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Abstract

It is critically important that engineers be able to numerically simulate the scattering
of electromagnetic radiation by bounded obstacles. Additionally, that these simulations
be robust and highly accurate is necessitated by many applications of great interest.
High–Order Spectral algorithms applied to interfacial formulations can rapidly deliver
high fidelity approximations with a modest number of degrees of freedom. The class of
High–Order Perturbation of Surfaces methods have proven to be particularly appropri-
ate for these simulations and in this contribution we consider questions of both practical
implementation and rigorous analysis. For the former we generalize our recent results
to utilize the uniformly well–defined Impedance–Impedance Operators rather than the
Dirichlet–Neumann Operators which occasionally encounter unphysical singularities.
For the latter we utilize this new formulation to establish the existence, uniqueness,
and analyticity of solutions in non–resonant configurations. We also include results
of numerical simulations based on an implementation of our new formulation which
demonstrates its noteworthy accuracy and robustness.
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1 Introduction

It is critically important that engineers be able to numerically simulate the scattering
of electromagnetic radiation by bounded obstacles. Applications abound, and solely in
the field of plasmonics [Rae88, Mai07, NH12, EB12] one find surface enhanced Raman
scattering (SERS) biosensing [XBKB99], imaging [LLH+05, LLH+05], and cancer therapy
[LLH+05, ESHES06]. For more details please see one of the many surveys on the topic, e.g.,
the volume [Mai07] (Chapters 5, 9, and 10), the article [MCAPS+08], and the publications
considering gold nanoparticles [MRFPS+08, LGSLG07]. For many reasons, these simula-
tions must be robust and highly accurate, e.g., due to the very strong plasmonic effect (the
field enhancement can be several orders of magnitude) and its quite sensitive nature (the
enhancement is only seen over a range of tens of nanometers in incident radiation for gold
and silver particles).

As in our previous contribution [NT18], we focus on Localized Surface Plasmon Reso-
nances (LSPRs) which can be induced in metal (e.g., gold or silver) nanorods with radiation
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in the visible range. In particular how these change as the shape of the cross–section of the
rod is varied from perfectly cylindrical. More specifically, consider a rod with cross–section
shaped by {r = ḡ}, composed of a noble metal with a wavelength–dependent permittivity,
εm = εm(λ), mounted in a dielectric with constant permittivity, εd. If ḡ is sufficiently small
an LSPR is excited with incident radiation of wavelength, λF , that (nearly) satisfies the
two–dimensional “Fröhlich condition” [Mai07]

Re [εm(λ)] = −εd. (1.1)

It is clear, however, that if the cross–section of the rod is specified by

r = ḡ + εf(θ),

for some smooth function f and ε sufficiently small, then the value λF = λF (ε) will change.
The method we advocate here is well–suited to study the evolution in ε.

Due to the importance of these models, it is not surprising that the full range of mod-
ern numerical methods have been brought to bear upon this problem, including Finite
Difference Methods [Str04, LeV07], Finite Element Methods [Joh87, Ihl98], Discontinous
Galerkin Methods [HW08], Spectral Element Methods [DFM02], and Spectral Methods
[GO77, CHQZ88, Boy01]. We have recently argued [Nic15, NOJR16, NT18] that such
volumetric approaches are greatly disadvantaged with an unnecessarily large number of
unknowns for the piecewise homogeneous problems of relevance here. Interfacial methods
based upon Integral Equations (IEs) [CK13] deliver a compelling class of algorithms but,
as we have pointed out, these also face difficulties. Most of these have been addressed in
recent years through the use of sophisticated quadrature rules to deliver High–Order Spec-
tral accuracy, and the design of preconditioned iterative solvers with suitable acceleration
[GR87]. Consequently, they specify a method which deserves serious consideration (see,
e.g., the survey article of [RT04] for more details), however, two properties render them
non–competitive for the parameterized problems we consider compared to the methods we
outline here:

1. We parameterize our geometry by the real value ε (the deviation of the nanorod cross–
section from cylindrical), and an IE solver will compute the scattering data only for
one value of ε at a time. If this value is changed then the solver must be run again.

2. The dense, non–symmetric positive definite systems of linear equations which must
be inverted with each simulation.

As we have previously shown [NT18], a “High–Order Perturbation of Surfaces” (HOPS)
approach can mollify these concerns. In particular, we investigated an implementation of
the method of Field Expansions (FE) originating in the low–order calculations of Rayleigh
[Ray07] and Rice [Ric51]. The high–order implementation was developed by Bruno & Re-
itich [BR93a, BR93b, BR93c, BR98] and later enhanced and stabilized by the first author
and Reitich [NR04a, NR04b], the first author and Nigam [NN04], and the first author and
Shen [NS06], resulting in the Method of Transformed Field Expansions (TFE). These algo-
rithms retain the advantageous properties of classical IE methods (e.g., surface formulation
and exact enforcement of far–field conditions) while avoiding the shortcomings listed above:

1. Since HOPS algorithms are built upon expansions in the parameter, ε, once the Taylor
coefficients are known for the scattering quantities, it is simply a matter of summing
these (rather than beginning a new simulation) for any given choice of ε to recover
the returns.
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2. At every Taylor order, the method need only invert a single, sparse operator corre-
sponding to the cylindrical–interface, order–zero approximation of the problem.

In this contribution we build upon the work of the authors in [NT18] by devising, im-
plementing, and testing a HOPS scheme based, not upon Dirichlet–Neumann Operators
(DNOs), but rather upon Impedance–Impedance Operators (IIOs). We do this for sev-
eral reasons, principally that our new approach does not suffer from the artificial “Dirich-
let eigenvalues” which plague the relevant DNOs while requiring no increase in compu-
tational effort. In addition, we supply for the first time a rigorous analysis of the exis-
tence, uniqueness, and analyticity of solutions to the problem of scattering of linear waves
by an object of bounded cross–section. While the technique of proof is well–established
[NR01a, NR03, NR04b, Nic17, Nic18], the technical details are rather involved, c.f. [NN06],
and somewhat limited by the complication of rigorously establishing that physical configu-
rations are “non–resonant.” Finally, with an implementation of this algorithm we display
the efficiency, robustness, and high–order accuracy one can achieve.

