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Chapter 8. 
Simple Linear Regression
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Regression analysis:

● The earliest form of linear regression was the method of least squares, 
which was published by Legendre in 1805, and by Gauss in 1809. 

● The method was extended by Francis Galton in the 19th century to describe 
a biological phenomenon. 

● This work was extended by Karl Pearson and Udny Yule to a more general 
statistical context around 20th century. 

● regression analysis is a statistical methodology to estimate the relationship 
of a response variable to a set of predictor variable.

History:

● when there is just one predictor variable, we will use simple linear regression. 
When there are two or more predictor variables, we use multiple linear 
regression.

● when it is not clear which variable represents a response and which is a predictor, 
correlation analysis is used to study the strength of the relationship
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Section 8.1. 
Simple Linear Regression
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Model Assumption
 Specific settings of the predictor variable (x) and 

corresponding values of the response variable (Y)
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Example 1. (Tires Tread Wear vs. Mileage: Scatter Plot)
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Least Square Criterion  (residual sum square)
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The “best” fitting straight line in the sense of minimizing Q:
Least Square estimate

One way to find the LS estimate       and      

Setting these partial derivatives equal to zero and simplifying, we get the 
Normal Equation
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 Solve the equations and we get the least square 
estimators of β0 and β1.
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Maximum Likelihood Estimators of β0 and β1.

 Under normal assumption of the errors, the likelihood function of the 
parameters, β0 and β1,  given the (observed) responses is
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 To simplify expressions of the LS solution, we introduce

 We get The equation                       is known as the 
least squares line, which is an estimate of the true 
regression line. 

1 1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

1( )( ) ( )( )

1( ) ( )

1( ) ( )

n n n n

xy i i i i i i
i i i i
n n n

xx i i i
i i i
n n n

yy i i i
i i i

S x x y y x y x y
n

S x x x x
n

S y y y y
n

   

  

  

    

   

   

   

  

  

0 1y x 
  

 
xx

xy
S
S

xy  110 ˆ    ,ˆˆ  :LSEt Coefficien 



12

Example 2 (Tire Tread vs. Mileage: Least Square Fit)

Find the equation of the line for the tire tread wear data 

and n=9. From these we calculate 

2 2144, 2197.32, 3264, 589,887.08, 28,167.72i i i i i ix y x y x y        

16, 244.15,x y 

1 1 1

1 1
( )( ) 28,167.72 (144 2197.32) 6989.40
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The slope and intercept estimates are

Therefore, the equation of the LS line is

Conclusion: there is a loss of 7.281 mils in the tire groove depth 
for every 1000 miles of driving.

Given a particular 
We can find that y = 360.64 - 7.281*25 = 178.62 mils
which means the mean groove depth for all tires driven for 
25,000miles is estimated to be 178.62 mils.

1 0
6989.40ˆ ˆ7.281 244.15 7.281*16 360.64

960
and 

       

25x 

360.64 7.281 .y x 
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Goodness of Fit of the LS Line

Coefficient of Determination and Correlation

 The residuals: 
are used to evaluate the goodness of fit of the LS line.

 Decomposition of Sum Squares:

SST = SSR + SSE
Note:  Sum of Squares of Total  (SST)

Sum of Squares of Regression (SSR)
Sum of Squares of Errors (SSE)      

( 1,2,..... )i n 

        
  

0
11

2

1

2

1

2 ˆˆ2ˆˆ



 
n

i
iii

SSE

n

i
ii

SSR

n

i
i

n

i
i yyyyyyyyyySST

ix10i
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 Define:

 The ratio is called the coefficient of determination. It explains 
the percentage of the variation in response variable (Y) is 
accounted for by linear regression on the explanatory 
variable (x).

 It can be shown that      is the square of the sample linear 
correlation coefficient (r), i.e.  

Coefficient of Determination
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Example 3(Tire Tread Wear vs. Mileage: Coefficient of 
Determination and Correlation)

 For the tire tread wear data, calculate        using the results from 
Example 10.2 we have 

 Calculate

 Therefore  

where the sign of r follows from the sign of                    since 95.3% of the 
variation in tread wear is accounted for by linear regression on mileage, 
the relationship between the two is strongly linear with a negative slope.

