Review for Midterm I - STAT 411

Chap 3. Some Special Distributions

§1 Special Distributions

- Bernoulli distribution with parameter p (success rate), 0 :

$$p(x) = p^{x}(1-p)^{1-x}, x = 0, 1$$

Mean and Variance: $\mu = p$, $\sigma^2 = p(1-p)$. MGF: $M(t) = (1-p) + pe^t$.

- Binomial distribution with parameters n and p, 0 :Let <math>X be the number of successes in n independent Bernoulli trials, then $X \sim B(n, p)$ with pmf

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, \dots, n$$

Mean and Variance: $\mu = np$, $\sigma^2 = np(1-p)$. MGF: $M(t) = [(1-p)+pe^t]^n$ If X_1, \ldots, X_m are independent and $X_i \sim B(n_i, p)$, $i = 1, \ldots, m$, then $Y = X_1 + \cdots + X_m$ has $B(\sum_{i=1}^m n_i, p)$ distribution.

- Poisson distribution with rate parameter $\lambda > 0$, denoted by Poisson(λ):

$$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, 2, \dots$$

Mean and Variance: $\mu = \sigma^2 = \lambda.\text{MGF}$: $M(t) = e^{\lambda(e^t - 1)}$

If X_1, \ldots, X_n are independent and $X_i \sim \text{Poisson}(\lambda_i)$, then $\sum_{i=1}^n X_i \sim \text{Poisson}(\sum_{i=1}^n \lambda_i)$.

- Normal distribution with mean μ and variance σ^2 , denoted by $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}, -\infty < x < \infty$$

MGF: $M(t) = \exp\left\{\mu t + \frac{1}{2}\sigma^2 t^2\right\}, -\infty < t < \infty.$

Standard normal distribution: N(0,1) with pdf and cdf:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \ \Phi(z) = \int_{-\infty}^{z} \phi(x) dx.$$

Standardization: $Z = (X - \mu)/\sigma \sim N(0, 1)$

If X_1, \ldots, X_n are i.i.d. $\sim N(0, 1)$, then $Y = \sum_{i=1}^n X_i^2 \sim \chi^2(n)$.

If X_1, \ldots, X_n are independent and $X_i \sim N(\mu_i, \sigma_i^2)$, $i = 1, \ldots, n$, then

$$Y = \sum_{i=1}^{n} a_i X_i \sim N(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2).$$

$\S 2$ The Γ and χ^2 Distributions

- Gamma function: $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$, $\alpha > 0$ Properties: $\Gamma(x+1) = x\Gamma(x)$; $\Gamma(n) = (n-1)!$ for positive integer n; $\Gamma(1) = 1$, $\Gamma(0.5) = \sqrt{\pi}$.
- Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$:

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, 0 < x < \infty$$

Mean and Variance: $\mu = \alpha \beta$, $\sigma^2 = \alpha \beta^2$. MGF: $M(t) = (1 - \beta t)^{-\alpha}$, $t < \frac{1}{\beta}$ If X_1, \ldots, X_n are independent and $X_i \sim \Gamma(\alpha_i, \beta)$, $i = 1, \ldots, n$, then $Y = X_1 + \cdots + X_n$ has $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

– Chi-square distribution with parameter r (degrees of freedom), denoted by $\chi^2(r) = \Gamma(r/2, 2)$, where r is a positive integer. Mean and Variance: $\mu = r$, $\sigma^2 = 2r$

If X_1, \ldots, X_n are independent and $X_i \sim \chi^2(r_i)$, $i = 1, \ldots, n$, then $Y = X_1 + \cdots + X_n$ has $\chi^2(\sum_{i=1}^n r_i)$ distribution.

$\S 3 \ t \ \text{and} \ F\text{-Distributions}$

- t-distribution with r degrees of freedom: Let $W \sim N(0,1), V \sim \chi^2(r),$ W and V be independent, then $\frac{W}{\sqrt{V/r}} \sim t(r)$.
- Student's theorem: Let X_1, \ldots, X_n be i.i.d. $\sim N(\mu, \sigma^2)$. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$. Then
 - (a) $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$; (b) \bar{X} and S^2 are independent;
 - (c) $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$; (d) $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$.
- F-distribution: Let $U \sim \chi^2(r_1)$, $V \sim \chi^2(r_2)$, U and V be independent. Then $\frac{U/r_1}{V/r_2} \sim F(r_1, r_2)$.

Chapter 5. Consistency and Limiting Distribution

§1 Expectations of Functions

– Let X_1, \ldots, X_n be random variables. Let μ_i and σ_i^2 be the mean and variance of X_i , $i=1,\ldots,n$. Let the correlation coefficient of X_i and X_j be ρ_{ij} , $i\neq j$

$$\rho_{ij} = \frac{\text{Cov}(X_i, X_j)}{\sqrt{\text{Var}(X_i)\text{Var}(X_j)}}$$

where $Cov(X_i, X_j) = E(X_i - EX_i)(X_j - EX_j)$.

