 Convergence in Distribution

– Let X1, . . . , Xn, . . . be a sequence of random variables and let X be a
random variable. Let Fn and F be the cdfs of Xn and X respectively.
Let C(F ) be the set of all points where F is continuous.

We say that Xn converges in distribution to X if limn→∞ Fn(x) =

F (x), for all x ∈ C(F ), denoted by Xn
D→ X.

– Properties of convergence in distribution:

[1] Xn
D→ X if Xn

P→ X;

[2] g(Xn)
D→ g(X) if Xn

D→ X and g is continuous on the support of X;;
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[3] Let Mn(t) and M(t) be the mgfs of Xn and X respectively.

If limn→∞Mn(t) = M(t) <∞ for −h < t < h, then Xn
D→ X.

[4] Slutsky’s theorem: If Xn
D→ X, Yn

P→ a, and Zn
P→ b, then Yn +

ZnXn
D→ a+ bX.

§4 Central Limit Theorem

– Central limit theorem: Let X1, . . . , Xn, . . . be i.i.d. X ∼ (µ, σ2) and

let X̄n = 1
n

∑n
i=1Xi, then

√
n(X̄n − µ)

σ
D→ N(0, 1), or

∑n
i=1Xi − nµ√

nσ
D→ N(0, 1).

Chapter 4. Statistical Inference

§ 1 Sampling and Statistics

– Random sample: The random variables X1, . . . , Xn constitute a ran-
dom sample from a random variable X if they are independent and have
identical distribution as X, which is denoted by

X1, . . . , Xn are iid ∼ F (x) or f(x),

where F (x) and f(x) are the cdf and pdf of X respectively.

– Statistic: Function of the sample {X1, . . . , Xn}: Tn = T (X1, . . . , Xn)

– Point estimator: The statistic Tn is called a point estimator of the
unknown parameter θ if the value of Tn can be used to estimate θ.

– Unbiasedness: Tn is an unbiased estimator of θ if Eθ(Tn) = θ, ∀θ, ∀n .

– Consistency: Tn is a consistent estimator of θ if Tn converges to θ in

probability, i.e. Tn
P→ θ.

– Confidence interval: An interval based on the statistic Tn is called a
100 (1− α)% confidence interval for θ if the probability of the event that
the interval covers θ is (1− α).

§ 2 Quantiles

– Quantile: For 0 < p < 1, the pth quantile of a random variable X is
ξp = F−1(p), where F (x) is the cdf of X. Note: If F (x) is not monotone,
we may define F−1(p) = min{x : F (x) ≥ p} .

– Order statistics: Let X1, . . . , Xn denote a random sample. Rewrite the
sample in ascending order and obtain X(1) ≤ X(2) ≤ · · ·X(n), which are
called the order statistics of the sample.
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Chapter 6. Maximum Likelihood Methods

§ 6.1 Maximum Likelihood Estimation

– Likelihood function: L(θ) =
∏n
i=1 f(xi; θ), if X1, . . . , Xn are iid ∼

f(x; θ).

– Log likelihood function: l(θ) = logL(θ) =
∑n
i=1 log f(xi; θ)

– M.L.E.: The value of θ which maximizes L(θ) or l(θ) is called the max-
imum likelihood estimator of θ, denoted by θ̂ or θ̂MLE .

– Theorem 6.1.1: Let θ0 be the true value of θ. Under regularity conditions,

lim
n→∞

Pθ0 [L(θ0; X) > L(θ; X)] = 1, for all θ 6= θ0

– Theorem 6.1.2 (Functional Invariant): Suppose θ̂ is the mle of θ, then
g(θ̂) is the mle of g(θ).

– Theorem 6.1.3 (Consistency): Under regularity conditions, the likeli-
hood equation
∂
∂θ
l(θ) = 0 has a solution θ̂n such that θ̂n

P→ θ0 .

– Corollary 6.1.1: Under regularity conditions, if the likelihood equation
has a unique solution θ̂n, then θ̂n is a consistent estimator of θ0 .

– For practice: Example 6.1.1, Example 6.1.2, Example 6.1.5, Example 6.1.6

§ 6.2 Rao-Cramér Lower Bound and Efficiency

– Let X be a random variable with pdf f(x; θ), θ ∈ Ω. Under regularity
conditions,

E

[
∂ log f(X; θ)

∂θ

]
= 0, E

(∂ log f(X; θ)

∂θ

)2
 = −E

[
∂2 log f(X; θ)

∂θ2

]

– Fisher information of a single random variable X:

I(θ) = E

(∂ log f(X; θ)

∂θ

)2
 = Var

(
∂ log f(X; θ)

∂θ

)
= −E

[
∂2 log f(X; θ)

∂θ2

]

– Fisher information of a random sample X1, . . . , Xn: In(θ) = nI(θ)

– Theorem 6.2.1 (Rao-Cramér Lower Bound): Let X1, . . . , Xn be iid
∼ f(x; θ). Let Y = u(X1, . . . , Xn) be a statistic with mean k(θ). Under
regularity conditions,

Var(Y ) ≥ [k′ (θ)]2

nI(θ)
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– Corollary 6.2.1: Under the assumptions of Theorem 6.2.1, if Y is an
unbiased estimator of θ, then V ar(Y ) ≥ 1

nI(θ)
.

– Efficient estimator: Let Y be an unbiased estimator of θ. Y is called
an efficient estimator of θ if V ar(Y ) attains the Rao-Cramér lower bound.

– Efficiency: Let Y be an unbiased estimator of θ. Then 1
nI(θ)

[Var(Y )]−1

is called the efficiency of Y .

– Theorem 6.2.2: Assume X1, . . . , Xn are iid with pdf f(x; θ0). Suppose
0 < I(θ0) <∞ and θ̂n is a consistent estimator of θ0 such that ∂

∂θ
l(θ̂n) = 0.

Under regularity conditions,

√
n(θ̂n − θ0)

D−→ N

(
0,

1

I(θ0)

)

– Corollary 6.2.2 (Delta Method): Suppose g(x) is differentiable at θ0 and
g′(θ0) 6= 0. Under the assumptions of Theorem 6.2.2,

√
n(g(θ̂n)− g(θ0))

D−→ N

(
0,

[g′(θ0)]2

I(θ0)

)

Practice Problems

• Chapter 4: § 4.1 - 5, 6; § 4.2 - 4, 7, 16; § 4.4 - 5, 6.

• Chapter 5: § 5.1 -2, 3; § 5.2 - 1, 11, 18.

• Chapter 6: § 6.1 -1 ,9; § 6.2 - 2, 11, 12.
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