
7-1

1

Section 4.7 

Chi-Square Tests
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Hypothesis Tests for Qualitative Data

Qualitative
Data

Z Test Z Test 2 Test

Proportion Independence
1 pop.

2 Test

2 or more
pop.

2 pop.
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Chi-Square Distribution
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Chi-Square (2) Test for k Proportions

 1. Tests Equality (=) of Proportions Only  
 2. One Variable With Several Levels
 3. Assumptions

(a)  Multinomial Experiment  (b) All Expected Counts  5
 4. Uses One-Way Contingency Table

Multinomial Experiment
 1. n Identical Independent Trials
 2. k Outcomes to Each Trial
 3. Constant Outcome Probability pi, i=1,…k, and Σi pi =1
 4. Random Variable is Count yi, i=1,…,k
 5. Example: Ask 100 people which of 3 candidates they will vote for

Candidate  
Tom Bill Mary Total 
35 20 45 100 

 

 

Candidate  
Tom Bill Mary Total 
35 20 45 100 
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2 Test for k Proportions

 1. Hypotheses
 H0: p1 = p1,0, p2 = p2,0, ..., pk = pk,0

 Ha: Not all pi are equal to pi,0

 2. Test Statistic

 3. Degrees of Freedom under H0 : df =k – 1

 4. Rejection region  
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Example
• As personnel director, Mr. A wants to test the perception of fairness of 

three methods of performance evaluation.  
• Of 180 employees, 63 rated Method 1 as fair.  45 rated Method 2 as fair.  

72 rated Method 3 as fair.  
• At the .05 level, is there a difference in perceptions? 

  122  k
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 H0: p1 = p2 = p3 = 1/3       vs.  Ha: they are different
  = .05,     y1 = 63  y2 = 45  y3 = 72 
 DF=2, Critical Value: χ2 =5.991
 npi,0=60, i=1,2,3
 Observed test statistic: χ2 =6.3

20 5.991

Reject

20 5.991

Reject

 = .05
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2 Test of Independence

 1. Shows if a relationship exists between 2 qualitative variables
 One sample is drawn
 Does not show causality

 2. Assumptions
(a)  multinomial experiment   (b) all expected counts  5

 3. Uses two-way contingency table

# Observations From 1 Sample Jointly in 2 Qualitative Variables

House Location
House Style Urban Rural Total

Split-Level 63 49 112
Ranch 15 33 48

Total 78 82 160

House Location
House Style Urban Rural Total

Split-Level 63 49 112
Ranch 15 33 48

Total 78 82 160

Levels of variable 1

Levels of variable 2



7-8

8

2 Test of Independence (Cont.)

 1. Testing hypotheses
 H0: Variables are independent 
 Ha: Variables are related (or dependent)

 2. Test Statistic

Where yij  is the number of observations in cell (i,j) and 
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Example: Chi-Square Test for Independence

 In one large factory, 100 employees were judged to be highly 
successful and another 100 marginally successful.  

 All workers were asked, “Which do you find more important to you 
personally, the money you are able to take home or the satisfaction 
you feel from doing the job?”  

 In the first group, 49% found the money more important, but in the 
second group 53% responded that way. 

 Test the null hypothesis that job performance and job motivation are 
independent using the .01 level of significance.

High Success Marginal Success Total

Money 49 53 102

Satisfaction 51 47 98

Total 100 100 200
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Goodness-of-fit Test
 A population X may follow a distribution with one or two parameters
 Divide outcome space into k mutually exclusive and exhaustive cells, 

then decide the frequencies of those cells, yi, i=1,…,k, and Σyi =n
 Expected frequency (probability) of each cell pi are determined by the 

population distribution if the parameters are specified.
 Assumption: expected counts of each cell npi ≥ 5
 Hypotheses

 H0: X follows a distribution (Normal, Poisson, etc.) 
 Ha: X does not follow the specified distribution

Then

where degrees of freedom is (k-1-h) and h is the number of unknown 
parameters specified in null hypothesis.

