
Review for Midterm II - STAT 411

Chap 6. Maximum Likelihood Methods

§ 6.4 Multiparameter Case: Estimation

– Parameters: Let X1, . . . , Xn be iid ∼ f(x;θ), where θ = (θ1, . . . , θp)
′.

Likelihood function: L(θ) =
∏n

i=1 f(xi;θ);
Log likelihood function: l(θ) = logL(θ) =

∑n
i=1 log f(xi;θ).

MLE: The value of θ which maximizes L(θ) or l(θ) is called the maximum
likelihood estimator (mle) of θ and denoted by θ̂.

– Under regularity conditions, the gradient is

∇ log f(x, θ) =

(
∂

∂θ1
log f(X;θ), · · · , ∂

∂θp
log f(X;θ)

)

E [∇ log f(x, θ)] = 0, E

[
∂

∂θj
log f(X;θ)

]
= 0, for j = 1, . . . , p ;

Cov

(
∂

∂θj
log f(X;θ),

∂

∂θk
log f(X;θ)

)
= −E

[
∂2

∂θj∂θk
log f(X;θ)

]
– Fisher information matrix:

I(θ) = Cov (∇ log f(x, θ)) = (Ijk)p×p,

where

Ijk = −E
[

∂2

∂θj∂θk
log f(X;θ)

]
– Theorem: Under regularity conditions, if Y = u(X1, . . . , Xn) is an unbi-

ased estimate of θj, then

V ar(Y ) ≥ 1

n
[I−1(θ)]jj

.

– Theorem 6.4.1: Let X1, . . . , Xn be iid ∼ f(x;θ). Under regularity con-
ditions, any consistent solution sequence θ̂n of the likelihood equation
∂

∂θ
l(θ) = 0

√
n(θ̂n − θ)

D→ Np(0, I−1(θ))

– Corollary. Let g be a transformation g (θ) = (g1 (θ) , · · · , gk (θ)) T , such
that 1 ≤ k ≤ p. and the k × p matrix of partial derivatives:

B =

[
∂gi
∂θj

]
, i = 1, · · · , k; j = 1, · · · , p
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has continuous elements and does not vanish in a neighborhood of θ. Let

η̂ = g
(
θ̂
)

, then η̂ is the mle of η = g (θ) , and

√
n(η̂ − η)

D−→ N
(
0,BI−1 (θ) BT

)
and the information matrix for η is I (η) =

(
BI−1 (θ) BT

)−1
Chap 7. Sufficiency

§ 7.1 Measures of Quality of Estimators

• MVUE: For fixed n and a given sampleX1, . . . , Xn, the statistic Y = u(X1, . . . , Xn)
is called a minimum variance unbiased estimator (MVUE) of θ, if E(Y ) = θ
and if Var(Y ) ≤ Var(Z) for every other unbiased estimator Z of θ.

§ 7.2 A Sufficient Statistic for a Parameter

• Let X1, X2, . . . , Xn be i.i.d. from a distribution that has pdf or pmf f(x; θ),
θ ∈ Ω. Let Y1 = u(X1, . . . , Xn) be a statistic that has pdf or pmf fY1(y; θ) .

• Sufficient Statistic: Y1 is a sufficient statistic for θ if and only if the joint
conditional distribution of X1, . . . , Xn given Y1 does not depend on θ . In other
words, [

∏n
i=1 f(xi; θ)] /fY1(u(x1, . . . , xn); θ) = H(x1, . . . , xn), which does not

depend on θ .

• Factorization Theorem (Neyman): Y1 is a sufficient statistic for θ if and
only if

∏n
i=1 f(xi; θ) = k1[u(x1, . . . , xn); θ]·k2(x1, . . . , xn) for some nonnegative

functions k1 and k2 .

§ 7.3 Properties of a Sufficient Statistic

• Let X1, X2, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ Ω.

• Rao-Blackwell Theorem: Let Y1 = u1(X1, . . . , Xn) be a sufficient statistic
for θ, and let Y2 = u2(X1, . . . , Xn) be an unbiased estimator of θ . Then
E(Y2|Y1) = ϕ(Y1) is another unbiased estimator of θ whose variance is less
than that of Y2 .
Corollary: Any MVUE of θ must be a function of the sufficient statistic.

• Theorem: If Y1 = u1(X1, . . . , Xn) is sufficient for θ and the mle θ̂ of θ exists
uniquely, then θ̂ must be a function of Y1 .
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§ 7.4 Completeness and Uniqueness

• Completeness: Let Y1 ∼ f(y; θ), θ ∈ Ω. Suppose the condition E[u(Y1)] = 0
for all θ always implies that u(y) ≡ 0 except on a zero-probability set. Then
{f(y; θ) : θ ∈ Ω} is called a complete family of probability functions and Y1 is
said to be complete for θ ∈ Ω .
Note: The completeness of Y1 is to guarantee the uniqueness of the unbiased
estimator of θ among the functions of Y1 .

• Theorem (Lehmann-Scheffé): LetX1, X2, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ Ω.
Let Y1 = u(X1, . . . , Xn) be a complete sufficient statistic for θ . If a function
ϕ(Y1) of Y1 is an unbiased estimator of θ, then ϕ(Y1) must be the unique
MVUE of θ .

§ 7.5 The Exponential Class of Distributions

• Exponential class: A family {f(x; θ) : θ ∈ (γ, δ) ⊂ R} of pdfs or pmfs of the
form f(x; θ) = exp {p(θ)K(x) + S(x) + q(θ)} , x ∈ S .

• Regular exponential class: A member of exponential class satisfies
(1) S does not depend on θ;
(2) p(θ) is nontrivial and continuous;
(3.1) if X is continuous then K ′(x) and S(x) are continuous, where K ′(x) is
not always 0; (3.2) if X is discrete then K(x) is nontrivial.

• Examples of regular exponential class: beta, gamma (exponential, chi-square),
normal, binomial (Bernoulli), geometric, negative binomial, Poisson

• Theorem: Let X1, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ Ω, which belongs to the
regular exponential class. Let Y1 =

∑n
i=1K(Xi) . Then

(1) Y1 ∼ fY1(y; θ) = R(y) exp [p(θ)y + nq(θ)], for y ∈ SY1 and some positive
function R(y). Neither SY1 nor R(y) depends on θ .
(2) E(Y1) = −nq′(θ)/p′(θ) .
(3) V ar(Y1) = n [p′′(θ)q′(θ)− q′′(θ)p′(θ)]

/
(p′)3 .

(4) Y1 is a complete sufficient statistic for θ .

• Theorem: Let Y be a complete sufficient statistic for θ and g(Y ) be a one-to-
one function of Y , then g(Y ) is also a complete sufficient statistic for θ.

§ 7.6 Functions of a Parameter

• Suppose Y is complete sufficient for θ. Let η = g(θ) is the parameter of interest
and T = T (Y ) is an unbiased estimator of η. Then T is the MVUE of η.
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• If Y is an mle, then T (Y ) can be constructed on Y by the functional invariance
of mle.

• Statistic T (Y ) also can be obtained by the conditional expectation of an un-
biased estimator of g(θ) given the sufficient statistic Y (Rao-Blackwell Thm
and Lehmann and Scheffé Thm).

Practice Problems

• Chapter 6:
Exercise § 6.4 - 3, 11; Example § 6. 4 - 3, 4

• Chapter 7:
Exercise § 7.2 - 9; § 7.3 - 4; § 7.4 - 4, 6, 7; § 7.5 - 6, 10; § 7.6 - 9 .
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