The paper is organized as follows: In § 2 we outline the governing equations for linear
waves reflected and transmitted by a cylindrical obstacle, with transparent boundary con-
ditions described in § 2.1. We give a boundary formulation of the resulting problem in § 3,
together with a HOPS algorithm in § 3.1 and a study of the classical problem of scattering
by a rod in § 3.2. For use with our rigorous analysis we define our function spaces in § 4, and
we deliver our proof of analyticity of solutions in § 5. The fundamental results required in
the proof are the analyticity of the IIOs proven in § 6. Finally, in § 7 we present numerical
results followed by concluding remarks in § 8.

2 Governing Equations

We consider a y–invariant obstacle of bounded cross–section as displayed in Figure 1. Ma-
terials of refractive index nu and nw fill the (unbounded) exterior and (bounded) interior,
respectively. The interface between the two domains is described in polar coordinates,
{x = r cos(θ), z = r sin(θ)}, by the graph r = ḡ + g(θ) so that the exterior and interior
domains are specified by

Su := {r > ḡ + g(θ)} , Sw := {r < ḡ + g(θ)} ,

respectively. The superscripts are chosen to conform to the notation of previous work by
the authors [NOJR16, Nic12, NT18]. The cylindrical geometry demands that the interface
be 2π–periodic, g(θ + 2π) = g(θ). We consider monochromatic plane–wave illumination by
incident radiation of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed
of light) aligned with the corrugations of the obstacle. We denote the reduced illuminating
fields of incidence angle φ

Einc = Aeiαx−iγ
uz, Hinc(x, z) = Beiαx−iγ

uz,

α = ku sin(φ), γu = ku cos(φ), |A| = |B| = 1;

we have factored out time dependence of the form exp(−iωt), and we can write these as

Einc = Aeik
ur sin(φ−θ), Hinc = Beik

ur sin(φ−θ).

The geometry demands that the reduced electric and magnetic fields, {E,H}, be 2π–
periodic in θ, and the scattered radiation is “outgoing” in Su and bounded in Sw.
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Figure 1: Plot of the cross–section of a nanorod (occupying Sw) shaped by r = ḡ+ε cos(4θ)
(ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave illumination with
wavenumber (α,−γu).

In this two–dimensional setting the time–harmonic Maxwell equations decouple into
two scalar Helmholtz problems which govern the transverse electric (TE) and transverse
magnetic (TM) polarizations [Pet80]. The invariant (y) directions of the scattered (electric
or magnetic) fields are denoted by {u(r, θ), w(r, θ)} in Su and Sw, respectively, and the
incident radiation in the outer domain by uinc(r, θ).

All of these developments lead us to seek outgoing/bounded, 2π–periodic solutions of

∆u+ (ku)2u = 0, r > ḡ + g(θ), (2.1a)

∆w + (kw)2w = 0, r < ḡ + g(θ), (2.1b)

u− w = ξ, r = ḡ + g(θ), (2.1c)

τu∂Nu− τw∂Nw = τuν, r = ḡ + g(θ), (2.1d)

where the Dirichlet data is

ξ(θ) :=
[
−uinc

]
r=ḡ+g(θ)

= −eiku(ḡ+g(θ)) sin(φ−θ), (2.1e)

and the Neumann data is

ν(θ) :=
[
−∂Nuinc

]
r=ḡ+g(θ)

=

{
(ḡ + g(θ))iku sin(φ− θ) +

(
g′(θ)

ḡ + g(θ)

)
cos(φ− θ)

}
ξ(θ).

(2.1f)
In these

∂N = r̂(ḡ + g)∂r − θ̂
(

g′

ḡ + g

)
∂θ,

for unit vectors in the radial (r̂) and angular (θ̂) directions, and

τm =

{
1, TE,

1/ε(m), TM,
m ∈ {u,w},

where γw = kw cos(φ). The case of TM polarization is of fundamental importance in the
study of Localized Surface Plasmon Resonances (LSPRs) [Rae88] and thus we concentrate
our attention on the TM case from here.

4



2.1 Transparent Boundary Conditions

Regarding the Outgoing Wave Condition (OWC), commonly known as the Sommerfeld
Radiation Condition [CK13], and Boundedness Boundary Condition (BBC), we introduce
the circles {r = Ro} and {r = Ri}, where

Ro > ḡ + |g|L∞ , 0 < Ri < ḡ − |g|L∞ ,

define the domains
So := {r > Ro}, Si := {r < Ri},

and note that we can find periodic solutions of the relevant Helmholtz problems on these
domains given generic Dirichlet data, say u(θ) and w(θ). These read [CK13]

u(r, θ) =
∞∑

p=−∞
ûp

Hp(k
ur)

Hp(kuRo)
eipθ, w(r, θ) =

∞∑
p=−∞

ŵp
Jp(k

wr)

Jp(kwRi)
eipθ, (2.2)

where, Jp is the p–th Bessel function of the first kind and Hp is the p–th Hankel function
of the first kind. We note that

u(Ro, θ) =
∞∑

p=−∞
ûpe

ipθ, w(Ri, θ) =
∞∑

p=−∞
ŵpe

ipθ.

With these formulas we can compute the outward–pointing Neumann data at the artificial
boundaries

−∂ru(Ro, θ) =

∞∑
p=−∞

(
−ku

H ′p(k
uRo)

Hp(kuRo)

)
ûpe

ipθ =: T (u) [u(θ)] ,

∂rw(Ri, θ) =

∞∑
p=−∞

(
kw
J ′p(k

wRi)

Jp(kwRi)

)
ŵpe

ipθ =: T (w) [w(θ)] .

These define the order–one Fourier multipliers {T (u), T (w)}.
With the operator T (u) it is not difficult to see that periodic, outward propagating

solutions to the Helmholtz equation

∆u+ (ku)2 u = 0, r > ḡ + g(θ),

equivalently solve

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro,

∂ru+ T (u) [u] = 0, r = Ro.

Similarly, one can show that periodic, bounded solutions to the Helmholtz equation

∆w + (kw)2w = 0, r < ḡ + g(θ),

equivalently solve

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ),

∂rw − T (w) [w] = 0, r = Ri.
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3 Boundary Formulation

At this point we follow the philosophy of [Nic12, Nic17, NT18] and reduce our degrees
of freedom to surface unknowns. However, rather than select the Dirichlet and Neumann
traces utilized in these papers, we choose impedance traces. To motivate our particular
choices we focus upon the boundary conditions (2.1c) and (2.1d) and operate upon this
pair by the linear operator

P =

(
Y −I
Z −I

)
,

where I is the identity, and Y and Z are unequal operators to be specified. In the work
of Despres [Des91b, Des91a] these were chosen to be ±iη for a constant η ∈ R+, however,
other choices are also possible. The resulting boundary conditions are

[−τu∂Nu+ Y u] + [τw∂Nw − Y w] = [−τuν + Y ξ] ,

[−τu∂Nu+ Zu] + [τw∂Nw − Zw] = [−τuν + Zξ] ,

which inspire the following definitions for impedances

U := [−τu∂Nu+ Y u]r=ḡ+g , W := [τw∂Nw − Zw]r=ḡ+g ,

their “conjugates”

Ũ := [−τu∂Nu+ Zu]r=ḡ+g , W̃ := [τw∂Nw − Y w]r=ḡ+g ,

and the interfacial data

ζ := [−τuν + Y ξ] , ψ := [−τuν + Zξ] .

