Chapter 8.
Simple Linear Regression




Regression analysis:

e regression analysis is a statistical methodology to estimate the relationship
of a response variable to a set of predictor variable.

e When there is just one predictor variable, we will use simple linear regression.
When there are two or more predictor variables, we use multiple linear
regression.

e When it is not clear which variable represents a response and which is a predictor,
correlation analysis is used to study the strength of the relationship

History:

e The earliest form of linear regression was the method of least squares,
which was published by Legendre in 1805, and by Gauss in 1809.

e The method was extended by Francis Galton in the 19th century to describe
a biological phenomenon.

e This work was extended by Karl Pearson and Udny Yule to a more general
statistical context around 20th century.
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Simple Linear Regression




Model Assumption

Specific settings of the predictor variable (x) and
corresponding values of the response variable (Y)

(4 ¥2) (% ¥2) s (X0 Ys)
Assume :
y. - observed value of the random variableY; on x.
Simple Linear Regression :
Y=l + bX +¢&, 1=1.
where random error are & ~""% N(0, 02)
ResponseY, : E(Y,)= 4, + B.x, Var(Y,)= o
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Figure 10.1 Simple Linear Regression Model




Example 1. (Tires Tread Wear vs. Mileage: Scatter Plot)

/ Table 10.1 Mileage and Groove Depth of a Car Tire

o1 Mileage (in 1000 miles) ~ Groove Depth (in mils)
2| . 0 394.33
£ . 4 329.50
5 .0l 8 291.00
% 12 255.17
20 204.83
% ; T 2 Rk i LS
Mileage (in 1000 miles) 28 163.83
32 150.33

Figure 10.2 Scatter Plot of Groove Depth vs. Mileage
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Figure 10.3 Scatter Plot with a Trial Straight Line Fit

Least Square Criterion (residual sum square)
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The “best” fitting straight line in the sense of minimizing Q:
Least Square estimate

One way to find the LS estimate £, and 5,

Q
B 2;[3’. (B, + B%)]
Q

B ZZ_llx[Y. (B + BX)]

Setting these partial derivatives equal to zero and simplifying, we get the

Normal Equation ’ i
pon "‘,Blz X = Z Yi
i=1 i=1

ﬂoi X; +ﬂli Xi2 = i XY




Solve the equations and we get the least square
estimators of Bo and [31.
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Maximum Likelihood Estimators of Bo and Bu.

Under normal assumption of the errors, the likelihood function of the
parameters, Bo and 1, given the (observed) responses is

L(Bo. AoV Yn) =TT fv (vi: Bo. 1), [Giveny; ~ N(ﬂowlxi,az)]
=1

T (zwz Tl/z exp{_ (i - Ao —zﬂlxi Y }
i=1 20
L !
O =1

Maximum Likelihood Estimators (MLE) of £y and f; :
(:‘go’:él)MLE = maxﬂo,ﬂleR{L(:BOuBl)}

n

= minﬂo,ﬂleR{Z(Yi — o — X )2} - (léo"él)LSE
I=1

10



To simplify expressions of the LS solution, we introduce
n . B n 1 n n
Sxy = Z(Xi =X)(Y; —Y) = inyi _H(Z Xi)(z yi)
=1 =1 =1 i1=1
Sxx — Z(Xi _7)2 — inz _E(Z:Xi)2
i—1 = n iz

n . n 1 n
SW :Z(yi - Y)Z :Z:3/i2 _H(Z yi)2
i=1 i=1 i=1
.. A A SXy
Coefficient LSE: Sy =y—- X, pi=—
AN AN AN SXX
We get The equation y=/f,+ f, X is known as the

least squares line, which is an estimate of the true
regression line.