Rejection Region: 

    .

k

i i

ii Hhk
np

npy
0

2

1

2
2 under   1~ 








  hk  122




7-11

11

Example: We observe n=85 values of a r.v. X that is thought to have a 
Poisson distribution  

x           0       1     2      3     4    5
Frequency       41    29     9      4     1    1

Hypotheses: 

  ondistributi   follownot  does   :      vs~: 10 PoissonXHPoissonXH 
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Data Types

Data

Quantitative Qualitative

Discrete Continuous
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R code: F-test and t-test
>sole <- read.table("H:/Teaching/STAT-481/sole.txt", header=TRUE, sep="\t")
>names(sole)
[1] "Boy" "MA"  "MB" 

> var.test(sole$MA, sole$MB)                 ## test of equal variance
>   F test to compare two variances

data:  sole$MA and sole$MB 
F = 0.9474, num df = 9, denom df = 9, p-value = 0.9372
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:

0.2353191   3.8142000 
sample estimates:
ratio of variances   

0.9473933 

>  ##  Use two-sample t-test with equal variances
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>t.test(sole$MA, sole$MB, var.equal=T)  
>        Two Sample t-test

data:  sole$MA and sole$MB 
t = -0.3689, df = 18, p-value = 0.7165
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:

-2.744924  1.924924 
sample estimates:

mean of x mean of y 
10.63     11.04 

> ## paired comparison design  -- two-tailed test 

> t.test(sole$MA, sole$MB, paired=T)        
>t.test(sole$MA, sole$MB, paired=T)$statistic        

> t.test(sole$MA, sole$MB, paired=T)$p.value
> t.test(sole$MA, sole$MB, paired=T)$conf.int

# right-tailed paired t-test
>t.test(sole$MA, sole$MB, paired=T, "greater") 
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Normality Check (R code)

x.norm <- rnorm(n=100, m=5, sd=1)                   ## Normal distribution mean=5, var=1

boxplot(x.norm, main="Boxplot")                                    ## Boxplot      
hist(x.norm, main="Histogram of the data")                   ## Histogram

plot(density(x.norm), main="Density estimate")              ## Density Estimate
qqnorm(x.norm)                                                              ## QQ-plot

z.norm <- (x.norm - mean(x.norm))/sd(x.norm)          ## standardization
qqnorm(z.norm)                                                            ## QQ-plot of z.norm
abline(0, 1)                                                                    ## Add a straight line: y = a + b*x

ks.test(z.norm, "pnorm",  m=0, sd=1)                 # One-sample Kolmogorov-Smirnov test

shapiro.test(x.norm)                                           #  Shapiro-Wilk normality test
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Chi-Square test for k Proportions (R code)
method =1:3
k = 3  
count = c(63, 45, 72)
n = sum(count)
data = cbind(method, count)

## expected probability / expected count
p0 = c(1/3, 1/3, 1/3)
count.exp = n*p0

## observed chisquate test statistic
chisq.obs <- sum((count - count.exp)^2/count.exp)

## p-value
1 - pchisq(chisq.obs, df=k-1)

## rejection region given level=alpha
alpha <- 0.05
chisq.obs > qchisq(1-alpha, df=k-1)
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Chi-Square test for Independence (R code)
raw <- c(49, 53, 51, 47)  ;  n <- sum(raw)
data <- matrix(raw, 2, 2, byrow=TRUE)                  ## read data in matrix 
a <- ncol(data)  ;  b <- nrow(data)

# cell averages
row.tot <- apply(data, 1, sum)                                    ## row sum ##
p.idot <- as.vector(row.tot/n)
col.tot <- apply(data, 2, sum)                                     ## column sum ##
p.doti <- as.vector(col.tot/n)

# cell expected averages under independence
cellprob.exp <- (p.idot) %*% t(p.doti)                        ## '%*%' matrix product  ##
cellmean.exp <- n*cellprob.exp

# Observed Chisquare Test Statistic
chisq.obs <- sum( (data - cellmean.exp)^2/cellmean.exp)

1 - pchisq(chisq.obs, df = (a-1)*(b-1) )                       ##   p-value

alpha <- (0.01)                                                               ## significance level 
chisq.obs > qchisq( 1 – alpha, df = (a-1)*(b-1) )