Via an integral formula these quantities can deliver the scattered field at any point [Eva10,
CK13], thus, the governing equations reduce to the boundary conditions

U + W̃ = ζ, Ũ +W = ψ. (3.1)

Now, we have two equations for four unknowns, however, the pairs {U, Ũ} and {W, W̃}
are not independent and we make this explicit through the introduction of Impedance–
Impedance operators (IIOs). However, care is required as a poor choice of the operator Y
or Z may induce a lack of uniqueness in the governing Helmholtz equation, i.e., ku or kw

may be an eigenvalue of the Laplacian (with the impedance boundary conditions) on the
domain in question.

In order to avoid this problem we fix some δ > 0 and, in Appendix B, define the
notion of δ–permissibility, (B.5). In addition, in order to simplify the proofs we present in
Appendix B, we make the further restriction that we are δ–permissible in the k = 0 case,
(B.13). While this latter restriction can be omitted, we find it convenient and not overly
burdensome.

The details of these definitions can be found in Appendix B, but, in brief, a configura-
tion is a quintuple of wavenumber (k), inner and outer domain radius (a and b), and inner
and outer operators (A and B). A configuration is δ–permissible if a certain determinant
function is bounded from below by δ > 0 ensuring unique solvability. With our perturbative
philosophy in mind we specify this bound in the zero–deformation case knowing that viola-
tions may occur when ε becomes too large. On some level is this inconvenient, however, we
point out that the ε = 0 conditions can, in theory, be explicitly computed so that particular
choices of Y and Z can be evaluated.
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Definition 3.1. Given a δ–permissible configuration

(ku, ḡ, Ro, Y/(τuḡ),−T (u)) ∈ Cδ(ku, ḡ, Ro, Y/(τuḡ),−T (u)), (3.2a)

(0, ḡ, Ro, Y/(τuḡ),−T (u)) ∈ Cδ(0, ḡ, Ro, Y/(τuḡ),−T (u)), (3.2b)

and a sufficiently smooth and small deformation g(θ), the unique periodic solution of

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro, (3.3a)

− τu∂Nu+ Y u = U, r = ḡ + g(θ), (3.3b)

∂ru+ T (u) [u] = 0, r = Ro, (3.3c)

defines the Impedance–Impedance Operator

Q [U ] = Q(Ro, ḡ, g) [U ] := Ũ . (3.4)

Definition 3.2. Given a δ–permissible configuration

(kw, Ri, ḡ, T
(w), Z/(τwḡ)) ∈ Cδ(kw, Ri, ḡ, T (w), Z/(τwḡ)), (3.5a)

(0, Ri, ḡ, T
(w), Z/(τwḡ)) ∈ Cδ(0, Ri, ḡ, T (w), Z/(τwḡ)), (3.5b)

and a sufficiently smooth and small deformation g(θ), the unique periodic solution of

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ), (3.6a)

τw∂Nw − Zw = W, r = ḡ + g(θ), (3.6b)

∂rw − T (w) [w] = 0, r = Ri, (3.6c)

defines the Impedance–Impedance Operator

S [W ] = S(Ri, ḡ, g) [W ] := W̃ . (3.7)

In terms of these operators the boundary conditions, (3.1), become

U + S[W ] = ζ, Q[U ] +W = ψ,

or (
I S
Q I

)(
U
W

)
=

(
ζ
ψ

)
. (3.8)

For later use, we write this more compactly as

AV = R, (3.9)

where

A =

(
I S
Q I

)
, V =

(
U
W

)
, R =

(
ζ
ψ

)
. (3.10)

7



3.1 A High–Order Perturbation of Surfaces Method

Our approach to simulating solutions to (3.9) is perturbative in nature and based upon the
assumption that g(θ) = εf(θ) where ε is sufficiently small. As we shall show in Section 6,
provided that f is sufficiently smooth (which we shall make more precise later), then the
IIOs, Q and S, are analytic in the perturbation parameter ε so that the following expansions
are strongly convergent in an appropriate Sobolev space

Q(εf) =

∞∑
n=0

Qn(f)εn, (3.11a)

S(εf) =
∞∑
n=0

Sn(f)εn. (3.11b)

Clearly, if this is the case then the operator A will also be analytic, as will R so that

{A(εf),R(εf)} =
∞∑
n=0

{An(f),Rn(f)}εn. (3.12)

We will shortly show that, under certain circumstances, there will be a unique solution, V,
of (3.9) which is also analytic in ε

V(εf) =
∞∑
n=0

Vn(f)εn. (3.13)

Furthermore, it is clear that the Vn must satisfy

Vn = A−1
0

{
R0 −

n−1∑
`=0

An−`V`

}
, (3.14)

and one key in the analysis is the invertibility of the operator A0 which we now investigate.

3.2 The Trivial Configuration: LSPR Condition

To investigate this invertibility question we show how our formulation delivers the classical
solution for plane wave scattering by a cylindrical obstacle. For this we consider (3.8) in
the case g ≡ 0, (

I S0

Q0 I

)(
U
W

)
=

(
ζ0

ψ0

)
. (3.15)

In this trivial configuration, the solutions to (3.3) and (3.6) are, (c.f. (2.2)),

u(r, θ) =
∞∑

p=−∞

Ûp

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

Hp(k
ur)eipθ,

w(r, θ) =
∞∑

p=−∞

Ŵp

τw(kwḡ)J ′p(k
uḡ)− ẐpJp(kwḡ)

Jp(k
wr)eipθ,

respectively. From these we find for (3.4)

Q0[U ] =
∞∑

p=−∞
(̂Q0)pÛpe

ipθ =
∞∑

p=−∞

(
−τu(kuḡ)H ′p(k

uḡ) + ẐpHp(k
uḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

)
Ûpe

ipθ

=:

