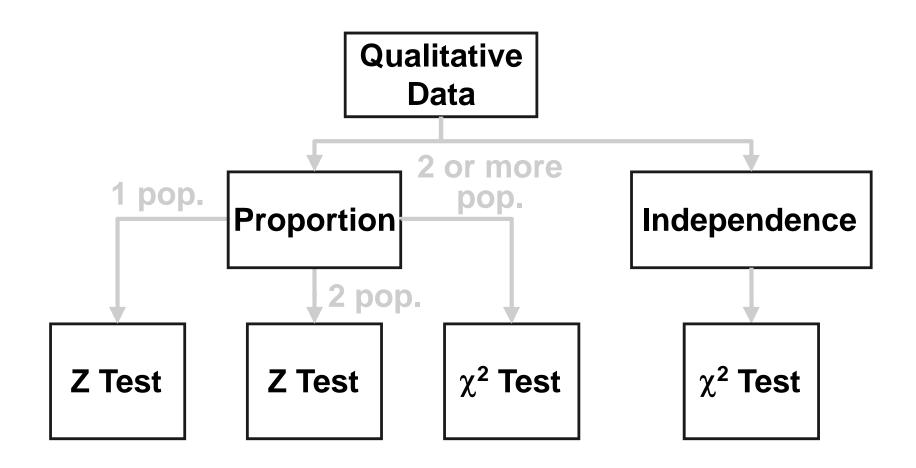
Section 4.7

Chi-Square Tests

Hypothesis Tests for Qualitative Data



Chi-Square Distribution

Theorem : If independent random variables $Z_1, ..., Z_r \sim N(0,1)$, then

$$Z_1^2 + ... + Z_r^2 \sim \chi^2(r),$$

which is a Chi-Square distribution with degrees of freedom r.

For
$$X \sim \chi^2(r)$$
, mean $E(X) = r$, variance $Var(X) = 2r$.
Example : $Y_1 \sim Binomial(n, p_1)$. Let $Y_2 = n - Y_1 \sim Binomial(n, 1 - p_1)$
(1). $Y_1 - np_1 = (n - Y_2) - np_1 = -(Y_2 - np_2)$, where $p_2 = 1 - p_1$.
 $\frac{1}{np_1} + \frac{1}{np_2} = \frac{p_2 + p_1}{np_1p_2} = \frac{1}{np_1p_2}$
(2). For large n (np \ge 5, n(1-p) \ge 5), normal approximation :
 $\chi^2(1) = Z_1^2 \cong \frac{(Y_1 - np_1)^2}{np_1(1 - p_1)} = \frac{(Y_1 - np_1)^2}{np_1} + \frac{(Y_2 - np_2)^2}{np_2}$.

Chi-Square (χ^2) Test for *k* Proportions

- Tests Equality (=) of Proportions Only
- 2. One Variable With Several Levels
- **3**. Assumptions
 - (a) Multinomial Experiment (b) All Expected Counts \geq 5
- 4. Uses One-Way Contingency Table

Multinomial Experiment

- 1. *n* Identical Independent Trials
- 2. *k* Outcomes to Each Trial
- 3. Constant Outcome Probability p_i , i=1,...k, and $\Sigma_i p_i = 1$
- 4. Random Variable is Count y_i , i=1,...,k
- 5. Example: Ask 100 people which of 3 candidates they will vote for

	Candidate	•	_
Tom	Bill	Mary	Total
35	20	45	100

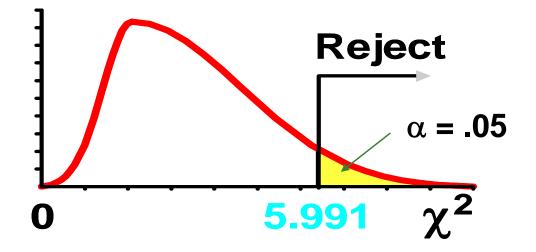
χ^2 Test for *k* Proportions

- 1. Hypotheses
 - $H_0: p_1 = p_{1,0}, p_2 = p_{2,0}, ..., p_k = p_{k,0}$
 - H_a : Not all p_i are equal to $p_{i,0}$
- 2. Test Statistic $\chi^2 = \sum_{i=1}^k \frac{(y_i np_{i,0})^2}{np_{i,0}}$
- 3. Degrees of Freedom under H_0 : df = k 1
- 4. Rejection region $\left\{ \chi^2 > \chi^2_{\alpha} (k-1) \right\}$

Example

- As personnel director, Mr. A wants to test the perception of fairness of three methods of performance evaluation.
- Of 180 employees, 63 rated Method 1 as fair. 45 rated Method 2 as fair.
 72 rated Method 3 as fair.
- At the .05 level, is there a difference in perceptions?