11



Example 2 (Tire Tread vs. Mileage: Least Square Fit)
Find the equation of the line for the tire tread wear data

D x =144,%"y, =2197.32,> x’ =3264,> y} =589,887.08, > Xy, =28,167.72
and n=9. From these we calculate X =16,y =244.15,

n 1 n n 1
S, = D %Y, ——(Q_x)(Q_Y,) = 28,167.72 - = (144 % 2197.32) = —6989.40
1 n 9

i=1

n 1 g 1
S = Z X’ - (Z x )’ = 3264 —5(144)2 = 960
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The slope and intercept estimates are

- —6989.40

=gy =128l and B, = 244.15+7.281*16 = 360.64

Therefore, the equation of the LS line is

y = 360.64 — 7.281x.

Conclusion: there is a loss of 7.281 mils in the tire groove depth
for every 1000 miles of driving.

Given a particular xX=25
We can find that y = 360.64 - 7.281*25 = 178.62 mils

which means the mean groove depth for all tires driven for
25,000miles is estimated to be 178.62 mils.
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Goodness of Fit of the LS Line

Coefficient of Determination and Correlation
Fitted line:y, = 8, + Bx, (1=12,....n)

The residuals: €, =y, — V. = . —(,30 +,6A’1Xi ),i =1...,n
are used to evaluate the goodness of fit of the LS line.
Decomposition of Sum Squares:
n n n n
SST =" (yi -V =2 (Fi -y + 2 (vi—%i ) +22(vi - 9 XFi - V)
i=1 i=1 i=1

i1

J/ J/ J/

SSR SSE =0
SST = SSR + SSE
Note: Sum of Squares of Total (SST)
Sum of Squares of Regression (SSR)
Sum of Squares of Errors (SSE)
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Coefficient of Determination

_SSR_, SSE

Define: R2 — _
SST SSR

The ratio is called the coefficient of determination. It explains
the percentage of the variation in response variable (Y) is
accounted for by linear regression on the explanatory

variable (x).

It can be shown that R is the square of the sample linear

correlation coefficient (r), i.e.

0<R%=r?=

2
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Example 3(Tire Tread Wear vs. Mileage: Coetficient of

Determination and Correlation)

For the tire tread wear data, calculate R? using the results from
Example 10.2 we have

SST =S, => ¥/ —1(2 y?) =589,887.08 —3(2197.32)2 =53,418.73
i—1 n i3

Calculate  SSR = SST — SSE =53,418.73-2531.53 =50,887.20

, 50,887.20

= =0.953 and r =-0.953 =-0.976
53,418.73

Therefore r

where the sign of r follows from the sign of,é1 =—7.281 since 95.3% of the
variation in tread wear is accounted for by linear regression on mileage,
the relationship between the two is strongly linear with a negative slope.
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Estimation of o2

An unbiased estimate of o is given by

MSE:SS_E

n-2
Example 4. (Tire Tread Wear Vs. Mileage: Estimate of o8

Find the estimate of for the tread wear data using the results from
Example 10.3 we have SSE=2357.3 and n-2=7,therefore

SSE B 2351.53
n-—2
which has df=7. The estimate of o is

& =~/MSE =+/361.65 =19.02

62 = MSE = —361.65
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Statistical Inference on 3, and [,

Sxy
S

XX

Point estimators: ,30=V—,51Y, ,51

Sampling distributions of 4 and 4 :
.2 .2
jo- N(,BO,ZXI 02], SE(,E’O):\/ZXI MSE

NSxx NSxx

Sxx ) Sxx

where &2 = MSE, the mean sguare error.

B~ N{ﬂl,a—p, SE(ﬁl)= MSE
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Statistical Inference on [, and 3;, Con’t

Sampling distribution (parameter-free):.

Lo yno2) B i(n-2)
SE(So) SE(SY)

Confidence Interval’s for o and B+ :

By +t, (n—2)-SE (o)
(n-2)-sE(3)

N[ R

B, £t

N | R
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Testing hypothesis on 3, and [,

. 0 _ 0
Hypothesis test: H,: 5= H,:B#p
or H,:f=0 H,:5=0
-- Test statistic: R O
T = 181 _1’\81

SE(4.)