(
−τu(kuḡ)H ′D(kuḡ) + ZHD(kuḡ)

−τu(kuḡ)H ′D(kuḡ) + Y HD(kuḡ)

)
U,
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and for (3.7)

S0[W ] =

∞∑
p=−∞

(̂S0)pŴpe
ipθ =

∞∑
p=−∞

(
τw(kwḡ)J ′p(k

wḡ)− ŶpJp(kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

)
Ŵpe

ipθ

=:

(
τw(kwḡ)J ′D(kwḡ)− Y JD(kwḡ)

τw(kwḡ)J ′D(kwḡ)− ZJD(kwḡ)

)
W,

which define the order–one Fourier multipliers

Q0 =

(
−τu(kuḡ)H ′D(kuḡ) + ZHD(kuḡ)

−τu(kuḡ)H ′D(kuḡ) + Y HD(kuḡ)

)
, S0 =

(
τw(kwḡ)J ′D(kwḡ)− Y JD(kwḡ)

τw(kwḡ)J ′D(kwḡ)− ZJD(kwḡ)

)
,

(3.16)
respectively.

Returning to (3.15) we find the solution at each wavenumber is given by(
Ûp
Ŵp

)
=

1

1− (̂S0)p(̂Q0)p

(
1 −(̂S0)p

−(̂Q0)p 1

)(
(̂ζ0)p
(̂ψ0)p

)
, (3.17)

and it is clear that unique solvability of this system hinges on the determinant function

∆p := 1− (̂S0)p(̂Q0)p. (3.18)

With the notation

J = Jp(k
wḡ), J′ = −τw(kwḡ)J ′p(k

wḡ), H = Hp(k
uḡ), H′ = −τu(kuḡ)H ′p(k

uḡ),

we find

∆p = 1−
(

H′ + ZH

H′ + YH

)(
J′ − Y J

J′ − ZJ

)
=

(H′ + YH)(J′ − ZJ)− (H′ + ZH)(J′ − Y J)

(H′ + YH)(J′ − ZJ)

=
(Y + Z)(J′H− JH′)

(H′ + YH)(J′ − ZJ)
. (3.19)

The zeros of this function are the same as those we found in [NT18], and thus deliver the
same result in the “small radius” (quasistatic) limit [Mai07], kuḡ � 1 and kwḡ � 1,

ε(u) = −Re
{
ε(w)

}
− iIm

{
ε(w)

}
.

If the Fröhlich condition, c.f. (1.1),

ε(u) = −Re
{
ε(w)

}
,

is verified then it can “almost” be true. Again, this is different from the three dimensional
Fröhlich condition for nanoparticles [Mai07]

ε(u) = −2Re
{
ε(w)

}
.
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Remark 3.3. At this point we further restrict our configuration so that the function ∆p is
always non–zero which is equivalent to the invertibility of A0. More precisely, in addition
to conditions (3.2) and (3.5), we also require that the quantities {ku, kw, Ri, Ro, Y, Z} be
such that

|∆p| > δ, ∀p ∈ Z. (3.20)

To summarize our restrictions:

1. We demand (3.2) to guarantee that Q(g) is well–defined for g sufficiently small.

2. We demand (3.5) to guarantee that S(g) is well–defined for g sufficiently small.

3. We demand (3.20) to guarantee that A0 is invertible.

4 Interfacial Function Spaces

We begin with a careful mathematical analysis of (3.9) which will help justify the computa-
tional results we present in Section 7. Before describing these rigorous results we specify the
interfacial function spaces we require. For any real s ≥ 0 we recall the classical, periodic,
L2–based Sobolev norm [Kre14]

‖U‖2Hs :=

∞∑
p=−∞

〈p〉2s
∣∣∣Ûp∣∣∣2 , 〈p〉2 := 1 + |p|2 , Ûp :=

1

2π

∫ 2π

0
U(θ)eiαpx dθ, (4.1)

which gives rise to the periodic Sobolev space [Kre14]

Hs([0, 2π]) :=
{
U(x) ∈ L2([0, 2π]) | ‖U‖Hs <∞

}
.

We also require the dual space of Hs([0, 2π]) which is characterized by Theorem 8.10 of
[Kre14] and typically denoted H−s([0, 2π]). In short, if U ′ ∈ (Hs)′ = H−s then ‖U ′‖H−s is

defined by (4.1) where Û ′p = U ′(Ûp).
With this definition it is a simple matter to prove the following Lemma.

Lemma 4.1. For any s ∈ R there exist constants CQ, CS > 0 such that

‖Q0U‖Hs ≤ CQ ‖U‖Hs , ‖S0W‖Hs ≤ CS ‖W‖Hs ,

for any U,W ∈ Hs.

We also recall, for any integer s ≥ 0, the space of s–times continuously differentiable
functions with the Hölder norm

|f |Cs = max
0≤`≤s

∣∣∣∂`xf ∣∣∣
L∞

.

For later reference we recall the following classical result.

Lemma 4.2. For any integer s ≥ 0, any β > 0, and any set U ⊂ Rm, if f, u, g, µ : U → C,
f ∈ Cs(U), u ∈ Hs(U), g ∈ Cs+1/2+β(U), µ ∈ Hs+1/2(U), then

‖fu‖Hs ≤ M̃(m, s, U) |f |Cs ‖u‖Hs , ‖gµ‖Hs+1/2 ≤ M̃(m, s, U) |g|Cs+1/2+β ‖µ‖Hs+1/2 ,

for some constant M̃ .

10



In addition, we require the analogous result valid for any real value of s [Fol76, NN06].

Lemma 4.3. For any s ∈ R and any set U ⊂ Rm, if ϕ,ψ : U → C, ϕ ∈ H |s|+m+2(U) and
ψ ∈ Hs(U), then

‖ϕψ‖Hs ≤M(m, s, U) ‖ϕ‖H|s|+m+2 ‖ψ‖Hs ,

for some constant M .

Remark 4.4. Presently we will be required to estimate terms of the form

‖(∂θf)u‖L2(Ω) = ‖(∂θf)u‖H0(Ω) , ‖(∂θf)µ‖H−1/2([0,2π]) ,

where Ω ⊂ R2, which feature Sobolev norms too weak for the standard algebra estimate,
Lemma 4.2. For this reason we have introduced Lemma 4.3 which allows us to compute,
for m = 2,

‖(∂θf)u‖L2(Ω) = ‖(∂θf)u‖H0(Ω)

≤M ‖(∂θf)‖H|0|+2+2([0,2π]) ‖u‖H0(Ω)

≤M ‖f‖H5([0,2π]) ‖u‖H0(Ω) ,

while, for m = 1,

‖(∂θf)µ‖H−1/2([0,2π]) ≤M ‖(∂θf)‖H|−1/2|+1+2([0,2π]) ‖µ‖H−1/2([0,2π])

≤M ‖f‖H4+1/2([0,2π]) ‖µ‖H−1/2([0,2π]) .