- H0: $p_1 = p_2 = p_3 = 1/3$ vs. Ha: they are different
- $\kappa=3, \alpha = .05, y_1 = 63 y_2 = 45 y_3 = 72$
- DF=2, Critical Value: χ^2 =5.991
- np_{i,0}=60, i=1,2,3
- Observed test statistic: $\chi^2 = 6.3$



χ^2 Test of Independence

- 1. Shows if a relationship exists between 2 qualitative variables
 - One sample is drawn
 - Does not show causality
- 2. Assumptions
 - (a) multinomial experiment (b) all expected counts ≥ 5
- 3. Uses two-way contingency table
 - # Observations From 1 Sample Jointly in 2 Qualitative Variables

	House	Location		s of variable
House Style	Urban	Rural	Total	
Split-Level	63	49	112	
Ranch	15	33	48	
Total	78	82	160	
	evels of v	orioblo 1		

χ^2 Test of Independence (Cont.)

- I. Testing hypotheses
 - H₀: Variables are independent
 - H_a: Variables are related (or dependent)
- 2. Test Statistic $\chi^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{\left(y_{ij} n\hat{p}_{i}, \hat{p}_{\cdot j}\right)^2}{n\hat{p}_{i}, \hat{p}_{\cdot j}}$

Where y_{ij} is the number of observations in cell (i,j) and

$$\hat{p}_{i.} = \frac{y_{i.}}{n} = \frac{1}{n} \sum_{j=1}^{b} y_{ij}, \, \hat{p}_{.j} = \frac{y_{.j}}{n} = \frac{1}{n} \sum_{i=1}^{a} y_{ij} \Longrightarrow n \hat{p}_{i.} \, \hat{p}_{.j} = \left(y_{i.} \cdot y_{.j} \right) / n$$

where the row/column total are $y_{i.} = \sum_{j=1}^{b} y_{ij}, y_{.j} = \sum_{i=1}^{a} y_{ij}.$

• Under null hypothesis (independence), $\chi^2 \sim \chi^2((a-1)(b-1))$. • Rejection region is $\{\chi^2 > \chi^2_{\alpha}((a-1)(b-1))\}$

Example: Chi-Square Test for Independence

- In one large factory, 100 employees were judged to be highly successful and another 100 marginally successful.
- All workers were asked, "Which do you find more important to you personally, the money you are able to take home or the satisfaction you feel from doing the job?"
- In the first group, 49% found the money more important, but in the second group 53% responded that way.
- Test the null hypothesis that job performance and job motivation are independent using the .01 level of significance.

	High Success	Marginal Success	Total
Money	49	53	102
Satisfaction	51	47	98
Total	100	100	200

Goodness-of-fit Test

- A population X may follow a distribution with one or two parameters
- Divide outcome space into k mutually exclusive and exhaustive cells, then decide the frequencies of those cells, y_i , i=1,...,k, and $\sum y_i = n$
- Expected frequency (probability) of each cell p_i are determined by the population distribution if the parameters are specified.
- Assumption: expected counts of each cell $n_{p_i} \ge 5$
- Hypotheses
 - H_0 : X follows a distribution (Normal, Poisson, etc.)
 - H_a: X does not follow the specified distribution

$$\chi^{2} = \sum_{i=1}^{k} \frac{(y_{i} - np_{i})^{2}}{np_{i}} \sim \chi^{2} (k - 1 - h) \text{ under } H_{0.}$$

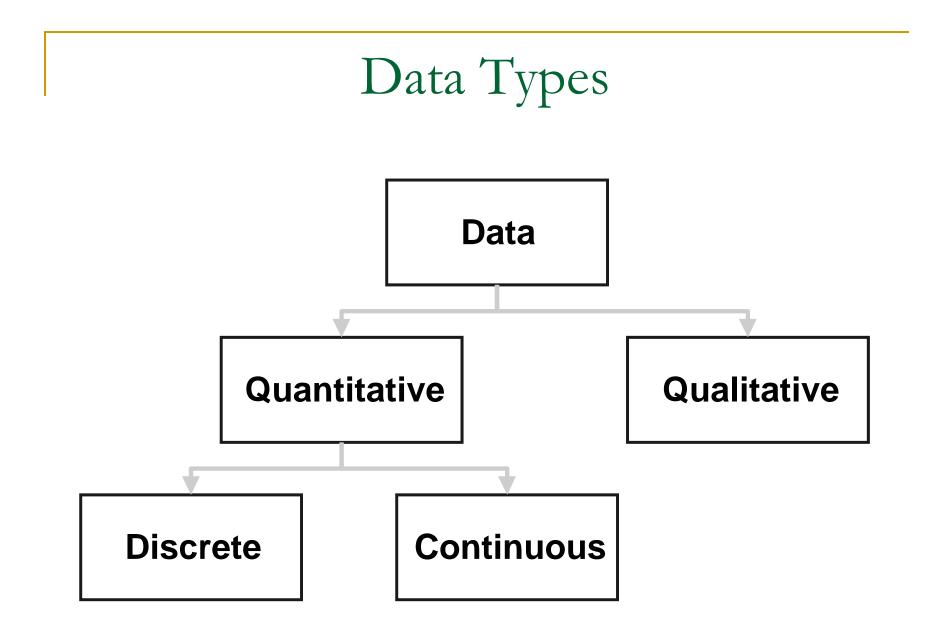
where degrees of freedom is (*k-1-h*) and *h* is the number of unknown parameters specified in null hypothesis.

