Chapter 6. Experiments with
One Factor




An Introduction to Experimental Design

Statistical studies can be classified as being either
experimental or observational.

In an experimental study, one or more factors are
controlled so that data can be obtained about how
the factors influence the variables of interest.

In an observational study, no attempt is made to
control the factors.

Cause-and-effect relationships are easier to
establish in experimental studies than in
observational studies.




Basic Concepts

A factor is a variable that the experimenter has
selected for investigation.

A treatment is a level of a factor.

Experimental units are the objects of interest in the
experiment.

A completely randomized design is an experimental
design in which the treatments are randomly
assigned to the experimental units.




Completely Randomized Design

Suppose we have 4 different diets which we want to compare. The diets are
labeled Diet A, Diet B, Diet C, and Diet D. We are interested in how the diets aftect the
coagulation rates of rabbits. The coagulation rate 1s the time in seconds that it takes for a
cut to stop bleeding. We have 16 rabbits available for the experiment, so we will use 4
on each diet. How should we use randomization to assign the rabbits to the four
treatment groups? The 16 rabbits arrive and are placed in a large compound until you are
ready to begin the experiment, at which time they will be transferred to cages.

Possible Assignment Plans

Method 1: We assume that rabbits will be caught "at random". Catch four rabbits and
assign them to Diet A. Catch the next four rabbits and assign them to Diet B. Continue
with Diets C and D. Since the rabbits were "caught at random", this would produce a
completely randomized design. Analyze the results as a completely randomized design.

Method 2: Catch all the rabbits and label them 1-16. Select four numbers 1-16 at random
(without replacement) and put them in a cage to receive Diet A. Then select another four
numbers at random and put them in a cage to receive Diet B. Continue until you have
four cages with four rabbits each. Each cage receives a different diet, and the experiment
1s analyzed as a completely randomized experiment.



Method 3. Have a bowl with the letters A, B, C, and D printed on separate slips of paper.
Catch the first rabbit, pick a slip at random from the bowl and assign the rabbit to the diet
letter on the slip. Do not replace the slip. Catch the second rabbit and select another slip
from the remaining three slips. Assign that diet to the second rabbit. Continue until the
first four rabbits are assigned one of the four diets. In this way, all of the slow rabbits
have different diets. Replace the slips and repeat the procedure until all 16 rabbits are
assigned to a diet. Analyze the results as a completely randomized design.

Method 4 Catch all the rabbits and label them 1-16. Put 16 slips of paper in a bowl, four
each with the letters & B, C, and D Put another 16 slips of paper numbered 1-16 1n a
second bowl  Pick a slip from each bowl. The rabbit with the selected number 15 given
the selected diet. To tnake it easy to remember which rabbit gets which diet, the cages
are arranged as shown below.




A Completely Randomized Design

Label the cages 1-16. In a bowl put 16 strips of paper each with one of the
integers 1-16 written on 1it. In a second bowl put 16 stnips of paper, four each labeled A&,
E, C, and D Catch a rabhit. Select a number and a letter from each bowl. Flace the
rabbit in the location indicated by the number and feed it the diet assigned by the letter.
Eepeat without replacement until all rabbits have been assigned a diet and cage.
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One-Way ANOVA Table

One-Way ANOVA

To analyze the results of the expeniment, we use a one-way analysis of vanance.
The measured coagulation tines for each diet are given bel ow:

Diet A | Diet B | Diet C | Diet D
62 63 68 56
&0 &7 66 62
63 71 71 &0
59 &} &7 61
Mean 61 66,25 68 39.75

The null hypothesisis

Hyfhy=Mg= o=, (el treattnent means the same)
atd the alternative 13

A at least ene mean different.



One Factor Experiment
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Section 6. 1 Completely Randomized One-factor Design

Model (with k treatments or k factor levels)
Yij = U -I—é‘ij J=1,....K; j = 1,...,ni.
& Yij = U+ T+ g,

y 2
where iid error &ijj ~ N(O,G lN =Z%<:1”i-

Y;; : response of ] - th replicate at I - th treatment level

4. :mean of observations at I - th treatment (7, : treatment effect)
K : number of treatment levels

n. :number of observations at I - th treatment level

K
N = Z n, : total number of observations
i=1



Section 6. 1 Completely Randomized One-factor Design

Least square estimator for u = (4,,..., 1, )":

v n_
A=(X'XY'X'Y =| i |or & =\7i=ni Y,
\Y_k i )=l

Sum Square Decomposition: SSTO = SSTR + SSE
k N,

52

1j=1

>

SSTO =_§_nzi(”—v)2v ﬁ

SSTR % (i -YY) Y:izvu,u—l,,k

=1 nljl

k n, . n, L
= ; 2 (Yij —Yi)2 = Z(”i ~1)s7, st = _1 2 (Yij —Yi)2
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Testing main effects