In this way, if we require f ∈ H5([0, 2π]) then we can use the algebra property of Lemma 4.3
throughout our developments. We note that, by Sobolev embedding, if f ∈ H5([0, 2π]) then
f ∈ C4([0, 2π]), and if f ∈ C5([0, 2π]) then f ∈ H5([0, 2π]).

5 Analyticity of Solutions

We can now take up the rigorous analysis of (3.13) for which we utilize the general theory
of analyticity of solutions of linear systems of equations. To be more specific, we follow
the developments found in [Nic17] for the solution of (3.9). Given the expansions (3.12) we
seek the solution of the form (3.13) which satisfy (3.14). We restate the main result here
for completeness.

Theorem 5.1 (Nicholls [Nic17]). Given two Banach spaces X and Y , suppose that:

(H1) Rn ∈ Y for all n ≥ 0, and there exist constants CR > 0, BR > 0 such that

‖Rn‖Y ≤ CRB
n
R, n ≥ 0.

(H2) An : X → Y for all n ≥ 0, and there exists constants CA > 0, BA > 0 such that

‖An‖X→Y ≤ CAB
n
A, n ≥ 0.

(H3) A−1
0 : Y → X, and there exists a constant Ce > 0 such that∥∥A−1

0

∥∥
Y→X ≤ Ce.
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Then the equation (3.9) has a unique solution (3.13), and there exist constants CV > 0 and
BV > 0 such that

‖Vn‖X ≤ CVB
n
V , n ≥ 0,

for any
CV ≥ 2CeCR, BV ≥ max {BR, 2BA, 4CeCABA} ,

which implies that, for any 0 ≤ ρ < 1, (3.13) converges for all ε such that BV ε < ρ, i.e.,
ε < ρ/BV .

All that remains is to find the forms (3.12), and establish Hypotheses (H1), (H2), and
(H3). For the former it is quite clear from (3.9) that

A0 =

(
I S0

Q0 I

)
, An =

(
0 Sn
Qn 0

)
, n ≥ 1,

Vn =

(
Un
Wn

)
, Rn =

(
ζn
ψn

)
.

For the spaces X and Y , the natural choices for the weak formulation we pursue here are

X = Y = H−1/2([0, 2π])×H−1/2([0, 2π]),

so that ∥∥∥∥(UW
)∥∥∥∥2

X

= ‖U‖2H−1/2 + ‖W‖2H−1/2 .

Hypothesis (H1): We begin by noting that

ζn = τuνn + Y ξn, ψn = −τuνn + Zξn,

where

ξn = −eikuḡ sin(φ−θ) [(iku) sin(φ− θ)]n Fn, Fn :=
fn

n!
,

and
νn = ḡ [(iku) sin(φ− θ)] ξn + (iku) [f sin(φ− θ) + (∂θf) cos(φ− θ)] ξn−1.

Now, if Y : H1/2 → H−1/2 and Z : H1/2 → H−1/2, then

‖Rn‖2Y = ‖ζn‖2H−1/2 + ‖ψn‖2H−1/2 ≤ 2 |τu|2 ‖νn‖2H−1/2 + (CY + CZ) ‖ξn‖2H1/2 ,

and, from the explanation given in Remark 4.4, this will be bounded provided that f ∈
H5([0, 2π]).
Hypothesis (H2): The analyticity estimates for the IIOs Q, Theorem 6.6, and S, Theo-
rem 6.1, show rather directly that Hypothesis (H2) is verified provided that our configuration
is δ–permissible: (3.2) and (3.5). Indeed, as we have

‖Qn[U ]‖H−1/2 ≤ CQBn
Q, ‖Sn[W ]‖H−1/2 ≤ CSBn

S ,

it is a straightforward matter to show that

‖An‖X→Y ≤ CAB
n
A,

for CA = max{CQ, CS} and BA = max{BQ, BS}.
Hypothesis (H3): We now address the existence and invertibility properties of the lin-
earized operator A0 in the following Lemma.
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Lemma 5.2. If ζ, ψ ∈ H−1/2([0, 2π]) and our configuration is δ–permissible ( (3.2), (3.5),
and (3.20)) then there exists a unique solution of(

I S0

Q0 I

)(
U
W

)
=

(
ζ
ψ

)
,

c.f. (3.15), satisfying

‖U‖H−1/2 ≤ C̃e {‖ζ‖H−1/2 + ‖ψ‖H−1/2} ,
‖W‖H−1/2 ≤ C̃e {‖ζ‖H−1/2 + ‖ψ‖H−1/2} ,

for some universal constant C̃e > 0.

Proof. The bulk of the proof has already been worked out in Section 3.2. If we expand

ζ(θ) =
∞∑

p=−∞
ζ̂pe

ipθ, ψ(θ) =
∞∑

p=−∞
ψ̂pe

ipθ,

then we can find solutions of (3.15)

U(θ) =

∞∑
p=−∞

Ûpe
ipθ, W (θ) =

∞∑
p=−∞

Ŵpe
ipθ,

where (
Ûp
Ŵp

)
=

1

1− (̂S0)p(̂Q0)p

(
1 −(̂S0)p

−(̂Q0)p 1

)(
(̂ζ0)p
(̂ψ0)p

)
,

c.f. (3.17). The key is the analysis of the operators (̂S0)p, (̂Q0)p, and the determinant
function

∆p = 1− (̂S0)p(̂Q0)p =
(Y + Z)(J′H− JH′)

(H′ + YH)(J′ − ZJ)
,

c.f. (3.18) and (3.19). For these it is not difficult to show that, from their asymptotic
properties, there exist constants K̃Q, K̃S , K̃∆ > 0 such that∣∣∣(̂Q0)p

∣∣∣ < K̃Q,
∣∣∣(̂S0)p

∣∣∣ < K̃S ,
1

|∆p|
< K̃∆.

