Final Exam Review - Part III

Chapter 7. Sufficiency

§ 7.7 The Case of Several Parameters

- Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Omega \subset \mathbb{R}^p, x \in \mathcal{S}$. Let $\mathbf{Y} = (Y_1, \ldots, Y_m)' \sim f_{\mathbf{Y}}(\mathbf{y}; \boldsymbol{\theta})$, where $Y_i = u_i(X_1, \ldots, X_n), i = 1, \ldots, m$.
- **Joint sufficiency**: **Y** is said to be *jointly sufficient* for $\boldsymbol{\theta}$ if and only if $\left[\prod_{i=1}^n f(x_i; \boldsymbol{\theta})\right] / f_{\mathbf{Y}}(\mathbf{y}; \boldsymbol{\theta}) = H(x_1, \dots, x_n)$ does not depend on $\boldsymbol{\theta}$.
- Extended factorization theorem: Y is jointly sufficient for θ if and only if $\prod_{i=1}^n f(x_i; \theta) = k_1(\mathbf{y}; \theta) \cdot k_2(x_1, \dots, x_n)$ for some functions k_1 and k_2 .
- Completeness (case of several parameters): Suppose the condition $E[u(Y_1, \ldots, Y_m)] = 0$ for all $\boldsymbol{\theta} \in \Omega$ always implies that $u(y_1, \ldots, y_m) \equiv 0$ except on a zero-probability set. Then $\mathbf{Y} = (Y_1, \ldots, Y_m)'$ is said to be complete for $\boldsymbol{\theta}$.
- Extended theorem (Lehmann and Scheffé): Suppose Y is jointly complete and sufficient for θ . Let $\eta = g(\theta)$ is the parameter of interest and T = T(Y) is an unbiased estimator of η . Then T is the unique MVUE of η .
- Regular exponential class (case of several parameters): Let $X \sim f(x; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Omega \subset \mathbb{R}^p$. Suppose $f(x; \boldsymbol{\theta}) = \exp\left\{\sum_{j=1}^m p_j(\boldsymbol{\theta}) K_j(x) + S(x) + q(\boldsymbol{\theta})\right\}$, $x \in \mathcal{S}$. We say that it is a member of the regular exponential class if
 - (1) p = m, and S does not depend on θ ;
 - (2) Ω contains a nonempty, m-dimensional open rectangle;
 - (3) $p_j(\boldsymbol{\theta})$, j = 1, ..., m are nontrivial, functionally independent, continuous functions of $\boldsymbol{\theta}$;
 - (4.1) If X is continuous, then $K'_{j}(x)$'s are continuous and no one is a linear homogeneous function of the others, and S(x) is continuous;
 - (4.2) If X is discrete, then $K_j(x)$'s are nontrivial and no one is a linear homogeneous function of the others.
- Theorem (regular exponential class): Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta)$, which belongs to the regular exponential class. Let $\mathbf{Y} = (Y_1, \ldots, Y_m)'$, where $Y_j = \sum_{i=1}^n K_j(X_i), j = 1, \ldots, m$. Then
 - (1) $\mathbf{Y} \sim f(\mathbf{y}; \boldsymbol{\theta}) = R(\mathbf{y}) \exp \left\{ \sum_{j=1}^{m} p_j(\boldsymbol{\theta}) y_j + nq(\boldsymbol{\theta}) \right\}$. Neither the support of \mathbf{Y} nor $R(\mathbf{y})$ depends on $\boldsymbol{\theta}$.
 - (2) Y_1, \ldots, Y_m are joint complete sufficient statistics for $\boldsymbol{\theta}$, if n > m.

