
STAT 411 – Spring 2015

Final Exam Review - Part III

Chapter 7. Sufficiency

§ 7.7 The Case of Several Parameters

• LetX1, . . . , Xn be i.i.d.∼ f(x;θ), θ ∈ Ω ⊂ Rp, x ∈ S . Let Y = (Y1, . . . , Ym)′ ∼
fY(y;θ), where Yi = ui(X1, . . . , Xn), i = 1, . . . ,m .

• Joint sufficiency: Y is said to be jointly sufficient for θ if and only if
[
∏n
i=1 f(xi;θ)] /fY(y;θ) = H(x1, . . . , xn) does not depend on θ .

• Extended factorization theorem: Y is jointly sufficient for θ if and only
if

∏n
i=1 f(xi;θ) = k1(y;θ) · k2(x1, . . . , xn) for some functions k1 and k2 .

• Completeness (case of several parameters): Suppose the condition E[u(Y1,
. . . , Ym)] = 0 for all θ ∈ Ω always implies that u(y1, . . . , ym) ≡ 0 except on a
zero-probability set. Then Y = (Y1, . . . , Ym)′ is said to be complete for θ .

• Extended theorem (Lehmann and Scheffé): Suppose Y is jointly com-
plete and sufficient for θ . Let η = g(θ) is the parameter of interest and
T = T (Y) is an unbiased estimator of η. Then T is the unique MVUE of η .

• Regular exponential class (case of several parameters): Let X ∼
f(x;θ), θ ∈ Ω ⊂ Rp. Suppose f(x;θ) = exp

{∑m
j=1 pj(θ)Kj(x) + S(x) + q(θ)

}
,

x ∈ S. We say that it is a member of the regular exponential class if
(1) p = m, and S does not depend on θ;
(2) Ω contains a nonempty, m-dimensional open rectangle;
(3) pj(θ), j = 1, . . . ,m are nontrivial, functionally independent, continuous
functions of θ ;
(4.1) If X is continuous, then K ′

j(x)’s are continuous and no one is a linear
homogeneous function of the others, and S(x) is continuous;
(4.2) If X is discrete, then Kj(x)’s are nontrivial and no one is a linear homo-
geneous function of the others.

• Theorem (regular exponential class): Let X1, . . . , Xn be i.i.d.∼ f(x;θ),
which belongs to the regular exponential class. Let Y = (Y1, . . . , Ym)′, where
Yj =

∑n
i=1Kj(Xi), j = 1, . . . ,m . Then

(1) Y ∼ f(y;θ) = R(y) exp
{∑m

j=1 pj(θ)yj + nq(θ)
}

. Neither the support of

Y nor R(y) depends on θ .
(2) Y1, . . . , Ym are joint complete sufficient statistics for θ, if n > m .
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• Theorem: Let Y = (Y1, . . . , Ym)′ be joint complete sufficient statistics for
θ and g(Y) = (g1(Y), . . . , gm(Y))′ is a one-to-one mapping of Y. Then
(g1(Y), . . . , gm(Y)) are also joint complete sufficient statistics for θ .

• Regular exponential class (k-dimensional random vector): Let X be
a k-dimensional random vector with pdf or pmf f(x;θ), where θ ∈ Ω ⊂ Rp .

Suppose f(x;θ) = exp
{∑m

j=1 pj(θ)Kj(x) + S(x) + q(θ)
}

, x ∈ S ⊂ Rk .

We say that f(x;θ) is a member of the regular exponential class if
(1) p = m; (2) S does not depend on θ; and (3) the regularity conditions
similar to those of one-dimensional case hold.

• Theorem (k-dimensional regular exponential class): Suppose X is a
k-dimensional random vector with pdf or pmf f(x;θ), θ ∈ Ω ⊂ Rm, which
belongs to the regular exponential class. Let X1, . . . ,Xn be a random sample
from X and let Y = (Y1, . . . , Ym)′, where Yj =

∑n
i=1 Kj(Xi), j = 1, . . . ,m .

Then
(1) (Y1, . . . , Ym) are joint complete sufficient statistics for θ ∈ Ω.
(2) Let η = g(θ) be the parameter of interest and T = h(Y) is an unbiased
estimator of η. Then T is the unique MVUE of η .

• Practice Problem: Example 7.7-1, Exercise 7.7-13

§ 7.8 Minimal Sufficiency and Ancillary Statistics

• Let X1, . . . , Xn be i.i.d.∼ f(x; θ), x ∈ S, θ ∈ Ω .

• Minimal sufficient statistic: A sufficient statistic Y is called a minimal
sufficient statistic for θ if, for any other sufficient statistic T of θ, Y is a
function of T .

• Theorem (minimal sufficiency): Let T = T (X1, . . . , Xn) be a statistic.
Suppose

∏n
i=1 [f(xi; θ)/f(zi; θ)] does not depend on θ if and only if T (x1, . . . , xn) =

T (z1, . . . , zn), then T is a minimal sufficient statistic for θ .