Null hypothesis to compare k treatment effects:
HO U == U = HO == T =0

given that yX niz; =0 . It can be shown that
k
E(MSE)=o?,E(MSTR)= 0" +ﬁz nz.’,
1=l

Under H,, E(MSTR) = E(MSE), and the F - statistic is
MSTR  SSTR/(k—1)
MSE  SSE/(N —k)

F = ~F(k-1,N —k)

Reject H, (treatment effects are significantly different)
when p-value is less than given level a.

or reject Hy if F > F_(k-1, N-k)
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Completely Randomized Design

Analysis of Variance Table (ANOVA)

Source of Sumof Degrees of Mean
Variation  Squares  Freedom Squares F
Treatments SSTR k-1 MSTR= SoTR F— MSTR
k-1 MSE
SSE
Error SSE N-k MSE-= N_K

Total SST N-1
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Example - Etch Rate and RF Experiment

An engineer is interested in investigating the relationship between the RF
power setting and the etch rate for his tool.

The objective of an experiment like this is to model the relationship
between etch rate and RF power and to specify the power setting that will
give a desired target etch rate. He wants to test four levels of RF power:
160W, 180W, 200W, and 220W. He decided to test five wafers at each

level of RF power.

Power

(W)

160
180
200
220

SAS code (with boxplot) and R code

Observations

1

575
565
600
725

2

542
593
651
700

3

530
590
610
715

539
578
637
685

570
610
629
710

Total Averages
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‘ SAS Code - ANOVA

ods html; /* Output Delivery System */

data ratedata;
input Power Rate @@;
datalines ;

160 575

160 542

220 685
220 710

proc print data=ratedata;
run;

proc anova data=ratedata;
class Power; I* Specify factor(s) */
model Rate=Power;

run;

title '‘Box Plot for Etch Data’;

proc boxplot data=ratedata;
plot Rate * Power ; I* Compare Boxplots at different power levels */
run;

-1 ods html close;
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Section 6.2 Inferences in One-Factor Experiments

ANOVA model Yijj = 4 + &jj, &jj ~HEN(0,07)
SYij =0+ + 1 g+ 40 1y + 65
Yij :ei',u+gij,i =1,....K; ] =1,...,n;
Y=Xu+¢
Least Square Estimator: z=(X'X ) 'X'Y, 2 =Y; =

1 n
— 2 Yi
|
Reference Distribution :

2 JR—
— o Yi — w4 :
Y; ~N| gj,— |=> =L ~t(N-k),,i=1,..k
i [ﬂl ni) MSE ( )

N

100(1-a)% Confidence Interval of ;2 ¢ | ¢ (N —k)- /I\/ISE
I —_—
i

@
2

15



Pairwise Comparison H: p. = W vs Hy: 7 M

100(1-a)% Confidence Interval of (u;— ;) :

(Vi - Jxt, (N —k)-\/MSE£1+1J

5 n; nj
Fisher’'s Least Significant Difference (LSD)
For a balanced design (n,=n,=...= n,=n),
LSD =t, (N —k)- 2-MSE
5 n
_ 1 1
Reject Hyif 1Yi—Yj[>LSD=t, (N —k)'\/MSE[n_JFn_}
2 S
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Bonferroni Test (Multiple Pairwise Comparison)

Test Hy: ;= ; for any pair (1, j) s Hq: at least one pair is not the same

Additive Law o
o= P(UTZIRj)sZTZIP(RJ—)a* =<

A factor has k levels, # of pairwise comparisons is k(k-1)/2

Bonferroni Confidence Interval for (y;— ;)

1 1

Yi -V Jtt e (N =k)- [MSE| —+— |,a*=—% Vi, j=1,...k
(l J) a( )\/ { + jaa k(k—l)/2’ IaJ LXERD)

n; nj

2
Reject H, if there is at least one C.I. doesn’t include 0.
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Tukey’s Multiple Comparison of Pairwise Difference

