## Section 7.3 General Factorial and 2<sup>k</sup> Factorial Design

## Cross Factorial Design with fixed factors

Model (with three fixed factors, each with multiple levels)

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_l + (\alpha \beta \gamma)_{ij} + (\beta \gamma)_{jk} + (\alpha \gamma)_{il} + (\alpha \beta \gamma)_{ijk} + \varepsilon_{ijkl},$$
  
 $i = 1, ..., a; j = 1, ..., b; k = 1, ..., c; l = 1, ..., n$ 

where iid errors  $\varepsilon_{ijkl} \sim N(0, \sigma^2)$ 

2<sup>k</sup> Factorial Design with each factor two levels

 
 Table 7.3-1
 ANOVA Table for the Factorial Experiment with Three Factors:
 Fixed Effects Source SS df MS  $\boldsymbol{A}$  $SS_4$ a-1 $MS_A$  $MS_A/MS_{Error}$ В Error Error  $iS_{Error}$  $AS_{Error}$ 

| l   | $\mathcal{S}\mathcal{S}_A$ | u - 1                 | $MS_A$              | $\mathrm{MS}_A/\mathrm{MS}_{\mathrm{Error}}$ |
|-----|----------------------------|-----------------------|---------------------|----------------------------------------------|
| B   | $SS_B$                     | b - 1                 |                     |                                              |
| C   | ~                          |                       | $\mathrm{MS}_B$     | $\mathrm{MS}_B/\mathrm{MS}_{\mathrm{Error}}$ |
| _   | $SS_C$                     | c-1                   | $MS_C$              |                                              |
| AB  | $SS_{AB}$                  | (a-1)(b-1)            | Ç                   | $\mathrm{MS}_C/\mathrm{MS}_{\mathrm{Error}}$ |
| 10  |                            | (a-1)(b-1)            | $\mathrm{MS}_{AB}$  | $MS_{AB}/MS_{Error}$                         |
| AC  | $SS_{AC}$                  | (a-1)(c-1)            | $MS_{AC}$           |                                              |
| BC  | $SS_{BC}$                  |                       | -                   | $MS_{AC}/MS_{Error}$                         |
| _   |                            | (b-1)(c-1)            | $\mathrm{MS}_{BC}$  | $MS_{BC}/MS_{Error}$                         |
| ABC | $SS_{ABC}$                 | (a-1)(b-1)(c-1)       | _ <del>-</del>      |                                              |
| T   | 7100                       | (a + 1)(b - 1)(c - 1) | $\mathrm{MS}_{ABC}$ | MS <sub>4BG</sub> /MS <sub>-</sub>           |

abc(n-1)

abcn - 1

Error

Total

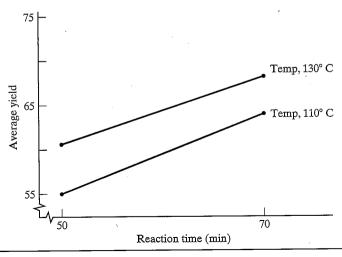
 $SS_{Error}$ 

**SSTO** 

 $MS_{ABC}$ 

 $MS_{Error}$ 

 $MS_{ABC}/MS_{Error}$ 


| Table 7. | and a read of the second principle | DELLEVER HERE RELIGIO | al Experim | ent         | +1       | • Y <sub>4</sub> |       |
|----------|------------------------------------|-----------------------|------------|-------------|----------|------------------|-------|
| n i      | Design                             |                       | Design     |             |          |                  | $Y_3$ |
| Run      | $x_1$                              | $x_2$                 | $x_1x_2$   | Observation | Factor 2 | ]                |       |
| 1        |                                    | _                     | +          | $Y_1$       |          |                  |       |
| 2        | +                                  | _                     | _          | $Y_2$       | -1       | $Y_1$ $Y_2$      |       |
| 3        | _                                  | +                     | -          | $Y_3$       | _        | 1 +1<br>Factor 1 |       |
| 4        | +                                  | +                     | +          | $Y_4$       | ·        |                  |       |

The  $2^2$  Factorial Let us start with k=2 factors and the  $2^2=4$  factor combinations (low, low), (high, low), (low, high), and (high, high). In coded units, the four runs are (-1, -1), (1, -1), (-1, 1), and (1, 1). We have arranged these runs in Table 7.3-2 in what is called the *standard order*. We start the levels of factor 1 with one minus sign and alternate the signs: -+-+ The levels of factor 2 start with two minus signs,

