STAT 411 — Spring 2015

Final Exam Review - Part 111

Chapter 7. Sufficiency

§ 7.7 'The Case of Several Parameters

Let Xq,..., X, beiid.~ f(2;0),0 c QC RP,x €S . LetY = (Y1,...,Y,) ~
fy(y;0), where V; = u;( Xy, ..., X,,),i=1,....,m.

Joint sufficiency: Y is said to be jointly sufficient for @ if and only if
1Y, f(x;0)] ) fy(y;0) = H(xy,...,z,) does not depend on 6 .

Extended factorization theorem: Y is jointly sufficient for 0 if and only
if [T, f(xi;0) = ki(y; 0) - ko(zq, ..., x,) for some functions k; and ks .

Completeness (case of several parameters): Suppose the condition Efu(Y7,
., Y] =0 for all 8 € Q always implies that u(yi,...,yn) = 0 except on a
zero-probability set. Then Y = (Y3,...,Y,,) is said to be complete for 6 .

Extended theorem (Lehmann and Scheffé): Suppose Y is jointly com-
plete and sufficient for @ . Let n = ¢(0) is the parameter of interest and
T =T(Y) is an unbiased estimator of 7. Then T is the unique MVUE of 7 .

Regular exponential class (case of several parameters): Let X ~
f(x;0),0 € Q C RP. Suppose f(x;60) = exp {7, p;(0)K;(x) + S(x) + (6) },
r € §. We say that it is a member of the reqular exponential class if

(1) p=m, and S does not depend on 6;

(2) Q contains a nonempty, m-dimensional open rectangle;

(3) pj(@), j = 1,...,m are nontrivial, functionally independent, continuous
functions of @ ;

(4.1) If X is continuous, then K’(x)’s are continuous and no one is a linear
homogeneous function of the others, and S(z) is continuous;

(4.2) If X is discrete, then Kj(x)’s are nontrivial and no one is a linear homo-
geneous function of the others.

Theorem (regular exponential class): Let Xi,..., X, be i.i.d.~ f(z;0),
which belongs to the regular exponential class. Let Y = (Y1,...,Y,,), where
Y, =>",Kj(X;),j=1,...,m . Then

(1) Y ~ f(y;0) = R(y) exp {Zgnzl p;(0)y; + nq(@)}. Neither the support of
Y nor R(y) depends on 6 .

(2) Y,...,Y,, are joint complete sufficient statistics for 6, if n > m .
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e Theorem: Let Y = (Yi,...,Y,,) be joint complete sufficient statistics for
0 and g(Y) = (q1(Y),...,9n(Y)) is a one-to-one mapping of Y. Then
(91(Y), ..., 9m(Y)) are also joint complete sufficient statistics for .

e Regular exponential class (k-dimensional random vector): Let X be
a k-dimensional random vector with pdf or pmf f(x;8), where 8 € ) C R? .
Suppose f(x;60) = exp {Z;”:lpj(e)Kj(x) + S(x) + q(@)}, xeS C RF.

We say that f(x;0) is a member of the regular exponential class if
(1) p = m; (2) S does not depend on 6; and (3) the regularity conditions
similar to those of one-dimensional case hold.

e Theorem (k-dimensional regular exponential class): Suppose X is a
k-dimensional random vector with pdf or pmf f(x;0), 8 € Q C R™, which

belongs to the regular exponential class. Let Xq,...,X,, be a random sample
from X and let Y = (Y1,....,Y,,)", where Y; = >0 K;(X;), j =1,....m .
Then

(1) (Y1,...,Y,,) are joint complete sufficient statistics for 6 € .
(2) Let n = g(0) be the parameter of interest and T = h(Y) is an unbiased
estimator of . Then T is the unique MVUE of 7 .

e Practice Problem: Example 7.7-1, Exercise 7.7-13
§ 7.8 Minimal Sufficiency and Ancillary Statistics

o Let Xy,..., X, beiid~ f(x;0),2€8,0€Q.

e Minimal sufficient statistic: A sufficient statistic Y is called a minimal
sufficient statistic for 0 if, for any other sufficient statistic T of 0, Y is a
function of T' .

e Theorem (minimal sufficiency): Let T = T(Xy,...,X,) be a statistic.
Suppose [T [f(xi;0)/ f(z;; 0)] does not depend on @ if and only if T'(z1, ..., x,) =
T(z1,...,2,), then T is a minimal sufficient statistic for 6 .

e Theorems: (1) Suppose the mle 6 of  is also sufficient for §. Then § must be
a minimal sufficient statistic for 6 .
(2) Suppose Y is a minimal sufficient statistic for § and g(Y") is a one-to-one
function of Y. Then ¢(Y) is also minimal sufficient for 6 .