- Let $Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$. Then $E(Y) = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n$; $Var(Y) = \sum_{i=1}^n a_i^2 Var(X_i) + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$

In particular, if X_1, \ldots, X_n are independent, then $Var(Y) = \sum_{i=1}^n a_i^2 \sigma_i^2$.

- Let X_1, \ldots, X_n be a random sample from the distribution of X. In other words, X_1, \ldots, X_n are i.i.d. $\sim X$.
- **Unbiasedness**: Let X be a random variable with cdf $F(x,\theta)$, where $\theta \in \Omega$. Let X_1, \ldots, X_n be a random sample from the distribution of X and let T denote a statistic. Then we say T is an unbiased estimator of θ if $E(T) = \theta$, for all $\theta \in \Omega$.

§2 Convergence in Probability

– Let X_1, \ldots, X_n, \ldots be a sequence of random variables and let X be a random variable.

We say that X_n converges in probability to X if for all $\epsilon > 0$, $\lim_{n \to \infty} P[|X_n - X| \ge \epsilon] = 0$, denoted by $X_n \stackrel{P}{\to} X$.

- Weak law of large numbers: Let X_1, \ldots, X_n, \ldots be i.i.d.~ (μ, σ^2) . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\bar{X}_n \stackrel{P}{\to} \mu$.
- **Consistency**: Let X be a random variable with cdf $F(x,\theta)$, where $\theta \in \Omega$. Let X_1, \ldots, X_n be a random sample from the distribution of X and let T_n denote a statistic. Then we say T_n is a consistent estimator of θ if $T_n \stackrel{P}{\to} \theta$.
- Properties of convergence in probability:
 - [1] $a_n \stackrel{P}{\to} a \text{ if } a_n \to a;$
 - [2] $X_n + Y_n \stackrel{P}{\to} X + Y$ if $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$;
 - [3] $X_n Y_n \stackrel{P}{\to} cX$ if $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} c$;
 - [4] $g(X_n) \stackrel{P}{\to} g(a)$ if $X_n \stackrel{P}{\to} a$ and g is continuous at a.

§3 Convergence in Distribution

– Let X_1, \ldots, X_n, \ldots be a sequence of random variables and let X be a random variable. Let F_n and F be the cdfs of X_n and X respectively. Let C(F) be the set of all points where F is continuous.

We say that X_n converges in distribution to X if $\lim_{n\to\infty} F_n(x) = F(x)$, for all $x \in C(F)$, denoted by $X_n \stackrel{D}{\to} X$.

- Properties of convergence in distribution:
 - [1] $X_n \stackrel{D}{\to} X$ if $X_n \stackrel{P}{\to} X$;
 - [2] $g(X_n) \stackrel{D}{\to} g(X)$ if $X_n \stackrel{D}{\to} X$ and g is continuous on the support of X;

- [3] Let $M_n(t)$ and M(t) be the mgfs of X_n and X respectively. If $\lim_{n\to\infty} M_n(t) = M(t) < \infty$ for -h < t < h, then $X_n \stackrel{D}{\to} X$.
- [4] Slutsky's theorem: If $X_n \stackrel{D}{\to} X$, $Y_n \stackrel{P}{\to} a$, and $Z_n \stackrel{P}{\to} b$, then $Y_n + Z_n X_n \stackrel{D}{\to} a + bX$.

§4 Central Limit Theorem

- Central limit theorem: Let X_1, \ldots, X_n, \ldots be i.i.d. $X \sim (\mu, \sigma^2)$ and let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{D}{\to} N(0, 1), \text{ or } \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \stackrel{D}{\to} N(0, 1).$$

Chapter 4. Statistical Inference

§ 1 Sampling and Statistics

- Random sample: The random variables X_1, \ldots, X_n constitute a random sample from a random variable X if they are independent and have identical distribution as X, which is denoted by

$$X_1, \ldots, X_n$$
 are iid $\sim F(x)$ or $f(x)$,

- where F(x) and f(x) are the cdf and pdf of X respectively.
- **Statistic**: Function of the sample $\{X_1, \ldots, X_n\}$: $T_n = T(X_1, \ldots, X_n)$
- **Point estimator**: The statistic T_n is called a point estimator of the unknown parameter θ if the value of T_n can be used to estimate θ .
- Unbiasedness: T_n is an unbiased estimator of θ if $E_{\theta}(T_n) = \theta, \forall \theta, \forall n$.
- Consistency: T_n is a consistent estimator of θ if T_n converges to θ in probability, i.e. $T_n \stackrel{P}{\to} \theta$.
- Confidence interval: An interval based on the statistic T_n is called a $100 (1 \alpha)\%$ confidence interval for θ if the probability of the event that the interval covers θ is (1α) .