With these we can estimate

‖U‖2H−1/2 =
∞∑

p=−∞
〈p〉−1

∣∣∣Ûp∣∣∣2
<

∞∑
p=−∞

〈p〉−1K̃2
∆

(∣∣∣ζ̂p∣∣∣2 + K̃2
S

∣∣∣ψ̂p∣∣∣2)
= K̃

(
‖ζ‖2H−1/2 + ‖ψ‖2H−1/2

)
,

for some K̃ > 0. Proceeding similarly for W we complete the proof.

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 5.1 to
discover our final result.

Theorem 5.3. If f ∈ H5([0, 2π]) and the configuration is δ–permissible ( (3.2), (3.5), and
(3.20)) there exists a unique solution pair, (3.13), of the problem, (3.9), satisfying

‖Un‖H−1/2 ≤ CUDn, ‖Wn‖H−1/2 ≤ CWDn, ∀n ≥ 0,

for any D > ‖f‖H5, where CU and CW are universal constants.
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6 Analyticity of the Impedance–Impedance Operators

At this point the only remaining task is to establish the analyticity of the IIOs, Q and S. In
the exterior this has been accomplished for the DNO in [NN06] so we focus on the interior
domain. This analysis is quite intricate and to make our developments more transparent
we focus on the dielectric case ε(w) ∈ R so that kw ∈ R. Given this assumption we prove
the following result.

Theorem 6.1. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (3.5), and W ∈
H−1/2([0, 2π]) then the series (3.11b) converges strongly as an operator from H−1/2([0, 2π])
to H−1/2([0, 2π]). In other words there exist constants KS > 0 and BS > 0 such that

‖Sn(f)[W ]‖H−1/2 ≤ KSB
n
S . (6.1)

We establish this result with the method of Transformed Field Expansions (TFE)
[NR01a, NR01b, NR03] which has proven quite successful in establishing analyticity of
DNOs in similar settings [NN04, NN06, NS09]. The TFE method proceeds by effecting
a domain–flattening change of variables prior to perturbation expansion. On the interior
domain the relevant change of variables is

r′ =
(ḡ −Ri)r +Rig(θ)

ḡ + g(θ)−Ri
, θ′ = θ,

which maps the perturbed domain {Ri < r < ḡ+ g(θ)} to the separable one ΩRi,ḡ = {Ri <
r′ < ḡ}. This transformation changes the field w to

v(r′, θ′) := w

(
(ḡ + g(θ′)−Ri)r′ −Rig(θ′)

ḡ −Ri
, θ′
)
,

and modifies (3.6) to

∆v + (kw)2 v = F (r, θ; g), Ri < r < ḡ, (6.2a)

τw∂Nv − Zv = W (θ) + l(θ; g), r = ḡ, (6.2b)

∂rv − T (w) [v] = h(θ; g), r = Ri, (6.2c)

where we have dropped the primed notation for clarity. It is not difficult to see that

F = − 1

(ḡ −Ri)2

[
F (0) + ∂rF

(r) + ∂θF
(θ)
]
,

F (0) = −(ḡ −Ri)g(r −Ri)∂rv − (ḡ −Ri)gr∂rv − g2(r −Ri)∂rv − (ḡ −Ri)g′∂θv
− gg′∂θv + (g′)2(r −Ri)∂rv + g[2(ḡ −Ri)r2 + 2(ḡ −Ri)(r −Ri)r](kw)2v

+ g2[r2 + 4(r −Ri)r + (r −Ri)2](kw)2v + g3 2(r −Ri)(2r −Ri)
(ḡ −Ri)

(kw)2v

+ g4 (r −Ri)2

(ḡ −Ri)2
(kw)2v,

F (r) = 2(ḡ −Ri)gr(r −Ri)∂rv + g2(r −Ri)2∂rv − (ḡ −Ri)g′(r −Ri)∂θv
− gg′(r −Ri)∂θv + (g′)2(r −Ri)2∂rv,

F (θ) = 2(ḡ −Ri)g∂θv − (ḡ −Ri)g′(r −Ri)∂rv + g2∂θv − gg′(r −Ri)∂rv,
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and

ḡ(ḡ −Ri)l = −τw
[
2(ḡ −Ri)ḡg∂rv + g2(ḡ −Ri)∂rv

−(g′)2(ḡ −Ri)∂rv − g′(ḡ −Ri)∂θv − g′g∂θv
]

+ [(ḡ −Ri)g + ḡg + g2]Zv + [(ḡ −Ri)g + ḡg + g2]W,

and
h =

g

ḡ −Ri
T (w) [v] .

Upon setting g = εf and expanding

v(r, θ, ε) =
∞∑
n=0

vn(r, θ)εn, (6.3)

we can show that

∆vn + (kw)2 vn = Fn, Ri < r < ḡ, (6.4a)

∂rvn −
Z

τwḡ
vn = δn,0

W

τwḡ
+ ln, r = ḡ, (6.4b)

∂rvn − T (w) [vn] = hn, r = Ri, (6.4c)

where, δn,m is the Kronecker delta, and

Fn = − 1

(ḡ −Ri)2

[
F (0)
n + ∂rF

(r)
n + ∂θF

(θ)
n

]
, (6.5a)

F (0)
n = −(ḡ −Ri)f(r −Ri)∂rvn−1 − (ḡ −Ri)fr∂rvn−1 − f2(r −Ri)∂rvn−2

− (ḡ −Ri)f ′∂θvn−1 − ff ′∂θvn−2 + (f ′)2(r −Ri)∂rvn−2

+ f(ḡ −Ri)[2r2 + 2(r −Ri)r](kw)2vn−1

+ f2[r2 + 4(r −Ri)r + (r −Ri)2](kw)2vn−2

+ f3 2(r −Ri)(2r −Ri)
(ḡ −Ri)

(kw)2vn−3 + f4 (r −Ri)2

(ḡ −Ri)2
(kw)2vn−4, (6.5b)

F (r)
n = 2(ḡ −Ri)fr(r −Ri)∂rvn−1 + f2(r −Ri)2∂rvn−2

− (ḡ −Ri)f ′(r −Ri)∂θvn−1

− ff ′(r −Ri)∂θvn−2 + (f ′)2(r −Ri)2∂rvn−2, (6.5c)

F (θ)
n = 2(ḡ −Ri)f∂θvn−1 − (ḡ −Ri)f ′(r −Ri)∂rvn−1 + f2∂θvn−2

− ff ′(r −Ri)∂rvn−2, (6.5d)

and

ln =
1

ḡ(ḡ −Ri)(τwḡ)

{
ḡfδn,1W + (ḡ −Ri)fδn,1W + f2δn,2W

− τw
[
2ḡ(ḡ −Ri)f∂rvn−1 + (ḡ −Ri)f2∂rvn−2 + (ḡ −Ri)(f ′)2∂rvn−2

−(ḡ −Ri)f ′∂θvn−1 − ff ′∂θvn−2

]
+ ḡfZvn−1 + (ḡ −Ri)fZvn−1 + f2Zvn−2

}
, (6.6)

and

hn =
f

ḡ −Ri
T (w) [vn−1] .
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In addition, the IIO S, (3.7), can be stated in transformed coordinates as

S[W ] = τw
{

ḡ −Ri
ḡ −Ri + g

[
(ḡ + g) +

(g′)2

ḡ + g

]
∂rv −

g′

ḡ + g
∂θv

}
− Y v.

