
Linear Mixed Effect Model - Stat 481

A general linear mixed model may be expressed as

y = Xβ + Zb+ ε

where y is a vector of observations, X is a matrix of known covariates, β is a vector

of unknown regression coefficients (fixed effects), Z is a known matrix, b is a vector

of random effects, and ε is a vector of errors. Both b and ε are unobservable. Basic

assumption is that the random effects and errors have mean zero and finite variances.

Example 1. Height vs weight

This is a simple data set to illustrate how the mixed model treats

clustered data. The first column (F) is the family indicator. Each

family is a cluster. For example, the first family consists of 8

adult people. The second and the third columns are height (in

inches) and weight (in pounds). Let H and W be the height and

weight measurement of 75 people from 19 different families.

F H W

1 61 120

1 64 155

1 66 165

... ...

19 71 220

19 66.5 134

19 68.5 130

Linear regression fit: Wk = α+ βHk + εk. It is assumed that the errors εk are iid,

and with constant variances σ2.

(
α̂, β̂

)
OLS

= arg min

{
75∑
k=1

(Wk − α− βHk)
2

}
.

To consider the familial correlation, we need mixed-effects approach. Define

Wi = (Wi1, ...,Wini
)′ , Hi = (Hi1, ..., Hini

)′ .

Let within family correlation ρ = Corr (Wij,Wik) for j 6= k.

Each family has its own intercept, ai = α + bi, with E (bi) = 0, V ar (bi) = σ2
d.

Linear model with random intercept:

Wi = α + bi + βHi + εi,
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where εi ∼ (0, σ2Ini
) , i = 1, ...19.

Linear mixed effects model (LME):

Wi = α + βHi + Zibi + εi,

where in this example Zi = 1ni
. It is easy to have

V ar (Wi) =


σ2 + σ2

d σ2
d

. . .

σ2
d σ2 + σ2

d

 .
Note that ρ = Corr (Wij,Wik) =

σ2
d

σ2+σ2
d
.

Its GLS estimator for α, β is to minimize weighted sum squares(
α̂, β̂

)
GLS

= arg min

{∑
i

(Wi − α− βHi)
′ V −1i (Wi − α− βHi)

}
.

In addition σ2
d/σ

2 can be estimated via Maximum Likelihood Estimation or Resid-

ual MLE if normal distributions are assumed. Variance components σ2
d and σ2 can

be estimated by a quadratic function of Wi without normal assumption, MINQUE

(Minimum Quardratic Unbiased Estimator).

LME model in matrix format: y = Xβ+Zb + ε, or explicitly
y1
...

yN

 =


X1

...

XN

 β +


Z1 0

. . .

0 ZN




b1
...

bN

+


ε1
...

εN

 .
A. Log-likelihood Functions (ML method)

If assume normal distributions, i.e. εi ∼ N (0, σ2Ini
) , bi ∼ N (0, σ2D) . Then the

marginal form of the LME model can be written as

yi ∼ N
(
Xiβ, σ

2 (I + ZiDZ
′
i)
)
.

Define scaled covariance Vi = Vi (D) = I + ZiDZ
′
i

Log-likelihood function of the LME model (up to a constant):

l (θ) =
−1

2

{
NT log σ2 +

N∑
i=1

[
log |Vi|+

1

σ2
(yi −Xiβ)′ V −1i (yi −Xiβ)

]}
(1)

where parameter vector θ = (β′, σ2, vech′ (D)) , dim (θ) = m+ 1 + k (k + 1) /2.

B. Restricted Maximum Likelihood Method

A general linear model y ∼ N (Xβ, V ) , V = V (θ∗) , then its generalized least

square estimator β̂GLS = (X ′V −1X)
−1
X ′V −1y.

Then the RML function is defined as

lR (β, θ∗) =
−1

2

{
log

∣∣∣X ′V −1X∣∣∣+ log |V |+ (y −Xβ)′ V −1 (y −Xβ)
}
.

It differs from the standard log-likelihood function by the term −1
2

log |X ′V −1X| .
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