e Theorem (Lehmann and Scheffé): If a complete sufficient statistic exists,
it must be minimal sufficient.

e Ancillary statistic: A statistic whose distribution does not depend on the
parameter 6 is called an ancillary statistic.



e Location model and location invariant statistics: Let W;,..., W, be

i.i.d. random variables with pdf f(w) which does not depend on 6 . Let
X, =0+W,;,, —00o < 0 < o0,i=1,...,n, known as a location model. The
common pdf of X; is f(x —6) . Then {f(z —0) : —o00 < § < oo} is called a
location family.
Let Z = u(Xy,...,X,) be a statistic such that u(xy + d,...,z, + d) =
u(zy,...,x,) for all d € R . Then Z is a location-invariant statistic whose
distribution does not depend on # . Examples: sample variance S?, sample
range max;{X;} — min;{X;} .

e Scale model and scale invariant statistics: Let Wy, ..., W, be i.i.d. ran-
dom variables with pdf f(w) which does not depend on 0 . Let X; = W,
0 > 0,7 =1,...,n, known as a scale model. The common pdf of X, is
f(z/0)/0 . Then {f(x/0)/0 : 0 > 0} is called a scale family.
Let Z = u(Xy,...,X,) be a statistic such that u(cz,...,cz,) = u(zy, ...,
xy) forall ¢ > 0. Then Z is a scale-invariant statistic whose distribution does
not depend on 6 .Examples: X(1y/X(n), X7/> 0, X7 .

e Location and scale invariant statistics: Let W;,..., W, be i.i.d. random
variables with pdf f(w) which does not depend on 6 . Let X; = 61 + 6, W,
1 =1,...,n, known as a location and scale model. The common pdf of X; is

f((x—61)/02)/02 . Then {f((x —61)/62)/02 : —00 < 6 < 00,6, > 0} is called
a location and scale family.

Let Z = u(Xy,...,X,) be a statistic such that u(cx; +d, ..., cx, +d) =
w(zy,...,x,) for all ¢ > 0,d € R . Then Z is a location and scale invariant

statistic whose distribution does not depend on 6 . Examples: (X; — X)/S,
max; {X;} — min,{X;}]/S.

Practice Problems: Exercise § 7.8 - 1, 4.
§ 7.9 Sufficiency, Completeness and Independence

o Let Xy,..., X, beiidn~ f(x;0),0 €.

e Theorem: Let Y] be a sufficient statistic for 6 and let Z be another statistic
which is independent of Y7 . Then Z is an ancillary statistic.

e Theorem (Basu’s): Suppose Y] is complete and sufficient for € 2 . Then
Y] is independent of every ancillary statistic.

Practice Problems: Exercise § 7.9 - 5, 7.



Chapter 8. Optimal Tests of Hypothesis

8.1 Most Powerful Tests

e Hypothesis testing (general setup): Let Xi,..., X, beiid.~ f(z;0),0 € © =
©oUO1, where 9N ©O; = 0. Let S be the support of X = (X3,...,X,,) . We
want to test the null hypothesis Hy : # € ©( versus the alternative hypothesis
H :0€0,.

(1) Critical region (rejection region): CC S such that,
we reject Hy if and only if z = (z4,...,2,) €C .

(2) Size of the test (significance level, Type I error):
Q= MaXgeco, PQ(X S O) .

(3) Power function: y¢(0) = Pp(X € C), 6 € O, .

e Best critical region (Best Test): To test Hy : 6 = 6, versus H; : 0 = 0,
let C be the critical region, which is a subset of S C R". We say that C' is a
best critical region of size o, 0 < a < 1 if
(1) Py (X € C) = o;

(2) For any other critical region A C S of the same size «, we must have
Pgl(X € C) > Pgl(X S A)

In other words, C is the most powerful critical region of size o . The test

based on C'is called the most powerful test of size « .

e Theorem (Neyman-Pearson): Let Xi,..., X, beiid.~ f(z;6),0 € {6y,0:}.
The likelihood function L(0; x) = [T, f(x;;0), for x = (xy,..., x,) € S . Let
C be a subset of S and let k be a positive number such that
(a) L(0o;z)/L(01;x) < k for each x € C;

(b) L(0o;x)/L(61;x) > k for each x ¢ C;
(c) a= Py, (X €C).

Then C' is a best critical region of size « for testing the simple hypothesis

Hy:0 =0y versus H; : 0 =6, .

Note: (1) The conditions (a), (b), and (c) are also necessary for region C' to

be a best critical region of size « .