If we then expand S in ε, (3.11b), the n–th term in the expansion can be expressed as

Sn[W ] = −f
(

1

ḡ
+

1

ḡ −Ri

)
Sn−1[W ]− f2

ḡ(ḡ −Ri)
Sn−2[W ]

+ τw
{
ḡ∂rvn + 2f∂rvn−1 +

f2 + (f ′)2

ḡ
∂rvn−2 −

f ′

ḡ
∂θvn−1 −

f(f ′)

ḡ(ḡ −Ri)
∂θvn−2

}
− Y vn − f

(
1

ḡ
+

1

ḡ −Ri

)
Y vn−1 −

f2

ḡ(ḡ −Ri)
Y vn−2, (6.7)

so that, provided with estimates on the {vn}, we can control the terms, {Sn}.
Our main result is the following analyticity theorem.

Theorem 6.2. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (3.5), and W ∈
H−1/2([0, 2π]) then the series (6.3) converges strongly. In other words there exist constants
Kv > 0 and BS > 0 such that

‖vn‖H1 ≤ KvB
n
S . (6.8)

The proof of Theorem 6.2 proceeds by applying an elliptic estimate (Lemma 6.3) to
(6.4) followed by a recursive result (Lemma 6.5).

Lemma 6.3. Suppose the configuration is δ–permissible, (3.5), Fn ∈ (H1(ΩRi,ḡ))
′, W ∈

H−1/2([0, 2π]), ln ∈ H−1/2([0, 2π]), and hn ∈ H−1/2([0, 2π]). Then there is a unique solution
of (6.4) satisfying

‖vn‖H1 ≤ Ce
{
‖Fn‖(H1)′ + δn,0 ‖W‖H−1/2 + ‖ln‖H−1/2 + ‖hn‖H−1/2

}
,

for some universal constant Ce > 0.

Proof. We wish to apply the elliptic estimate Theorem B.2 and for this we only need show

Re
{(̂
T (w)

)
p

}
≥ 0, Re

{
Ẑp
τwḡ

}
≤ 0,

∣∣∣Im{(̂T (w)
)
p

}∣∣∣ <∞, ∣∣∣∣∣Im
{
Ẑp
τwḡ

}∣∣∣∣∣ <∞, (6.9)

for p 6= 0. We note that Z is free to be chosen, and in the work of Despres [Des91b, Des91a]
it was selected to be (−iη) for a constant η ∈ R+. With this choice the second and fourth
conditions in (6.9) are automatically satisfied as we have assumed that kw, and thus τw, is
real and positive.

To address the first and third conditions in (6.9) we recall that

(̂
T (w)

)
p

= kw
J ′p(k

wRi)

Jp(kwRi)
.

The identity J−n(z) = (−1)nJn(z) implies that

(̂
T (w)

)
−p = kw

J ′−p(k
wRi)

J−p(kwRi)
= kw

(−1)pJ ′p(k
wRi)

(−1)pJp(kwRi)
=
(̂
T (w)

)
p
,
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hence it suffices to consider
(̂
T (w)

)
p

for p > 0. We notice that both Jp(k
wRi) and J ′p(k

wRi)
are real–valued for real arguments kwRi which implies that∣∣∣Im{(̂T (w)

)
p

}∣∣∣ =

∣∣∣∣Im{kw J ′p(kwRi)Jp(kwRi)

}∣∣∣∣ = 0 <∞.

Let {jp}∞p=1 = {j1, j2, . . . } be the first (smallest) zeroes of Bessel’s functions of order p,
{Jp(z)}, and {j′p}∞p=1 = {j′1, j′2, . . . } be the first (smallest) zeroes of the first derivatives of
Bessel’s functions of order p, {J ′p(z)}. From [DLMF, Eq. 10.21.3 and Eq. 10.14.2], we have

p ≤ jp, and Jp(p) > 0, ∀p ≥ 1.

Additionally, we notice that Jp(0) = 0 for all p ≥ 1. Thus, for fixed p, Jp(z) is positive over
the interval (0, jp) which contains (0, p).

Next we apply the Mean Value Theorem over the interval (0, p): There exists an x in
(0, p) such that

J ′p(x) =
Jp(p)− Jp(0)

p− 0
=
Jp(p)

p
> 0.

From [DLMF, Eq. 10.21.3] we have p ≤ j′p and J ′p(0) = 0 for all p ≥ 1, thus we can conclude
that J ′p(z) is positive over the interval (0, j′p) which contains (0, p).

We finish the proof by considering the interval (0, 1), which is contained in the interval
(0, p) for all p ≥ 1, and choosing Ri such that 0 < kwRi < 1. Then we have

Re
{(̂
T (w)

)
p

}
=
(̂
T (w)

)
p

= kw
J ′p(k

wRi)

Jp(kwRi)
≥ 0

and we are done.

Remark 6.4. Before proceeding we note that the first equation in (6.9) is false at p = 0
as J ′0(z) = −J1(z) which necessitates the condition p 6= 0.

To control the right hand side of (6.4) we prove the following.

Lemma 6.5. Suppose that f ∈ H5([0, 2π]) and the configuration is δ–permissible, (3.5).
Assume that

‖vn‖H1(ΩRi,ḡ) ≤ KvB
n
S , ∀n < N,

for constants Kv > 0 and BS > 0, then there exists a constant Cv > 0 such that

max
{
‖FN‖(H1(ΩRi,ḡ))′ , ‖hN‖H−1/2([0,2π]) , ‖lN‖H−1/2([0,2π])

}
≤ CvKv

(
‖f‖H5 B

N−1
S + ‖f‖2H5 B

N−2
S

)
.

