# Worksheet \# 1 

MATH 294 ESP Workshop
Spring 2016

Problem 1. Prove or disprove: For every real number $x$,

$$
|x-1|+|x+5| \geq 6
$$

Problem 2. Prove or disprove: For all natural numbers $n$,

$$
3 n^{2}+3 n+23
$$

is prime.

Problem 3. Consider the five statements:
$\left(P_{1}\right)$ I like pineapple on my pizza.
$\left(P_{2}\right)$ All odd-numbered statements are false.
$\left(P_{3}\right)$ All even-numbered statements are true.
$\left(P_{4}\right)$ At least one of $P_{2}$ or $P_{3}$ is true.
$\left(P_{5}\right)$ If $P_{1}$ is false then $P_{2}$ is true.
Some of these statements refer to other statements on the list. Notice, if $P_{3}$ is true then all even-numbered statements must be true, and so $P_{2}$ must be true. Now, the truth of $P_{2}$ implies all odd-numbered statements are false, and so $P_{3}$ is false. So if $P_{3}$ is true then it must also be false. This contradiction means $P_{3}$ must not be true.

Can you assign the truth values true and false to each of the above five statements so that there are no contradictions?