• Theorems: (1) Suppose the mle θ̂ of θ is also sufficient for θ. Then θ̂ must be
a minimal sufficient statistic for θ .
(2) Suppose Y is a minimal sufficient statistic for θ and g(Y ) is a one-to-one
function of Y . Then g(Y ) is also minimal sufficient for θ .

• Theorem (Lehmann and Scheffé): If a complete sufficient statistic exists,
it must be minimal sufficient.

• Ancillary statistic: A statistic whose distribution does not depend on the
parameter θ is called an ancillary statistic.

2



• Location model and location invariant statistics: Let W1, . . . ,Wn be
i.i.d. random variables with pdf f(w) which does not depend on θ . Let
Xi = θ + Wi, −∞ < θ < ∞, i = 1, . . . , n, known as a location model. The
common pdf of Xi is f(x − θ) . Then {f(x − θ) : −∞ < θ < ∞} is called a
location family.
Let Z = u(X1, . . . , Xn) be a statistic such that u(x1 + d, . . . , xn + d) =
u(x1, . . . , xn) for all d ∈ R . Then Z is a location-invariant statistic whose
distribution does not depend on θ . Examples: sample variance S2, sample
range maxi{Xi} −mini{Xi} .

• Scale model and scale invariant statistics: Let W1, . . . ,Wn be i.i.d. ran-
dom variables with pdf f(w) which does not depend on θ . Let Xi = θWi,
θ > 0, i = 1, . . . , n, known as a scale model. The common pdf of Xi is
f(x/θ)/θ . Then {f(x/θ)/θ : θ > 0} is called a scale family.
Let Z = u(X1, . . . , Xn) be a statistic such that u(cx1, . . . , cxn) = u(x1, . . . ,
xn) for all c > 0 . Then Z is a scale-invariant statistic whose distribution does
not depend on θ .Examples: X(1)/X(n), X

2
1/

∑n
i=1X

2
i .

• Location and scale invariant statistics: Let W1, . . . ,Wn be i.i.d. random
variables with pdf f(w) which does not depend on θ . Let Xi = θ1 + θ2Wi,
i = 1, . . . , n, known as a location and scale model. The common pdf of Xi is
f((x− θ1)/θ2)/θ2 . Then {f((x− θ1)/θ2)/θ2 : −∞ < θ1 <∞, θ2 > 0} is called
a location and scale family.
Let Z = u(X1, . . . , Xn) be a statistic such that u(cx1 + d, . . . , cxn + d) =
u(x1, . . . , xn) for all c > 0, d ∈ R . Then Z is a location and scale invariant
statistic whose distribution does not depend on θ . Examples: (X1 − X̄)/S,
[maxi{Xi} −mini{Xi}] /S.

Practice Problems: Exercise § 7.8 - 1, 4.

§ 7.9 Sufficiency, Completeness and Independence

• Let X1, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ Ω .

• Theorem: Let Y1 be a sufficient statistic for θ and let Z be another statistic
which is independent of Y1 . Then Z is an ancillary statistic.

• Theorem (Basu’s): Suppose Y1 is complete and sufficient for θ ∈ Ω . Then
Y1 is independent of every ancillary statistic.

Practice Problems: Exercise § 7.9 - 5, 7.
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Chapter 8. Optimal Tests of Hypothesis

§8.1 Most Powerful Tests

• Hypothesis testing (general setup): Let X1, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ Θ =
Θ0

⋃
Θ1, where Θ0

⋂
Θ1 = ∅ . Let S be the support of X = (X1, . . . , Xn)′ . We

want to test the null hypothesis H0 : θ ∈ Θ0 versus the alternative hypothesis
H1 : θ ∈ Θ1 .
(1) Critical region (rejection region): C⊂ S such that,

we reject H0 if and only if x = (x1, . . . , xn)′ ∈C .
(2) Size of the test (significance level, Type I error):

α = maxθ∈Θ0 Pθ(X ∈ C) .
(3) Power function: γC(θ) = Pθ(X ∈ C), θ ∈ Θ1 .

• Best critical region (Best Test): To test H0 : θ = θ0 versus H1 : θ = θ1,
let C be the critical region, which is a subset of S ⊂ Rn. We say that C is a
best critical region of size α, 0 < α < 1 if
(1) Pθ0(X ∈ C) = α;
(2) For any other critical region A ⊂ S of the same size α, we must have

Pθ1(X ∈ C) ≥ Pθ1(X ∈ A).
In other words, C is the most powerful critical region of size α . The test
based on C is called the most powerful test of size α .

• Theorem (Neyman-Pearson): LetX1, . . . , Xn be i.i.d.∼ f(x; θ), θ ∈ {θ0, θ1} .
The likelihood function L(θ;x) =

∏n
i=1 f(xi; θ), for x = (x1, . . . , xn)′ ∈ S . Let

C be a subset of S and let k be a positive number such that
(a) L(θ0;x)/L(θ1;x) ≤ k for each x ∈ C;
(b) L(θ0;x)/L(θ1;x) ≥ k for each x /∈ C;
(c) α = PH0(X ∈ C) .
Then C is a best critical region of size α for testing the simple hypothesis
H0 : θ = θ0 versus H1 : θ = θ1 .
Note: (1) The conditions (a), (b), and (c) are also necessary for region C to
be a best critical region of size α .
(2) In the case of continuous distributions, the best critical region C of size α
is unique in the probability sense.