- Theorem: Let $\mathbf{Y} = (Y_1, \dots, Y_m)'$ be joint complete sufficient statistics for $\boldsymbol{\theta}$ and $\mathbf{g}(\mathbf{Y}) = (g_1(\mathbf{Y}), \dots, g_m(\mathbf{Y}))'$ is a one-to-one mapping of \mathbf{Y} . Then $(g_1(\mathbf{Y}), \dots, g_m(\mathbf{Y}))$ are also joint complete sufficient statistics for $\boldsymbol{\theta}$.
- Regular exponential class (k-dimensional random vector): Let X be a k-dimensional random vector with pdf or pmf $f(\mathbf{x}; \boldsymbol{\theta})$, where $\boldsymbol{\theta} \in \Omega \subset R^p$. Suppose $f(\mathbf{x}; \boldsymbol{\theta}) = \exp\left\{\sum_{j=1}^m p_j(\boldsymbol{\theta})K_j(\mathbf{x}) + S(\mathbf{x}) + q(\boldsymbol{\theta})\right\}$, $\mathbf{x} \in \mathcal{S} \subset R^k$. We say that $f(\mathbf{x}; \boldsymbol{\theta})$ is a member of the regular exponential class if (1) p = m; (2) \mathcal{S} does not depend on $\boldsymbol{\theta}$; and (3) the regularity conditions similar to those of one-dimensional case hold.
- Theorem (k-dimensional regular exponential class): Suppose X is a k-dimensional random vector with pdf or pmf $f(\mathbf{x}; \boldsymbol{\theta})$, $\boldsymbol{\theta} \in \Omega \subset R^m$, which belongs to the regular exponential class. Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be a random sample from X and let $\mathbf{Y} = (Y_1, \ldots, Y_m)'$, where $Y_j = \sum_{i=1}^n K_j(\mathbf{X}_i)$, $j = 1, \ldots, m$. Then
 - (1) (Y_1, \ldots, Y_m) are joint complete sufficient statistics for $\boldsymbol{\theta} \in \Omega$.
 - (2) Let $\eta = g(\boldsymbol{\theta})$ be the parameter of interest and $T = h(\mathbf{Y})$ is an unbiased estimator of η . Then T is the unique MVUE of η .
- Practice Problem: Example 7.7-1, Exercise 7.7-13

§ 7.8 Minimal Sufficiency and Ancillary Statistics

- Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta), x \in \mathcal{S}, \theta \in \Omega$.
- Minimal sufficient statistic: A sufficient statistic Y is called a *minimal* sufficient statistic for θ if, for any other sufficient statistic T of θ , Y is a function of T.
- Theorem (minimal sufficiency): Let $T = T(X_1, ..., X_n)$ be a statistic. Suppose $\prod_{i=1}^n [f(x_i; \theta)/f(z_i; \theta)]$ does not depend on θ if and only if $T(x_1, ..., x_n) = T(z_1, ..., z_n)$, then T is a minimal sufficient statistic for θ .
- Theorems: (1) Suppose the mle $\hat{\theta}$ of θ is also sufficient for θ . Then $\hat{\theta}$ must be a minimal sufficient statistic for θ .
 - (2) Suppose Y is a minimal sufficient statistic for θ and g(Y) is a one-to-one function of Y. Then g(Y) is also minimal sufficient for θ .
- Theorem (Lehmann and Scheffé): If a complete sufficient statistic exists, it must be minimal sufficient.
- Ancillary statistic: A statistic whose distribution does not depend on the parameter θ is called an *ancillary statistic*.

- Location model and location invariant statistics: Let W_1, \ldots, W_n be i.i.d. random variables with pdf f(w) which does not depend on θ . Let $X_i = \theta + W_i$, $-\infty < \theta < \infty$, $i = 1, \ldots, n$, known as a location model. The common pdf of X_i is $f(x \theta)$. Then $\{f(x \theta) : -\infty < \theta < \infty\}$ is called a location family.
 - Let $Z=u(X_1,\ldots,X_n)$ be a statistic such that $u(x_1+d,\ldots,x_n+d)=u(x_1,\ldots,x_n)$ for all $d\in R$. Then Z is a location-invariant statistic whose distribution does not depend on θ . Examples: sample variance S^2 , sample range $\max_i\{X_i\}-\min_i\{X_i\}$.
- Scale model and scale invariant statistics: Let W_1, \ldots, W_n be i.i.d. random variables with pdf f(w) which does not depend on θ . Let $X_i = \theta W_i$, $\theta > 0$, $i = 1, \ldots, n$, known as a scale model. The common pdf of X_i is $f(x/\theta)/\theta$. Then $\{f(x/\theta)/\theta: \theta > 0\}$ is called a scale family. Let $Z = u(X_1, \ldots, X_n)$ be a statistic such that $u(cx_1, \ldots, cx_n) = u(x_1, \ldots, x_n)$ for all c > 0. Then Z is a scale-invariant statistic whose distribution does not depend on θ . Examples: $X_{(1)}/X_{(n)}, X_1^2/\sum_{i=1}^n X_i^2$.
- Location and scale invariant statistics: Let W_1, \ldots, W_n be i.i.d. random variables with pdf f(w) which does not depend on θ . Let $X_i = \theta_1 + \theta_2 W_i$, $i = 1, \ldots, n$, known as a location and scale model. The common pdf of X_i is $f((x \theta_1)/\theta_2)/\theta_2$. Then $\{f((x \theta_1)/\theta_2)/\theta_2 : -\infty < \theta_1 < \infty, \theta_2 > 0\}$ is called a location and scale family.