(2) In the case of continuous distributions, the best critical region C' of size «

is unique in the probability sense.

e Theorem (power of test): Let C' be the best critical region of size « for
testing Hy : 0 = 6y versus Hy : 0 = 0 . Let v¢(01) = Py, (X € C) denote the
power of the test based on C'. Then 7¢(6,) > « .

In other words, a lower bound of the power of the most powerful test of size
ais a .

e Theorem (nonparametric case): Let Xi,..., X, be an arbitrary sample. It is
desired to test the simple hypothesis “Hj : the joint pdf (or pmf) is g(x1, ..., z,)
versus “H; : the joint pdf (or pmf) is h(xy,...,2,)” . Then C' C R™ is a best

b
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critical region of size « if, for £ > 0,

(1) g(x1,...,xn)/h(x1, ... 2,) <k for (zq,...,2,) € C,
(2) g(x1,...,xn)/h(x1, ... 2) >k for (x4,...,2,) ¢ C
(3) Oé:PHO [(Xl,...,Xn)IGC] .

e For practice: Example 8.1.2
§ 8.2  Uniformly Most Powerful Tests

e UMP critical region: A critical region C'is called a uniformly most powerful
(UMP) critical region of size « for testing Hy : 0 € ©y against H; : § € 6,
if, for each 6; € ©1, (' is a best critical region of size « for testing H, against
H{ 10 = 01 .

The test based on the UMP critical region C' is called a UMP test.

e Monotone likelihood ratio: The likelihood function L(#;x), x = (z1, ...,

x,), is said to have monotone likelihood ratio (mlr) in the statistic Y = u (X7,

.y X)) if L(6y;x)/L(62; x) is a monotone function of y = w(zy,...,x,) as
long as 61 < 05 .

e Two-step standard procedure for finding a UMP test of size a for testing
Hy : 0 =0, against Hy : 0 € ©1, where ©1 might be 0 > 0y, 0 < 0y, or 0 # 0,:
Step 1: For each fixed 6, € ©4, find a best critical region C' of size « for testing
H, against H] : 8 = 6, based on the Neyman-Pearson theorem.

Step 2: Check if C' depends on #; . If it does not, then C' is a UMP critical
region of size «a for testing Hy against Hy; otherwise there is no UMP test for
this case.

e Theorem: If L(A;z) has mlr in the statistic Y = u(X), then a UMP test for
Hy : 0 <6y against Hy : 0 > 0y exists. Furthermore,
(1) if it is monotone increasing, the UMP critical region takes the form of
{(x1,...,zn) s ul(zy, ... x,) < C
(2) if it is monotone decreasing, the UMP critical region takes the form of
{(x1,...,2n) s u(zy,...,xy) > C} .
Note: The case of Hy : 6 > 0y against Hy : 8 < 6 is similar.

e Theorem: Let Xi,..., X, beiid.~ f(x;60), where
f(@;0) = exp{p(0) K (z) + 5(x) + q(0)}

belongs to the regular exponential class. If p() is monotone, then the likeli-
hood function L(#;x) has mlr in Y = Y7 | K(X;) .

For example, if p(f) is monotone increasing, then L(6;z) has monotone de-
creasing likelihood ratio in Y .

e For practice: Example 8.2.1, Example 8.2.2, Example 8.2.5
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§ 8.3 Likelihood Ratio Tests

e Unbiased Test: A test for Hy : 0 € O against H; : § € O, is said to be
unbiased, if its power never falls below the significance level. In other words,
if & = maxgeo, Py| reject Hyl, then Py reject Hy| > « for each 6 € ©; .

e Likelihood ratio test: For testing Hy : 0 € Oy against H, : 6 € O, the
likelihood ratio test statistic is

A maxgeo, L(0;x)

maxgpeo L(0;x)

where © = Qg U O .

Note that 0 < A < 1. If Hy is true, A should be close to 1; if H;y is true, A
should be smaller.

e Likelihood ratio principle: Reject Hy if and only if A < \g, where \g < 11is
a constant determined by the significance level o such that Py, (A < \g) = «,
where 6, is the boundary point of Oy and ;.

e p-value: The so-called p-value is the probability that the test statistic under
Hyj is at least as extreme as the particular observed value.
A small enough p-value indicates the rejection of Hy .

e Wilks’s Theorem: As the sample size n approaches oo, the test statistic
—21log(A) will be asymptotically x2-distributed with degrees of freedom equal
to the difference in dimensionality of © and ©,.

e For practice: Example 8.3.1, Example 8.3.3, Exercise 8.3.12.