2 2 2

1 1

1 1( ) 589,887.08 (2197.32) 53, 418.73
9

n n

yy i i
i i

SST S y y
n 

      
53, 418.73 2531.53 50,887.20SSR SST SSE    

2 50,887.20 0.953 0.953 0.976
53, 418.73

r and r       

1̂ 7.281  

2R
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Estimation of 

An unbiased estimate of is given by

Example 4. (Tire Tread Wear Vs. Mileage: Estimate of

Find the estimate of   for the tread wear data using the results from 
Example 10.3 we have SSE=2351.3 and n-2=7,therefore 

which has df=7. The estimate of        is           

2

2

2


n
SSEMSE

65.361
7

53.2351
2

ˆ 2 
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02.1965.361ˆ  MSE
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Point estimators:     

Sampling distributions of     and     :
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Statistical Inference on    and ,  Con’t

Sampling distribution (parameter-free):

Confidence Interval’s for β0 and β1 :
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Hypothesis test:
or

-- Test statistic:

-- At the significance level α, we reject       in
favor of       iff 

-- Can be used to show whether there is a
linear relationship between x and Y. 
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Analysis of  Variance (ANOVA), Con’t

Mean Square: a sum of squares divided by its d.f.
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Analysis of  Variance (ANOVA)

ANOVA Table

Example:

Source of 
Variation
(Source)

Sum  of 
Squares

(SS)

Degrees of      
Freedom

(d.f.)

Mean          
Square
(MS)

F

Regression

Error

SSR

SSE

1

n - 2
Total SST n - 1

SSRMSR=
1

SSEMSE=
2n 

MSRF=
MSE

Source SS d.f. MS F
Regression
Error

50,887.20  
2531.53

1
7 

50,887.20
361.25

140.71

Total 53,418.73   8    
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Regression Diagnostics

Checking for Model Assumptions
 Checking for Linearity
 Checking for Constant Variance
 Checking for Normality
 Checking for Independence
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Checking for Linearity
Xi  = Mileage Y=β0 + β1 x
Yi  = Groove Depth

Yi _hat = fitted value ei =residual                       
i Xi Yi

^
Yi ei

1 0 394.33 360.64 33.69

2 4 329.50 331.51 -2.01

3 8 291.00 302.39 -11.39

4 12 255.17 273.27 -18.10

5 16 229.33 244.15 -14.82

6 20 204.83 215.02 -10.19

7 24 179.00 185.90 -6.90

8 28 163.83 156.78 7.05

9 32 150.33 127.66 22.67
Xi

ei
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Checking for Normality
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Checking for Constant Variance

Var(Y) is not constant.                     A sample residual plots when
Var(Y) is constant.

Plot of Residuals vs Fitted Value
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Checking for Independence

 Does not apply for 
Simple Linear 
Regression Model

 Only apply for time 
series data 
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Outlier and Influential Points
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Checking for Outliers & Influential Observations 

 What is OUTLIER
 Why checking for outliers is important?
 Mathematical definition

 How to deal with them?

 Investigate (Data errors? Rare events? Can be corrected?)
 Ways to accommodate outliers
1. Non Parametric Methods (robust to outliers)
2. Data Transformations
3. Deletion (or report model results both with and without the outliers 

or influential observations to see how much they change)
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Data Transformations  
Reason
 To achieve linearity
 To achieve homogeneity of variance
 To achieve normality or symmetry about the regression 

equation

 Method of Linearizing Transformation
 Use mathematical operation, e.g. square root, power, log, 

exponential, etc.
 Only one variable needs to be transformed in the simple 

linear regression.  
Which one? Predictor or Response? Why? 
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Xi Yi
^

log Yi
^

exp (logYi) Ei

0 394.33 5.926 374.64 19.69

4 329.50 5.807 332.58 -3.08

8 291.00 5.688 295.24 -4.24

12 255.17 5.569 262.09 -6.92

16 229.33 5.450 232.67 -3.34

20 204.83 5.331 206.54 -1.71

24 179.00 5.211 183.36 -4.36

28 163.83 5.092 162.77 1.06

32 150.33 4.973 144.50 5.83

Exponential transformation  on Y =  exp (-x)      
 log Y = log - x  

xi
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Residual Check
 Model checking by residual plots:

1. residual vs fitted value  --- ei vs Yi

2. residual vs explanatory variable  ---- ei vs xi

3. residual vs lag of residual  --- ei vs ei-1

 Transformation
1. Boxcox transformation for skewed distribution
2. log transformation
3.  square root transformation

 Correlation of residuals 
1. correlation coefficient
2. Durbin-Watson Statistic (series)
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Durbin-Watson Statistic
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Correlation Analysis

 Correlation:  a measurement of how closely two 
variables share a linear relationship.



 Useful when it is not possible to determine which 
variable is the predictor and which is the response.
 Health vs wealth.  Which is predictor?  Which is response?

Y)Var(X)Var(
Y) Cov(X,  Y) corr(X,  
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Linear Correlation Coefficient
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Derivation of T
 Therefore, we can use t

as a statistic for testing 
against the null 
hypothesis

H0: β1=0 

 Equivalently, we can test 
against

H0: ρ=0 
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