Table 7.3-3 Example of a 2<sup>2</sup> Factorial Experiment

|     | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ign        |          |               |                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------------|-------------------------|
| Run | $\overline{x_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>x</u> 2 | $x_1x_2$ | Average Yield | Individual Observations |
| 1   | A COLUMN TO A STATE OF THE STAT | _          | +        | 55.0          | 55.5, 54.5              |
| 2   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | _        | 60.6          | 60.2,61.0               |
| 3   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +          | _        | 64.2          | 64.5, 63.9              |
| 4   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +          | +        | 68.2          | 67.7,68.7               |

Average = 
$$(55.0 + 60.6 + 64.2 + 68.2)/4 = 62.0$$
  
(1) =  $(-55.0 + 60.6 - 64.2 + 68.2)/4 = 2.4$   
(2) =  $(-55.0 - 60.6 + 64.2 + 68.2)/4 = 4.2$   
(12) =  $(55.0 - 60.6 - 64.2 + 68.2)/4 = -0.4$ 



|     |       | Design |                       |                                                               | 基层标      |                                             |                  |             |
|-----|-------|--------|-----------------------|---------------------------------------------------------------|----------|---------------------------------------------|------------------|-------------|
| Run | $x_1$ | $x_2$  | <i>x</i> <sub>3</sub> | $x_1 x_2$                                                     | $x_1x_3$ | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$    | Observation |
| 1   | _     | _      | _                     | +                                                             | +        | +                                           |                  | $Y_1$       |
| 2   | +     | _      | · —                   | _                                                             | -        | +                                           | + .              | $Y_2$       |
| 3   | _     | +      | _                     | _                                                             | +        | _                                           | . +              | $Y_3$       |
| 4   | +     | +      | _                     | +                                                             | _        | _                                           |                  | $Y_4$       |
| 5   | _     | _      | + ′                   | +                                                             | _        | _                                           | +                | $Y_5$       |
| 6   | +     | _      | +                     | . –                                                           | +        | _                                           | _                | $Y_6$       |
| 7   | _     | +      | +                     | _                                                             | _        | +                                           | _                | $Y_7$       |
| 8 . | +     | +      | +                     | +                                                             | +        | +                                           | +                | $Y_8$       |
|     |       |        | Factor 3              | Y <sub>5</sub> + Y <sub>3</sub> Y <sub>1</sub> Y <sub>3</sub> | Y        | Y <sub>6</sub> 2  Fact                      | $Y_8$ $Y_4$ or 2 |             |

The main effect of factor i (i = 1, 2, 3) is one-half the difference between the averages of the responses at the high and low levels of factor i. Thus, from the cube in Table 7.3-4, we find that

$$(1) = \frac{1}{2} \left( \frac{Y_2 + Y_4 + Y_6 + Y_8}{4} - \frac{Y_1 + Y_3 + Y_5 + Y_7}{4} \right)$$
$$= \frac{-Y_1 + Y_2 - Y_3 + Y_4 - Y_5 + Y_6 - Y_7 + Y_8}{8},$$

**Example** As an illustration of a 2<sup>4</sup> factorial, we use the data from an experiment designed 7.3-2 to evaluate the effect of laundering on certain fire-retardant treatments for fabrics. [M. G. Natrella. Experimental Statistics, National Bureau of Standards Handbook 91

(Washington, D.C.: U.S. Government Printing Office, 1963)]. Factor 1 is the type of fabric (sateen or monk's cloth), factor 2 corresponds to two different fire-retardant

| $\mathfrak{r}_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | x <sub>4</sub> | Y  | Effect                     |
|------------------|-----------------------|-----------------------|----------------|----|----------------------------|
|                  | _                     | _                     | _              | 42 | Average = $575/16 = 35.94$ |
| +                | _                     | _                     | _              | 31 | (1) = -129/16 = -8.06      |
| _                | +                     | _                     | _              | 45 | (2) = 1.56                 |
| +                | +                     | _                     | _              | 29 | (3) = -0.56                |
| _                | -                     | +                     | _              | 39 | (4) = -0.56                |
| +                |                       | +                     | _              | 28 | (12) = -2.19               |
| _                | +                     | +                     | _              | 46 | (13) = -0.31               |
| +                | +                     | +                     | _              | 32 | (14) = -1.56               |
| _                | _                     | _                     | +              | 40 | (23) = 0.81                |
| +                | _                     | _                     | +              | 30 | (24) = 0.06                |
| _                | +                     | _                     | +              | 50 | (34) = -0.31               |
| +                | +                     | _                     | +              | 25 | (123) = 0.31               |
| _                | _                     | +                     | +              | 40 | (124) = -1.19              |
| + ´              | _                     | +                     | +              | 25 | (134) = -0.56              |
| _                | +                     | +                     | +              | 50 | (234) = -0.44              |
|                  | +                     | +                     | +              | 23 | (1234) = 0.06              |