§ 2 Quantiles

- Quantile: For $0 , the pth quantile of a random variable X is <math>\xi_p = F^{-1}(p)$, where F(x) is the cdf of X. Note: If F(x) is not monotone, we may define $F^{-1}(p) = \min\{x : F(x) \ge p\}$.
- Order statistics: Let X_1, \ldots, X_n denote a random sample. Rewrite the sample in ascending order and obtain $X_{(1)} \leq X_{(2)} \leq \cdots X_{(n)}$, which are called the order statistics of the sample.

Chapter 6. Maximum Likelihood Methods

§ 6.1 Maximum Likelihood Estimation

- Likelihood function: $L(\theta) = \prod_{i=1}^n f(x_i; \theta)$, if X_1, \ldots, X_n are iid $\sim f(x; \theta)$.
- Log likelihood function: $l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$
- M.L.E.: The value of θ which maximizes $L(\theta)$ or $l(\theta)$ is called the **maximum likelihood estimator** of θ , denoted by $\hat{\theta}$ or $\hat{\theta}_{MLE}$.
- Theorem 6.1.1: Let θ_0 be the true value of θ . Under regularity conditions,

$$\lim_{n\to\infty} P_{\theta_0}[L(\theta_0; \mathbf{X}) > L(\theta; \mathbf{X})] = 1, \text{ for all } \theta \neq \theta_0$$

- Theorem 6.1.2 (**Functional Invariant**): Suppose $\hat{\theta}$ is the mle of θ , then $g(\hat{\theta})$ is the mle of $g(\theta)$.
- Theorem 6.1.3 (Consistency): Under regularity conditions, the likelihood equation
 - $\frac{\partial}{\partial \theta} l(\theta) = 0$ has a solution $\hat{\theta}_n$ such that $\hat{\theta}_n \stackrel{P}{\to} \theta_0$.
- Corollary 6.1.1: Under regularity conditions, if the likelihood equation has a unique solution $\hat{\theta}_n$, then $\hat{\theta}_n$ is a consistent estimator of θ_0 .
- For practice: Example 6.1.1, Example 6.1.2, Example 6.1.5, Example 6.1.6

§ 6.2 Rao-Cramér Lower Bound and Efficiency

– Let X be a random variable with pdf $f(x;\theta)$, $\theta \in \Omega$. Under regularity conditions.

$$E\left[\frac{\partial \log f(X;\theta)}{\partial \theta}\right] = 0, \quad E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^{2}\right] = -E\left[\frac{\partial^{2} \log f(X;\theta)}{\partial \theta^{2}}\right]$$

- **Fisher information** of a single random variable X:

$$I(\theta) = E\left[\left(\frac{\partial \log f(X; \theta)}{\partial \theta} \right)^2 \right] = \operatorname{Var}\left(\frac{\partial \log f(X; \theta)}{\partial \theta} \right) = -E\left[\frac{\partial^2 \log f(X; \theta)}{\partial \theta^2} \right]$$

- Fisher information of a random sample X_1, \ldots, X_n : $I_n(\theta) = nI(\theta)$
- Theorem 6.2.1 (**Rao-Cramér Lower Bound**): Let X_1, \ldots, X_n be iid $\sim f(x; \theta)$. Let $Y = u(X_1, \ldots, X_n)$ be a statistic with mean $k(\theta)$. Under regularity conditions,

$$\operatorname{Var}(Y) \ge \frac{\left[k'(\theta)\right]^2}{nI(\theta)}$$

- Corollary 6.2.1: Under the assumptions of Theorem 6.2.1, if Y is an unbiased estimator of θ , then $Var(Y) \geq \frac{1}{nI(\theta)}$.
- **Efficient estimator**: Let Y be an unbiased estimator of θ . Y is called an efficient estimator of θ if Var(Y) attains the Rao-Cramér lower bound.
- Efficiency: Let Y be an unbiased estimator of θ . Then $\frac{1}{nI(\theta)} [\operatorname{Var}(Y)]^{-1}$ is called the efficiency of Y.
- Theorem 6.2.2: Assume X_1, \ldots, X_n are iid with pdf $f(x; \theta_0)$. Suppose $0 < I(\theta_0) < \infty$ and $\hat{\theta}_n$ is a consistent estimator of θ_0 such that $\frac{\partial}{\partial \theta} l(\hat{\theta}_n) = 0$. Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{D}{\longrightarrow} N\left(0, \frac{1}{I(\theta_0)}\right)$$

- Corollary 6.2.2 (Delta Method): Suppose g(x) is differentiable at θ_0 and $g'(\theta_0) \neq 0$. Under the assumptions of Theorem 6.2.2,

$$\sqrt{n}(g(\hat{\theta}_n) - g(\theta_0)) \xrightarrow{D} N\left(0, \frac{[g'(\theta_0)]^2}{I(\theta_0)}\right)$$

Practice Problems

- Chapter 4: § 4.1 5, 6; § 4.2 4, 7, 16; § 4.4 5, 6.
- Chapter 5: § 5.1 -2, 3; § 5.2 1, 11, 18.
- Chapter 6: § 6.1 -1 ,9; § 6.2 2, 11, 12.