Let $Z = u(X_1, \ldots, X_n)$ be a statistic such that $u(cx_1 + d, \ldots, cx_n + d) = u(x_1, \ldots, x_n)$ for all $c > 0, d \in R$. Then Z is a location and scale invariant statistic whose distribution does not depend on θ . Examples: $(X_1 - \bar{X})/S$, $[\max_i \{X_i\} - \min_i \{X_i\}]/S$.

Practice Problems: Exercise § 7.8 - 1, 4.

§ 7.9 Sufficiency, Completeness and Independence

- Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta), \theta \in \Omega$.
- Theorem: Let Y_1 be a sufficient statistic for θ and let Z be another statistic which is independent of Y_1 . Then Z is an ancillary statistic.
- Theorem (Basu's): Suppose Y_1 is complete and sufficient for $\theta \in \Omega$. Then Y_1 is independent of every ancillary statistic.

Practice Problems: Exercise § 7.9 - 5, 7.

Chapter 8. Optimal Tests of Hypothesis

§8.1 Most Powerful Tests

- Hypothesis testing (general setup): Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta), \theta \in \Theta = \Theta_0 \cup \Theta_1$, where $\Theta_0 \cap \Theta_1 = \emptyset$. Let S be the support of $X = (X_1, \ldots, X_n)'$. We want to test the null hypothesis $H_0 : \theta \in \Theta_0$ versus the alternative hypothesis $H_1 : \theta \in \Theta_1$.
 - (1) Critical region (rejection region): $C \subset S$ such that, we reject H_0 if and only if $x = (x_1, \ldots, x_n)' \in C$.
 - (2) Size of the test (significance level, Type I error): $\alpha = \max_{\theta \in \Theta_0} P_{\theta}(X \in C)$.
 - (3) Power function: $\gamma_{\mathcal{C}}(\theta) = P_{\theta}(X \in C), \ \theta \in \Theta_1$.
- Best critical region (Best Test): To test $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, let C be the critical region, which is a subset of $S \subset \mathbb{R}^n$. We say that C is a best critical region of size α , $0 < \alpha < 1$ if
 - (1) $P_{\theta_0}(X \in C) = \alpha$;
 - (2) For any other critical region $A \subset S$ of the same size α , we must have $P_{\theta_1}(X \in C) \geq P_{\theta_1}(X \in A)$.

In other words, C is the most powerful critical region of size α . The test based on C is called the most powerful test of size α .

- Theorem (Neyman-Pearson): Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta), \theta \in \{\theta_0, \theta_1\}$. The likelihood function $L(\theta; x) = \prod_{i=1}^n f(x_i; \theta)$, for $x = (x_1, \ldots, x_n)' \in S$. Let C be a subset of S and let k be a positive number such that
 - (a) $L(\theta_0; x)/L(\theta_1; x) \leq k$ for each $x \in C$;
 - (b) $L(\theta_0; x)/L(\theta_1; x) \ge k$ for each $x \notin C$;
 - (c) $\alpha = P_{H_0}(X \in C)$.

Then C is a best critical region of size α for testing the simple hypothesis $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$.

Note: (1) The conditions (a), (b), and (c) are also necessary for region C to be a best critical region of size α .

- (2) In the case of continuous distributions, the best critical region C of size α is unique in the probability sense.
- Theorem (power of test): Let C be the best critical region of size α for testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. Let $\gamma_{\mathcal{C}}(\theta_1) = P_{\theta_1}(X \in C)$ denote the power of the test based on C. Then $\gamma_{\mathcal{C}}(\theta_1) \geq \alpha$. In other words, a lower bound of the power of the most powerful test of size α is α .
- Theorem (nonparametric case): Let X_1, \ldots, X_n be an arbitrary sample. It is desired to test the simple hypothesis " H_0 : the joint pdf (or pmf) is $g(x_1, \ldots, x_n)$ " versus " H_1 : the joint pdf (or pmf) is $h(x_1, \ldots, x_n)$ ". Then $C \subset R^n$ is a best

critical region of size α if, for k > 0,

- (1) $g(x_1, \ldots, x_n)/h(x_1, \ldots, x_n) \le k$ for $(x_1, \ldots, x_n)' \in C$;
- (2) $g(x_1, ..., x_n)/h(x_1, ..., x_n) \ge k$ for $(x_1, ..., x_n)' \notin C$
- (3) $\alpha = P_{H_0}[(X_1, \dots, X_n)' \in \mathcal{C}]$.
- For practice: Example 8.1.2

§ 8.2 Uniformly Most Powerful Tests

• UMP critical region: A critical region C is called a uniformly most powerful (UMP) critical region of size α for testing $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ if, for each $\theta_1 \in \Theta_1$, C is a best critical region of size α for testing H_0 against $H'_1: \theta = \theta_1$.