-- At the significance level a, we reject H, in
favor of Hy iff [T|>1t,,,(n-2)

-- Can be used to show whether there is a
linear relationship between x and Y.
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Analysis of Variance (ANOVA), Con't

Mean Square: a sum of squares divided by its d.f.

MSR:SS_R, MSE:SS_E
1 n—2

~ ~ 2
MSR SSR A%« | B
MSE MSE MSE MSE / Sxx

MSR
MSE

~ 2
(SE’?’%J =T% ~F(Ln-2) under Hy: B =0.
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Analysis of Variance (ANOVA)

ANOVA Table
Source of Sum of Degrees of Mean F
Variation Squares  Freedom Square
(Source) (SS) (d.f.) (MS)
Regression SSR 1 MSR:ﬁ :@
1 MSE
Error SSE n-2 MSE= rSEE?
Total SST n-1
Example:

Source SS d.f. MS F
Regression 50,887.20 1 50,887.20 140.71
Error 2531.53 7 361.25
Total 53,418.73 8
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Regression Diagnostics

Checking for Model Assumptions
Checking for Linearity
Checking for Constant Variance
Checking for Normality
Checking for Independence
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Checking for Linearity

Xi = Mileage Y=Bo+ P1 X
A Yi = Groove Depth
Xi Yi Yi ei
Yi _hat = fitted value ei =residual
0 394.33 360.64 33.69
Scatterplot of ei vs Xi
4 329.50 331.51 -2.01 40
8 291.00 302.39 -11.39 30-
°
12 255.17 273.27 -18.10 20
16 229.33 24415 -14.82 T 107 .
20 204.83 215.02 -10.19 b=
{
24 | 179.00 | 185.90 -6.90 =Y °
°
201 °
28 163.83 156.78 7.05 i . . T . . .
10 15 20 25 30 35
Xi
32 150.33 127.66 22.67
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‘>Checking for Normality

Normal Probability Plot of residuals
Normal

99

Mean 3.947460E-16
StDev 17.79
N 9
AD 0.514
P-Value 0.138

Percent
(o))
o
1

I I I I
-40 -30 -20 -10 0 10 20 30 40 50
C1l




» Checking for Constant Variance

Residuals

40

30 1

20 -

10 1

-10

-20

-30

Plot of Residuals vs Fitted Value

¢
¢
100 ‘200 300
¢ .
L 4
¢
Fitted Value

Var(Y) is not constant.

___ .[. —
-
1

A sample residual plots when

Var(Y) Is constant.
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» Checking for Independence

Time Heries Plot
= Does not apply for of Australian Sales of Dry White Wine

Simple Linear -
Regression Model

x Only apply for time
series data

5000 =~

:}) M

2000 -

No of Litre:z (1000':

IIIIIIIIIIIIIIII

Yoor 80 §1 R 83 &4 35 & 87 48 89 90 91 92 93 94 95
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Outlier and Influential Points

70

y=173+512%

60 —
50 —

30 —
20 —

10 —




Do the two samples yield different results when testing Hy: f, = 0?7 We
obtain the following output when the blue data point is included:

The regression equation is y = 8.50 + 3.32 X

Predictor Coef SE Coef T P

constant 8.505 4.222 2.01 0.058
x 3.3198 0.6862 4,84 0.000
s = 10.45 R-8gq = 55.2% R-8qg(adj) = 52.8%

and the following output when the blue data point is excluded:

The regression equation is v = 1.73 + 5.12 x

Predictor Coef SE Coef T P

Constant 1.732 1.121 1.55 0.140
X 5.1169 0.2003 25.55 0.000
g = 2.592 R-8q = 97.3% R-Sqg{adj) = 97.2%
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Checking for Outliers & Influential Observations

What is OUTLIER
Why checking for outliers is important?
Mathematical definition

How to deal with them?