Rejection Region:
$$\left\{\chi^2 > \chi^2_{\alpha}(k-1-h)\right\}$$

Example: We observe n=85 values of a r.v. X that is thought to have a Poisson distribution

Hypotheses:

 $H_0: X \sim Poisson(\lambda)$ vs $H_1: X$ does not follow *Poisson* distribution



R code: F-test and t-test

>sole <- read.table("H:/Teaching/STAT-481/sole.txt", header=TRUE, sep="\t")
>names(sole)
[1] "Boy" "MA" "MB"

> var.test(sole\$MA, sole\$MB)

test of equal variance

- > F test to compare two variances data: sole\$MA and sole\$MB
- F = 0.9474, num df = 9, denom df = 9, p-value = 0.9372

alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval:

0.2353191 3.8142000

sample estimates:

ratio of variances

0.9473933

> ## Use two-sample t-test with equal variances

>t.test(sole\$MA, sole\$MB, var.equal=T)
> Two Sample t-test
 data: sole\$MA and sole\$MB
t = -0.3689, df = 18, p-value = 0.7165
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.744924 1.924924
sample estimates:
 mean of x mean of y
 10.63 11.04

> ## paired comparison design -- two-tailed test

> t.test(sole\$MA, sole\$MB, paired=T)
>t.test(sole\$MA, sole\$MB, paired=T)\$statistic
> t.test(sole\$MA, sole\$MB, paired=T)\$p.value
> t.test(sole\$MA, sole\$MB, paired=T)\$conf.int

right-tailed paired t-test
>t.test(sole\$MA, sole\$MB, paired=T, "greater")

Normality Check (R code)

x.norm <- rnorm(n=100, m=5, sd=1)

```
boxplot(x.norm, main="Boxplot")
hist(x.norm, main="Histogram of the data")
```

plot(density(x.norm), main="Density estimate")
qqnorm(x.norm)

```
z.norm <- (x.norm - mean(x.norm))/sd(x.norm)
qqnorm(z.norm)
abline(0, 1)</pre>
```

```
ks.test(z.norm, "pnorm", m=0, sd=1)
```

shapiro.test(x.norm)

Normal distribution mean=5, var=1

Boxplot ## Histogram

Density Estimate
QQ-plot

standardization
QQ-plot of z.norm
Add a straight line: y = a + b*x

One-sample Kolmogorov-Smirnov test

Shapiro-Wilk normality test

Chi-Square test for k Proportions (R code)

```
method =1:3

k = 3

count = c(63, 45, 72)

n = sum(count)

data = cbind(method, count)
```

```
## expected probability / expected count

p0 = c(1/3, 1/3, 1/3)

count.exp = n*p0
```

```
## observed chisquate test statistic
chisq.obs <- sum((count - count.exp)^2/count.exp)</pre>
```

```
## p-value
1 - pchisq(chisq.obs, df=k-1)
```

```
## rejection region given level=alpha
alpha <- 0.05
chisq.obs > qchisq(1-alpha, df=k-1)
```

Chi-Square test for Independence (R code)

raw <- c(49, 53, 51, 47) ; n <- sum(raw) data <- matrix(raw, 2, 2, byrow=TRUE) a <- ncol(data) ; b <- nrow(data)

read data in matrix

cell averages
row.tot <- apply(data, 1, sum)
p.idot <- as.vector(row.tot/n)
col.tot <- apply(data, 2, sum)
p.doti <- as.vector(col.tot/n)

row sum

column sum

cell expected averages under independence
cellprob.exp <- (p.idot) %*% t(p.doti) ## '%*%' matrix product ##
cellmean.exp <- n*cellprob.exp</pre>

Observed Chisquare Test Statistic chisq.obs <- sum((data - cellmean.exp)^2/cellmean.exp)</pre>

1 - pchisq(chisq.obs, df = $(a-1)^*(b-1)$) ## p-value

alpha <- (0.01) ## significance level chisq.obs > gchisg(1 - alpha, df = $(a-1)^*(b-1)$)