The test based on the UMP critical region C is called a UMP test.

- Monotone likelihood ratio: The likelihood function $L(\theta; x)$, $x = (x_1, \ldots, x_n)'$, is said to have monotone likelihood ratio (mlr) in the statistic $Y = u(X_1, \ldots, X_n)$ if $L(\theta_1; x)/L(\theta_2; x)$ is a monotone function of $y = u(x_1, \ldots, x_n)$ as long as $\theta_1 < \theta_2$.
- Two-step standard procedure for finding a UMP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta \in \Theta_1$, where Θ_1 might be $\theta > \theta_0$, $\theta < \theta_0$, or $\theta \neq \theta_0$: Step 1: For each fixed $\theta_1 \in \Theta_1$, find a best critical region C of size α for testing H_0 against $H'_1: \theta = \theta_1$ based on the Neyman-Pearson theorem. Step 2: Check if C depends on θ_1 . If it does not, then C is a UMP critical region of size α for testing H_0 against H_1 ; otherwise there is no UMP test for this case.
- Theorem: If $L(\theta; x)$ has mlr in the statistic Y = u(X), then a UMP test for $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ exists. Furthermore,
 - (1) if it is monotone increasing, the UMP critical region takes the form of $\{(x_1, \ldots, x_n) : u(x_1, \ldots, x_n) \leq C\}$;
 - (2) if it is monotone decreasing, the UMP critical region takes the form of $\{(x_1, \ldots, x_n) : u(x_1, \ldots, x_n) \ge C\}$.

Note: The case of $H_0: \theta \geq \theta_0$ against $H_1: \theta < \theta_0$ is similar.

• Theorem: Let X_1, \ldots, X_n be i.i.d. $\sim f(x; \theta)$, where

$$f(x;\theta) = \exp\{p(\theta)K(x) + S(x) + q(\theta)\}\$$

belongs to the regular exponential class. If $p(\theta)$ is monotone, then the likelihood function $L(\theta; x)$ has mlr in $Y = \sum_{i=1}^{n} K(X_i)$.

For example, if $p(\theta)$ is monotone increasing, then $L(\theta;x)$ has monotone decreasing likelihood ratio in Y .

• For practice: Example 8.2.1, Example 8.2.2, Example 8.2.5

§ 8.3 Likelihood Ratio Tests

- Unbiased Test: A test for $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ is said to be unbiased, if its power never falls below the significance level. In other words, if $\alpha = \max_{\theta \in \Theta_0} P_{\theta}[\text{ reject } H_0]$, then $P_{\theta}[\text{ reject } H_0] \geq \alpha$ for each $\theta \in \Theta_1$.
- Likelihood ratio test: For testing $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$, the likelihood ratio test statistic is

$$\Lambda = \frac{\max_{\theta \in \Theta_0} L(\theta; \mathbf{x})}{\max_{\theta \in \Theta} L(\theta; \mathbf{x})} ,$$

where $\Theta = \Theta_0 \cup \Theta_1$.

Note that $0<\Lambda\leq 1$. If H_0 is true, Λ should be close to 1; if H_1 is true, Λ should be smaller.

- Likelihood ratio principle: Reject H_0 if and only if $\Lambda \leq \lambda_0$, where $\lambda_0 < 1$ is a constant determined by the significance level α such that P_{θ_0} ($\Lambda \leq \lambda_0$) = α , where θ_0 is the boundary point of Θ_0 and Θ_1 .
- p-value: The so-called p-value is the probability that the test statistic under H_0 is at least as extreme as the particular observed value. A small enough p-value indicates the rejection of H_0 .
- Wilks's Theorem: As the sample size n approaches ∞ , the test statistic $-2\log(\Lambda)$ will be asymptotically χ^2 -distributed with degrees of freedom equal to the difference in dimensionality of Θ and Θ_0 .
- For practice: Example 8.3.1, Example 8.3.3, Exercise 8.3.12.