treatments, factor 3 describes the laundering condition (no laundering, after one laundering), and factor 4 corresponds to two different methods of conducting the flame test. The observations listed in Table 7.3-5 are in inches burned, measured on a standard-size sample fabric after a flame test.

TABLE 8.3-6Yates Algorithm for the Data in Example 8.3-2 $x_1$  $x_2$  $x_3$  $x_4$ ycol 1col 2col 3col 3

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | у  | col I | col 2 | col 3 | col 4 | Effect            |
|-----------------------|-----------------------|-----------------------|-----------------------|----|-------|-------|-------|-------|-------------------|
| _                     | _                     | _                     | _                     | 42 | 73    | 147   | 292   | 575   | Average = $35.94$ |
| +                     | _                     | _                     | _                     | 31 | 74.   | 145   | 283   | -129  | (1) = -8.06       |
| -                     | +                     | _                     | _                     | 45 | 67    | 145   | -52   | 25    | (2) = 1.56        |
| +                     | +                     | _                     | _                     | 29 | 78    | 138-  | -77   | -35   | (12) = -2.19      |
| _                     | _                     | +                     | _                     | 39 | 70    | -27   | 12    | -9    | (3) = -0.56       |
| +                     | -                     | +                     | _                     | 28 | 75    | -25   | 13    | -5    | (13) = -0.31      |
| _                     | +                     | +                     | _                     | 46 | 65    | -35   | -8    | 13    | (23) = 0.81       |
| +                     | +                     | +                     | _                     | 32 | 73    | -42°  | -27   | 5     | (123) = 0.31      |
| _                     | _                     | _                     | +                     | 40 | -11   | 1     | -2    | -9    | (4) = -0.56       |
| +                     | _                     | -                     | +                     | 30 | -16   | 11    | -7    | -25   | (14) = -1.56      |
| -                     | +                     | _                     | +                     | 50 | -11   | 5     | 2     | 1     | (24) = 0.06       |
| +                     | +                     | -                     | +                     | 25 | -14   | 8     | -7    | -19   | (124) = -1.19     |
| _                     | -                     | +                     | +                     | 40 | -10   | -5    | 10    | -5    | (34) = -0.31      |
| +                     | _                     | +                     | +                     | 25 | -25   | -3    | 3     | -9    | (134) = -0.56     |
| _                     | +                     | +                     | +                     | 50 | -15   | -15   | 2     | -7    | (234) = -0.44     |
| +                     | +                     | +                     | +                     | 23 | -27   | -12   | 3     | 1     | (1234) = 0.06     |

Let us assume that there are n independent observations  $Y_{i1}, Y_{i2}, \ldots, Y_{in}$  with variance estimate  $S_i^2 = [\sum_{j=1}^n (Y_{ij} - \overline{Y}_i)^2]/(n-1)$  at each of the  $2^k$  level combinations,  $i = 1, 2, \ldots, 2^k$ . The  $2^k$  variance estimates can be pooled to obtain the overall variance estimate

$$S^2 = \frac{1}{2^k} \sum_{i=1}^{2^k} S_i^2 = \frac{1}{(n-1)2^k} \sum_{i=1}^{2^k} \sum_{j=1}^n (Y_{ij} - \overline{Y}_i)^2.$$
Pagengs the estimate of the variance of an everage  $\overline{Y}$  at a particular level con

Because the estimate of the variance of an average  $\overline{Y}_i$  at a particular level combination is  $S^2/n$ , and because the overall average and each estimated effect can be written as  $(1/2^k)\sum_{i=1}^{2^k} c_i \overline{Y}_i$ , where the coefficients  $c_i$  are either +1 or -1, we find that the estimate of the variance of an effect is

$$var(effect) = var(average) = \frac{1}{(2^k)^2} \sum_{i=1}^{2^k} var(\overline{Y}_i) = \frac{S^2}{n2^k}$$

The estimated effects, together with estimates of their standard deviations which are also known as standard errors, indicate the statistical significance of the various effects.

