Example - 2-Factor Nested Model (Mixed)

 au_i

 $\beta_{j(i)} \\ \epsilon_{k(ij)}$

Example

A company is interested in testing the uniformity of their film-coated pain tablets. A random sample of three batches were collected from each of their two blending sites. Five tablets were assayed from each batch.

Site	1			2			
Batch	1	2	3	4	5	6	
	5.03	4.64	5.10	5.05	5.46	4.90	
	5.10	4.73	5.15	4.96	5.15	4.95	
	5.25	4.82	5.20	5.12	5.18	4.86	
	4.98	4.95	5.08	5.12	5.18	4.86	
	5.05	5.06	5.14	5.05	5.11	5.07	

- What are the factors?
- Are any nested?
- Which are random and which are fixed?

19-17

Source of		Sum of	Degrees of	Mean	F_0
	Variation	Squares	Freedom	Square	
	Site	.01825	1	.01825	
	Batch(Site)	.45401	4	.11350	
	Error	.29020	24	.01209	
	Total	.76246	29		

$y_{11.} = 25.41$	$y_{12} = 24.20$	$y_{13} = 25.67$
$y_{21.} = 25.30$	$y_{22} = 26.08$	$y_{23} = 24.64$
<i>y</i> _{21.} — 23.30	$\sum \sum \sum y_{ijk}^2 = 763.8188$	<i>y</i> _{23.} — 24.04

- $SS_T = 763.8188 151.3^2/30 = .76247$
- $SS_A = (75.28^2 + 76.02^2)/15 151.3^2/30 = .01825$

$$SS_{B(A)} = (25.41^2 + 24.20^2 + ... + 24.64^2)/5 - 763.07459 = .45401$$

 $SS_E = 763.8188 - 763.5286 = .2902$

Results

- Site: F = .01825/.1135 = .1608. There is not enough evidence to suggest that the two coating sites are different.
- Batch: F = .1135/.0121 = 9.39. Compare to $F_{4,24}$. There is significant batch-to-batch variability.

$$\hat{\sigma}^2 = .0121$$
 $\hat{\sigma}_{\beta}^2 = \frac{.1135 - .0121}{5} = .0203$

• Batch variability is .0203/(.0203 + .0121) = 62.7% of the total variability. It appears that efforts should be made to eliminate the batch-to-batch variability. Investigate what goes into coating a batch and see where the variability could be.

19-16

		Dependent Variable:	RESP				
				Sum of	Mean		
SAS Program		Source	DF	Squares	Square	F Value	Pr > F
SASTINGIUM		Model	5	0.4722667	0.0944533	7.81	0.0002
		Error	24	0.2902000	0.0120917		
options nocenter 1s=75;		Corrected Total	29	0.7624667			
data new;		Source	DF	Type I SS	Mean Square	F Value	Pr > F
infile "coating.dat";		SITE	1	0.0182533	0.0182533	1.51	0.2311
input site batch tablet resp;		BATCH(SITE)	4	0.4540133	0.1135033	9.39	0.0001
proc glm;							
class site batch;		Tests of Hypotheses	using t	he Type III MS	for		
<pre>model resp=site batch(site);</pre>		BATCH(SITE) as an e	rror ter	m			
random batch;							
<pre>test h=site e=batch(site);</pre>		Source	DF	Type III SS	Mean Square	F Value	Pr > F
<pre>output out=new1 p=pred r=res;</pre>		SITE	1	0.0182533	0.0182533	0.16	0.7089
<pre>symbol1 v=circle;</pre>							
proc gplot;							
plot res*pred;		Dependent Variable:	RESP				
				Sum of	Mean		
proc glm data=new;		Source	DF	Squares	Square	F Value	Pr > F
class site batch;		Model	5	0.4722667	0.0944533	7.81	0.0002
<pre>model resp=site batch site*batch;</pre>		Error	24	0.2902000	0.0120917		
random batch site*batch;		Corrected Total	29	0.7624667			
run;		Source	DF	Type I SS	Mean Square	F Value	Pr > F
		SITE	1	0.0182533	0.0182533	1.51	0.2311
		BATCH	2	0.0115267	0.0057633	0.48	0.6266
		SITE*BATCH	2	0.4424867	0.2212433	18.30	0.0001
	10.00						10.01
	19-20						19-21

Nested Model as Factorial

- Suppose we treat design as two factor factorial
- Naively interpret SAS results
 - Significant batch*site variability
 - No longer significant batch-to-batch variability
- What does interaction mean?
- We're assuming batch 1 effect similar across sites
- Can't separate interaction from main effect
- Notice $SS_{AB} + SS_B = SS_{B(A)}$

 $df_{AB} + df_B = df_{B(A)}$

• Could use factorial results and properly analyze model