• Theorem (power of test): Let C be the best critical region of size α for
testing H0 : θ = θ0 versus H1 : θ = θ1 . Let γC(θ1) = Pθ1(X ∈ C) denote the
power of the test based on C . Then γC(θ1) ≥ α .
In other words, a lower bound of the power of the most powerful test of size
α is α .

• Theorem (nonparametric case): Let X1, . . . , Xn be an arbitrary sample. It is
desired to test the simple hypothesis “H0 : the joint pdf (or pmf) is g(x1, . . . , xn)”
versus “H1 : the joint pdf (or pmf) is h(x1, . . . , xn)” . Then C ⊂ Rn is a best
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critical region of size α if, for k > 0,
(1) g(x1, . . . , xn)/h(x1, . . . , xn) ≤ k for (x1, . . . , xn)′ ∈ C;
(2) g(x1, . . . , xn)/h(x1, . . . , xn) ≥ k for (x1, . . . , xn)′ /∈ C
(3) α = PH0 [(X1, . . . , Xn)′ ∈ C] .

• For practice: Example 8.1.2

§ 8.2 Uniformly Most Powerful Tests

• UMP critical region: A critical region C is called a uniformly most powerful
(UMP) critical region of size α for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1

if, for each θ1 ∈ Θ1, C is a best critical region of size α for testing H0 against
H ′

1 : θ = θ1 .
The test based on the UMP critical region C is called a UMP test.

• Monotone likelihood ratio: The likelihood function L(θ;x), x = (x1, . . . ,
xn)′, is said to have monotone likelihood ratio (mlr) in the statistic Y = u(X1,
. . . , Xn) if L(θ1;x)/L(θ2;x) is a monotone function of y = u(x1, . . . , xn) as
long as θ1 < θ2 .

• Two-step standard procedure for finding a UMP test of size α for testing
H0 : θ = θ0 against H1 : θ ∈ Θ1, where Θ1 might be θ > θ0, θ < θ0, or θ 6= θ0:
Step 1: For each fixed θ1 ∈ Θ1, find a best critical region C of size α for testing
H0 against H ′

1 : θ = θ1 based on the Neyman-Pearson theorem.
Step 2: Check if C depends on θ1 . If it does not, then C is a UMP critical
region of size α for testing H0 against H1; otherwise there is no UMP test for
this case.

• Theorem: If L(θ;x) has mlr in the statistic Y = u(X), then a UMP test for
H0 : θ ≤ θ0 against H1 : θ > θ0 exists. Furthermore,
(1) if it is monotone increasing, the UMP critical region takes the form of
{(x1, . . . , xn) : u(x1, . . . , xn) ≤ C};
(2) if it is monotone decreasing, the UMP critical region takes the form of
{(x1, . . . , xn) : u(x1, . . . , xn) ≥ C} .
Note: The case of H0 : θ ≥ θ0 against H1 : θ < θ0 is similar.

• Theorem: Let X1, . . . , Xn be i.i.d.∼ f(x; θ), where

f(x; θ) = exp{p(θ)K(x) + S(x) + q(θ)}

belongs to the regular exponential class. If p(θ) is monotone, then the likeli-
hood function L(θ;x) has mlr in Y =

∑n
i=1K(Xi) .

For example, if p(θ) is monotone increasing, then L(θ;x) has monotone de-
creasing likelihood ratio in Y .

• For practice: Example 8.2.1, Example 8.2.2, Example 8.2.5
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§ 8.3 Likelihood Ratio Tests

• Unbiased Test: A test for H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is said to be
unbiased, if its power never falls below the significance level. In other words,
if α = maxθ∈Θ0 Pθ[ reject H0], then Pθ[ reject H0] ≥ α for each θ ∈ Θ1 .

• Likelihood ratio test: For testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, the
likelihood ratio test statistic is

Λ =
maxθ∈Θ0 L(θ; x)

maxθ∈Θ L(θ; x)
,

where Θ = Θ0 ∪Θ1 .
Note that 0 < Λ ≤ 1 . If H0 is true, Λ should be close to 1; if H1 is true, Λ
should be smaller.

• Likelihood ratio principle: Reject H0 if and only if Λ ≤ λ0, where λ0 < 1 is
a constant determined by the significance level α such that Pθ0 (Λ ≤ λ0) = α,
where θ0 is the boundary point of Θ0 and Θ1.

• p-value: The so-called p-value is the probability that the test statistic under
H0 is at least as extreme as the particular observed value.
A small enough p-value indicates the rejection of H0 .

• Wilks’s Theorem: As the sample size n approaches ∞, the test statistic
−2 log(Λ) will be asymptotically χ2-distributed with degrees of freedom equal
to the difference in dimensionality of Θ and Θ0.

• For practice: Example 8.3.1, Example 8.3.3, Exercise 8.3.12.
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