Test Hy: p; = ; for any pair (1, j) s Hy: at least one pair is not the same

Studentized range statistic Vo u )= (V= s
Ty = max 1<j j<k i - ) ( J ﬂj)

Nq(kaN _k)

Under H,, for balanced design Yo

Tukey’s Simultaneous Confidence Interval for (U;— ;)

(Y_l _Y_J )i q(l(ka N _k)\/I\/IQ’SE{l_i_IJ:\v/I) J — laak

n; nj

Reject H, if there is at least one simultaneous C.I. doesn’t include 0.
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Table C.8 Upper Percentage Points of the Studentized Range Distribution:
Values of ¢(0.05; k, v)

Degrees Number of Treatments k

Frec?if:um v 2 3 4 5 6 f) 8 9 10

1 180 270 328 372 405 431 454 473 491
2 6.09 833 980 10.89 11.73 1243 13.03 1354 13.99
3 450 591 683 751 804 847 885 918 946
4 393 504 576 629 671 706 735 760 783
D 364 460 522 567 603 633 658 680 6.99
6 346 434 490 531 563 589 612 632 649
Y 334 416 468 506 535 559 580 599 6.15
8 326 404 453 489 517 540 560 577 592
9 320 395 442 476 502 524 543 560 574
10 315 388 433 466 491 512 530 546 5.60
11 311 382 426 458 482 503 520 535 549
12 308 377 420 451 475 495 512 527 540
13 306 373 415 446 469 4838 505 519 532
14 303 370 411 441 464 483 499 513 525
15 301 367 408 437 459 478 494 508 520
16 300 365 405 434 456 474 490 503 515
17 298 362 402 431 452 470 486 499 511
18 297 361 400 428 449 467 483 496 507
19 296 359 398 426 447 464 479 492 504
20 295 358 396 424 445 462 477 490 501
24 292 353 390 417 437 454 468 481 492
30 289 348 384 411 430 446 460 472 483
40 286 344 379 404 423 439 452 463 474
60 283 340 374 398 416 431 444 455 465
120 280 336 369 392 410 424 436 447 456
o0 277 332 363 386 403 417 429 439 447

Source: Reproduced with permission from Table 29 of E. S. Pearson and H. O. Hartley,
Biometrika Tables for Statisticians, Vol. 1 (Cambridge: Cambridge University Press, 1954).
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Example (Deflection of Beams)

Type Observations Average
A 82,86,79,83,85,84,86,87 84
B 74,82,78,75,76,77 77
C 79,79,77,78,82,79 79

k, N,n,;,n,,n;, MSE

95% C.I. for individual treatment y;
Pairwise C.I. for p-

Bonferroni C.I. for all (p;- ;)

Tukey’s Simultaneous C.I. for all (u;- y;)
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Model Checking

Normality Check -- histogram and QQ plot

SAS code (proc univariate normal) R code (qgnorm)

Note: Use nonparametric alternative if normality is violated, e.g. a rank test
like the Kruskal-Wallis Test (follows a Chi-square distribution under condition

that there is no treatment difference).
Homogeneity of Variance — Levene’s Test
Ho :012 = 0'22 =..= Gl% vs. Hy :not all 0i2 are the same.
Levene’s Test is not sensitive to the normality.
Other comparison — Contrast
Ho :Z:(:1Ciri =0vs.H; :Z:(:ICiTi # 0 where Zrzl c; =0.

For example, 7 +7,—(r3+74)=0.
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Example:

Suppose you are comparing the time to relief of three headache
medicines -- brands 1, 2, and 3. The time to relief data 1s reported in
minutes. For this experiment, 15 subjects were randomly placed on
one of the three medicines. Which medicine (if any) is the most
effective? (SAS output)

DATA ACHE;

INPUT BRAND RELIEF;

CARDS; PROC ANOVA DATA=ACHE;

1245 CLASS BRAND:;

1 izj MODEL RELIEF=BRAND;

1271 MEANS BRAND / BON TUKEY LSD CLDIFF HOVTEST=LEVENE;
129.9 TITLE 'COMPARE RELIEF ACROSS MEDICINES *;
228.4 RUN:

234.2

2295

2322

2301 PROC BOXPLOT DATA=ACHE;

3 26.1 PLOT RELIEF*BRAND;

328.3 TITLE 'ANOVA RESULTS";

3243 RUN;

326.2

327.8




