Homework 6 – STAT 521

Due on Nov. 25, 2015

1. Consider the linear model

$$Y = X\theta + \varepsilon, E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2 \Sigma,$$

where X is of order $n \times m$, and Σ is a symmetric $n \times n$ matrix with $rank(\Sigma) = k < n$ (not positive definite).

(1). Show that there are (n - k) linearly independent vectors $p_1, ..., p_{n-k} \in \mathbb{R}^n$ such that $p'_i Y = p'_i X \theta$ with probability 1 for any i = 1, ..., n - k.

(2). Show that there exists a $n \times k$ matrix A of rank k, such that Z = A'Y follows linear model

$$Z = A'X\theta + \varepsilon^*, E(\varepsilon^*) = 0, Var(\varepsilon^*) = \sigma^2 I_k.$$

2. (Auditor Training Example) An accounting firm tested three training methods in statistical sampling: (1). study at home with training materials; (2). training at local office by local staff; (3). training in headquarter office at Chicago by national staff. The auditors were grouped into 4 blocks according to time elapsed since college graduation, and auditors in each block were assigned at random to the three training methods. A proficiency measure based on the final analysis was obtained:

Training Methods		Block (j)		
(i)	1	2	3	4
1	73	76	75	76
2	81	78	76	71
3	92	89	87	88

(1). Use the two-way ANOVA model (randomized block model):

$$Y_{ij} = \tau_i + \beta_j + \varepsilon_{ij}, i = 1, ..., 3; j = 1, ..., 4$$

define $\tau = (\tau_1, \tau_2, \tau_3)$, $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$. Specify matrix C and Q in the reduced normal equation $C\tau = Q$.

(2). Find the BLUEs for treatment (training) difference $\tau_i - \tau_{i'}$, for any i < i'.

(3). Testing hypothesis that treatment have equal effects, $H_0: \tau_{1,} = \tau_2 = \tau_3$.

3. (One-way ANOVA) Suppose the linear regression model is given by

$$Y_{ij} = \mu_i + \varepsilon_{ij}, i = 1, ..., k; j = 1, ..., n$$

where $\varepsilon_{ij}'s$ are i.i.d errors following $N\left(0,\sigma^2\right)$. In the matrix form, response vector is expressed as

$$Y = (Y_{11}, \dots, Y_{1n}; \dots; Y_{k1}, \dots, Y_{kn})'$$

and parameter vector is $\mu = (\mu_1, ..., \mu_k)'$.

(1). Find the design matrix in the model $Y = X \mu + \varepsilon$ and determine its rank.

(2). Based on $R_0^2 = (Y - X\hat{\mu})'(Y - X\hat{\mu})$, where $\hat{\mu}$ is the least square estimator, find an unbaised estimator for σ^2 .

(3). Consider null hypothesis $H_0: \mu_1 = \ldots = \mu_k$. Under $H_{0,}$ rewrite the design matrix X as X_0 , determine

$$R_1^2 = \min_{\mu \in R} (Y - X_0 \mu)' (Y - X_0 \mu).$$

(4). Show that

$$R_1^2 - R_0^2 = n \sum_{i=1}^k \left(\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot} \right)^2,$$

where $\bar{Y}_{i.} = \frac{1}{n} \sum_{i=1}^{k} Y_{ij}, \bar{Y}_{..} = \frac{1}{nk} \sum_{i=1}^{k} \sum_{j=1}^{n} Y_{ij}.$

(5). Rewrite the null hypothesis in (3) as $H_0 : H\mu = 0$, where matrix H is a $(k-1) \times k$ matrix and $M(H) \subset M(X')$. Find the matrix A such that $Var(H\hat{\mu}) = \sigma^2 A$, with the estimator $\hat{\mu}$ in (2). Show that

$$(H\hat{\mu})' A^{-1} (H\hat{\mu}) = n \sum_{i=1}^{k} \left(\bar{Y}_{i\cdot} - \bar{Y}_{\cdot} \right)^2.$$