Worksheet \# 2

MATH 294 ESP Workshop
Spring 2016

Problem 1. Let $\vec{v}=\binom{a}{b}$ and $\vec{u}=\binom{c}{d}$ be vectors in \mathbb{R}^{2}. Recall that vector addition is defined according to the formula

$$
\vec{v}+\vec{u}=\binom{a+c}{b+d} .
$$

Vector multiplication is defined

$$
\vec{v} \star \vec{u}=\binom{a c-b d}{b c+a d} .
$$

Use the definitions to prove the following about vector addition and multiplication in \mathbb{R}^{2}. Whenever there are no parenthesis we use the convention that multiplication is preformed before addition.
(1) For all $\vec{v}, \vec{u}, \vec{w} \in \mathbb{R}^{2}$,

$$
(\vec{v}+\vec{u})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})
$$

and

$$
(\vec{v} \star \vec{u}) \star \vec{w}=\vec{v} \star(\vec{u} \star \vec{w}) .
$$

(2) For all $\vec{v}, \vec{u} \in \mathbb{R}^{2}$,

$$
\vec{v}+\vec{u}=\vec{u}+\vec{v}
$$

and

$$
\vec{v} \star \vec{u}=\vec{u} \star \vec{v} .
$$

(3) For all $\vec{v}, \vec{u}, \vec{w} \in \mathbb{R}^{2}$,

$$
\vec{v} \star(\vec{u}+\vec{w})=\vec{v} \star \vec{u}+\vec{v} \star \vec{w}
$$

and

$$
(\vec{v}+\vec{u}) \star \vec{w}=\vec{v} \star \vec{w}+\vec{u} \star \vec{w} .
$$

(4) For all $\vec{v} \in \mathbb{R}^{2}$,

$$
\vec{v}+\binom{0}{0}=\vec{v}=\binom{0}{0}+\vec{v}
$$

and

$$
\vec{v} \star\binom{1}{0}=\vec{v}=\binom{1}{0} \star v .
$$

(5) For all $\vec{v} \in \mathbb{R}^{2}$ there is $\vec{u} \in \mathbb{R}^{2}$ so that

$$
\vec{v}+\vec{u}=\binom{0}{0}=\vec{u}+\vec{v},
$$

and for all $\vec{v} \in \mathbb{R}^{2}$ with $\vec{v} \neq\binom{ 0}{0}$ there is $\vec{u} \in \mathbb{R}^{2}$ so that

$$
\vec{v} \star \vec{u}=\binom{1}{0}=\vec{u} \star \vec{v} .
$$

(6) If $\vec{v}=\binom{a}{0}$ and $\vec{u}=\binom{b}{0}$ are both vectors whose second coordinate is zero, then their sum is $\binom{a+b}{0}$ and their product is $\binom{a b}{0}$.

$$
\begin{equation*}
\binom{0}{1} \star\binom{0}{1}=\binom{-1}{0} \tag{7}
\end{equation*}
$$

(8) For any $\vec{v} \in \mathbb{R}^{2}, \vec{v}$ is perpendicular to $\binom{0}{1} \star \vec{v}$.

Problem 2. Simplify

$$
\binom{a}{0}+\binom{0}{1} \star\binom{b}{0}
$$

using properties and definitions from problem 1.
Problem 3. Let the norm of a vector $\vec{v}=\binom{a}{b}$ be defined by $|\vec{v}|=\sqrt{a^{2}+b^{2}}$. Prove for all $\vec{v}, \vec{u} \in \mathbb{R}^{2}$,

$$
|\vec{v} \star \vec{u}|=|\vec{v}||\vec{u}|
$$

where \star is the multiplication defined in problem 1.

