Homework 3 – STAT 521.

Due on Mondy, Oct. 5, 2015

Prob. 1. Suppose X and Y are both normal random variables, and

$$Y|X = x \sim N\left(\mu + x, \sigma^2\right), X \sim N\left(0, \lambda^2\right).$$

Find the unconditional distribution of Y.

Prob. 2. Consider linear model

$$Y = X\theta + \varepsilon, E(\varepsilon) = 0, V(\varepsilon) = \sigma^2 I_n,$$

where X is a matrix of order $n \times m$ and rank $r \leq m < n$, and $\mathbf{1}_n = (1, ..., 1)' \in M(X)$. If $\hat{\theta}$ is a solution of the normal equations, show that $\mathbf{1}'_n (Y - X\hat{\theta}) = 0$.

Prob. 3. For a simple linear regression model with intercept only

 $Y_i = \beta_0 + \varepsilon_i$, where i.i.d. errors $\varepsilon_i \sim N(0, \sigma^2)$, i = 1, ..., n.

- (1). Find appropriate matrix or vector for X, β and rewrite the linear regression in the general form $Y = X\beta + \varepsilon$.
- (2). Determine the orthogonal projection operator (least square) P_X , and calculate the predicted value $\hat{Y} = P_X Y$, and the residual $\hat{e} = Y \hat{Y}$.
- (3). Let matrix Z be a matrix of order $n \times (n-1)$ such that matrix $A = (n^{-1/2}X, Z)$ is an orthogonal matrix. Find the distribution of A'Y and Z'Y.
- (4). Based on Cochran's Theorem, prove that the sample mean \overline{Y} is independent of the sample variance s^2 . [Hint: Decompose Y'Y.]

Prob. 4. Prove the following theorem related to Cochran's Theorem: Let A_i , i = 1, ..., k be $p \times p$ symmetric matrices such that $\sum_{i=1}^{k} A_i = I_p$. Then the following three conditions are equivalent:

(1). $A_i A_j = 0$ for $i \neq j$; (2). A_i are all idempotent; (3). $\sum_{i=1}^k rank(A_i) = p$.

[Hint: Only need to show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.]