Investigate (Data errors? Rare events? Can be corrected?)
Ways to accommodate outliers

Non Parametric Methods (robust to outliers)

Data Transformations

Deletion (or report model results both with and without the outliers
or influential observations to see how much they change)
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Data Transformations

Reason
To achieve linearity
To achieve homogeneity of variance

To achieve normality or symmetry about the regression
equation

Method of Linearizing Transformation

Use mathematical operation, e.g. square root, power, log,
exponential, etc.

Only one variable needs to be transformed in the simple
linear regression.

Which one? Predictor or Response? Why?
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Exponential transformation on' Y = a exp (-px)
& logY=loga -Bx

Xi Yi log YI: exp (IogAYi) Ei
0 394.33 5.926 374.64 | 19.69
4 329.50 5.807 332.58 | -3.08
8 291.00 5.688 295.24 | -4.24
12 (= 25547 5.569 262.09 | -6.92
16 | 229.33 5.450 232.67 | -3.34
20 | 204.83 5.331 206.54 | -1.71
24 | 179.00 5.211 183.36 | -4.36
28 | 163.83 5.092 162.77 1.06
32 | 150.33 4.973 144.50 5.83

Plot of Residual vs xi & xi from the exponential fit

40

Variable
@ ei (original)
[ ] B ej with transformation
30
[ ]
20 m
®
B
& (]
0- | |
| |
T L . .
] [ J
-10 ° [ J
[ J
[ J
-204
T T T T T T T T
0 5 10 15 20 25 30 35
xi
Normal Probability Plot of ei and ei with transformation
99
Variable
—@— e
954 —B— ei with transformation
M StDev N AD P
90 3.947460:—;12 17.:; 9 0514 0.138
0.3256_8.142 9 0.912 0.011
80_
70
=)
C 60
]
O 504
S
gf 404
304
20
10
5]
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Residual Check

Model checking by residual plots:

1. residual vs fitted value ---e vs'Y.

2. residual vs explanatory variable ---- e, vs X,
3. residual vs lag of residual --- e vs e,
Transformation

1. Boxcox transformation for skewed distribution
2. log transformation

3. square root transformation

Correlation of residuals

1. correlation coefficient

2. Durbin-Watson Statistic (series)
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Durbin-Watson Statistic

Lag 1 autocorrel ation coefficien t

n
Z €116t

Corr (i, yi1) = =25

> ef

t=1

Lag k autocorrel ation coefficien t
Corr (i, Yi—k) = Ik

Durbin —Watson Statistic :
n

Z(et—l_et)z
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Correlation Analysis

Correlation: a measurement of how closely two
variables share a linear relationship.

Cov(X,Y)
JVar(X)Var(Y)
Useful when it is not possible to determine which

variable is the predictor and which is the response.
o Health vs wealth. Which is predictor? Which is response?

- p=corr(X,Y)=
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Linear Correlation Coefficient

[ ] » e
[ ] ° . . o ’ ° L]
[ ] ° .. * L]
[ ]
r=—1 r=—0.94 r = 40.08
(a) (b) (c)
A
L]
= . ® o o
[ ]
[ ] L] (]
° [ ]
® ® 9 °
s e o
° [ ]
'0 r=+4+1 r = +4+0.86 r = .00
(d) (e) (f)
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Derivation of T

are these equivalent ?

-2 7 Therefore, we can use t

"o SE(R) as a statistic for testing
against the null

substitute : hypothesis

. Hy: 8,=0
I’I,B1 S, 'Bl Syy ﬂlVSST
L2 _ SSE _ (n-2)s’ Equ_ivalently, we can test

©SST  SST against
Hy: p=0

then : =
t:[}\/sxx \/(n—Z)SST A A t=1 n—22 ~t(n-2)
VSST Y (n-2)s>  s/.S, SE(A) V1-r

.. yes, they are equivalent.
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