Homework 2 – STAT 521. Due on Sept. 18, 2015

- 1. If A, B are both nonegative definite matrices, then A + B is also nonnegative definite and $\mathcal{M}(A) \subset \mathcal{M}(A + B)$.
- **2.** If $|A| \neq 0$, then it can be decomposed as A = GH where G is a positive definite matrix and H is an orthogonal matrix.
- **3.** Let $\lambda_1 \leq \ldots \leq \lambda_m$ be the solution of the determinant equation $|A \lambda C| = 0$, with A symmetric and C positive definite. Show that

$$\inf_{X \in \mathbb{R}^m} \frac{X^T A X}{X^T C X} = \lambda_1, \sup_{X \in \mathbb{R}^m} \frac{X^T A X}{X^T C X} = \lambda_m$$

where X^T is the transpose of X.

- **4.** Let V, W be two linear subspaces, show that $(V \cap W)^{\perp} = V^{\perp} + W^{\perp}$.
- 5. Let A be a $n \times m$ matrix with rank(A) = r. Then there exists a matrix B of order $s \times m$ such that rank(B) = m r, and no overlap between the two row spaces i.e. $\mathcal{M}(A^T) \cap \mathcal{M}(B^T) = \{0\}$. Show that
 - (1). $A^T A + B^T B$ is of full rank m.
 - (2). $(A^T A + B^T B)^{-1}$ is a g-inverse of $A^T A$, i.e.

$$A^T A \left(A^T A + B^T B \right)^{-1} A^T A = A^T A.$$

- 6. For a real convex function ϕ , real numbers $a_1, a_2, ..., a_n$ in its domain, and positive weights w_i with $\sum_{i=1}^n w_i = 1$.
 - (1). Show that Jensen's inequality holds as follows:

$$\phi\left(\sum_{i=1}^{n} w_{i} a_{i}\right) \leq \sum_{i=1}^{n} w_{i} \phi\left(a_{i}\right).$$

(2). A discrete random variable X has probability mass function $p_i = P(X = x_i), i = 1, ..., k$. Show that it is true $\phi[E(X)] \leq E[\phi(X)]$.