












Sampling Distribution of Autocorrelation

Residuals of simple linear regression: e1,..., en. Suppose data is collected over
time t = 1, ...n and normally distributed with constant variance σ2, i.e.
e1,..., en ∼ i.i.d.N (0, 1)
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Under the hypothesed independence among the residuals, the numerator has
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t = (n− 1) σ4.

For large n, we can show that
n∑

t=2
et−1et is asymptotic normal N (0, (n− 1) σ4) ,

or σ−2 (n− 1)−1/2
n∑

t=2
et−1et ∼ AN (0, 1) .

Denominator SSE =
n∑

t=1
e2

t . And MSE = SSE/ (n− 2) is an estimate

for σ2. Hence
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).

The 95% confidence interval of autocorrelation coefficient could be approxi-
mated by

r1 ± 2

√
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n
.
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