|     | 4[       | 2                  | 2                             | 2                  | 2 | ا |
|-----|----------|--------------------|-------------------------------|--------------------|---|---|
|     | = 0.375, |                    | •                             |                    |   |   |
|     | ,        |                    |                               |                    |   |   |
| and |          |                    |                               |                    |   |   |
|     |          |                    | 1                             |                    |   |   |
|     | va       | ar(effect) = var(a | $(verage) = \frac{1}{(2)(4)}$ | -(0.375) = 0.0469. |   |   |
|     |          |                    | (2)(4)                        |                    |   |   |

Hence, the standard error of an estimated effect, as well as of the average, is

Using the result derived in Exercise 7.3-1, we find for the data in Table 7.3-3 that

 $s^{2} = \frac{1}{2} \left[ \frac{(55.5 - 54.5)^{2}}{(55.5 - 54.5)^{2}} + \frac{(60.2 - 61.0)^{2}}{(55.5 - 63.9)^{2}} + \frac{(67.7 - 68.7)^{2}}{(55.5 - 63.9)^{2}} \right]$ 

Example 7.3-3

 $[var(effect)]^{1/2} = [var(average)]^{1/2} = 0.22.$ Thus, the two-sigma limits around the estimates are  $62.0 \pm 0.44$  for the mean,  $2.4 \pm 0.44$  for the main effect of factor  $1, 4.2 \pm 0.44$  for the main effect of factor  $2, 4.4 \pm 0.44$  for the two-factor interaction. These intervals are approximate 95 percent confidence intervals and indicate large main effects, but negligible interaction.

| <b>Table 7.3-6</b> Normal Scores of the $m = 2^{4-1} = 15$ Estimated Effects from Example 7.3-2 |                        |      |                                      |       |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------|------|--------------------------------------|-------|--|--|--|
| Identity<br>of Effect                                                                           | Effect by<br>Magnitude | Rank | $P_i = \frac{i - 0.5}{\mathrm{m}} .$ | $z_i$ |  |  |  |
| (1)                                                                                             | -8.06                  | 1    | 0.033                                | -1.84 |  |  |  |
| (12)                                                                                            | -2.19                  | 2    | 0.100                                | -1.28 |  |  |  |
| (14)                                                                                            | -1.56                  | . 3  | 0.167                                | -0.97 |  |  |  |
| (124)                                                                                           | -1.19                  | 4    | 0.233                                | -0.73 |  |  |  |
| (3)                                                                                             | -0.56                  | 6    | 0.367                                | -0.34 |  |  |  |

6

6

8

9.5

9.5

11.5

11.5

13

14

15

-0.56

-0.56

-0.44

-0.31

-0.31

0.06

0.06

0.31

0.81

1.56

(4)

(134)

(234)

(13)

(34)

(24)

(1234)

(123)

(23)

(2)

0.367

0.367

0.500

0.600

0.600

0.733

0.733

0.833

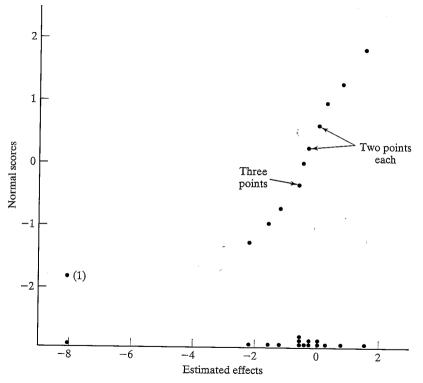
0.900 0.967 -0.34

-0.34

0.00

0.25

0.25


0.62

0.62

0.97

1.28

1.84



**Figure 7.3-1** Dot diagram and normal probability plot of the estimated effects from Example 7.3-2

TABLE 8.4-1 The 2<sup>3-1</sup> Fractional Factorial with  $x_{3} = x_{1}x_{2}$ 

|       | Design           |                       |                       |
|-------|------------------|-----------------------|-----------------------|
| $x_1$ | $x_2$            | <i>x</i> <sub>3</sub> | Y                     |
| _     | _                | +                     | <i>Y</i> <sub>1</sub> |
| +     | _                | _                     | $Y_2$                 |
| _     | +                | _                     | $Y_3$                 |
| +     | +                | +                     | $Y_4$                 |
|       | -<br>+<br>-<br>+ |                       |                       |

 $L_3 = (Y_1 - Y_2 - Y_3 + Y_4)/4 \rightarrow (3) + (12)$