Proof. Note that from (6.5) and Appendix A

‖FN‖(H1)′ ≤
∥∥∥F (0)

N

∥∥∥
L2

+
∥∥∥F (r)

N

∥∥∥
L2

+
∥∥∥F (θ)

N

∥∥∥
L2
,

and, for conciseness, we consider only one term from F
(θ)
N ,

F (θ)
N := −ff ′(r −Ri)∂rvN−2;

17



the rest can be treated in a similar fashion. For this we estimate, using Lemma 4.3,∥∥∥F (θ)
N

∥∥∥
L2
≤
∥∥−ff ′(r −Ri)∂rvN−2

∥∥
L2

≤M ‖f‖H4 M ‖f‖H5 R‖vN−2‖H1

≤M2 ‖f‖2H5 RKvB
N−2
S ,

where R is defined by
‖(r −Ri)v‖L2 ≤ R‖v‖L2 ,

and we are done if Cv is chosen appropriately.
For hN we conduct the following sequence of steps

‖hN‖H−1/2 ≤
∥∥∥∥ f

ḡ −Ri
T (w) [vN−1]

∥∥∥∥
H−1/2

≤ M

ḡ −Ri
‖f‖H3+1/2

∥∥∥T (w) [vN−1]
∥∥∥
H−1/2

≤ M

ḡ −Ri
‖f‖H5 CT (w) ‖vN−1‖H1/2

≤ MCT (w)

ḡ −Ri
‖f‖H5 Ct ‖vN−1‖H1

≤ MCT (w)

ḡ −Ri
‖f‖H5 CtKvB

N−1
S ,

where CT (w) is the bounding constant for the operator T (w), and Ct is the bounding constant
for the trace operator

‖v‖H1/2([0,2π]) ≤ Ct ‖v‖H1(ΩRi,ḡ) .

We are done if we select Cv large enough.
Regarding the terms lN , we once again focus on a single term

LN :=
1

ḡ(ḡ −Ri)(τwḡ)

{
(−τw)(ḡ −Ri)(f ′)2∂rvN−2

}
= − 1

ḡ2
(f ′)2∂rvN−2,

and make the estimates

‖LN‖H−1/2 =

∥∥∥∥− 1

ḡ2
(f ′)2∂rvN−2

∥∥∥∥
H−1/2

≤ M2

ḡ2
‖f‖2H4+1/2 ‖∂rvN−2‖H−1/2

≤ M2

ḡ2
‖f‖2H4+1/2 Ct ‖vN−2‖H1

≤ M2Ct
ḡ2

‖f‖2H5 KvB
N−2
S ,

and we are done if Cv is chosen well.

We can now present the proof of Theorem 6.2.
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Proof. (Theorem 6.2). We work by induction and begin with n = 0. The estimate on v0

follows directly from Lemma 6.3 with F and L identically zero. We now assume that (6.8)
holds for all n < N and apply Lemma 6.3 which implies that

‖vN‖H1 ≤ Ce
{
‖FN‖(H1)′ + ‖lN‖H−1/2 + ‖hN‖H−1/2

}
.

Using Lemma 6.5 we have

‖vN‖H1 ≤ Ce3CvKv

{
‖f‖H5 B

N−1
S + ‖f‖2H5 B

N−2
S

}
≤ KvB

N
S ,

provided that we choose

3CeCv ‖f‖H5 <
1

2
BS , 3CeCv ‖f‖2H5 <

1

2
B2
S ,

which can be ensured by demanding

BS > max
{

6CeCv,
√

6CeCv

}
‖f‖H5 .

Finally, we are in a position to establish Theorem 6.1.

Proof. (Theorem 6.1). From (6.7) and applying Lemma 6.2, it is straightforward to see that

‖S0(f)[W ]‖H−1/2 ≤ ‖τwḡ∂rv0 − Y v0‖H−1/2

≤ ‖τwḡ∂rv0‖H−1/2 + ‖Y v0‖H−1/2

≤ |τw| ḡ ‖v0‖H1/2 + CY ‖v0‖H1/2

≤ (|τw| ḡ + CY )Ct ‖v0‖H1

≤ (|τw| ḡ + CY )CtKv

≤ KS ,

if KS > 0 is chosen appropriately.
Assuming that (6.1) holds for all n < N we now investigate an estimate of SN . For

simplicity we consider the single term

SN := τw
(
−ff ′

ḡ(ḡ −Ri)

)
∂θvN−2

and we measure

‖SN‖H−1/2 ≤
∥∥∥∥τw ( −ff ′

ḡ(ḡ −Ri)

)
∂θvN−2

∥∥∥∥
H−1/2

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H4+1/2 ‖∂θvN−2‖H−1/2

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H5 Ct ‖vN−2‖H1

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H5 CtKvB

N−2
S .
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We are done provided that we choose

KS > |τw|
M2

ḡ(ḡ −Ri)
CtKv,

and BS > ‖f‖H5 .

In an analgous manner, the analyticity of Q can be established.

Theorem 6.6. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (3.2), and U ∈
H−1/2([0, 2π]) then the series (3.11a) converges strongly as an operator from H−1/2([0, 2π])
to H−1/2([0, 2π]). In other words there exist constants KQ > 0 and BQ > 0 such that

‖Qn(f)[U ]‖H−1/2 ≤ KQB
n
Q.

Remark 6.7. The proof proceeds in a similar fashion to that of Theorem 6.1. The crucial
difference lies in the elliptic estimate, c.f. Lemma 6.3, which in this case requires

Re

{
Ŷp
τuḡ

}
≥ 0, Re

{
̂(−T (u)

)
p

}
≤ 0,

∣∣∣∣∣Im
{
Ŷp
τuḡ

}∣∣∣∣∣ <∞, ∣∣∣Im{ ̂(−T (u)
)
p

}∣∣∣ <∞.
(6.10)

As before, the operator Y is free to be chosen and we again follow Despres [Des91b, Des91a]
who selected (iη) for a constant η ∈ R+. As ku, and therefore τu, are real and positive, the
first and third conditions in (6.10) are satisfied. For the other conditions we note that

(̂
T (u)

)
p

= −ku
H ′p(k

uRo)

Hp(kuRo)

and recall that Shen & Wang [SW07] established

0 < Im

{
H ′p(k

uRo)

Hp(kuRo)

}
< 1, p 6= 0,

c.f. (2.34a) and (2.34c) in [SW07]. So, for a fixed Ro we have∣∣∣Im{ ̂(−T (u)
)
p

}∣∣∣ <∞, ∀p,

while (2.34b) of [SW07] delivers

p

Ro
≥ Re

{
−ku

H ′p(k
uRo)

Hp(kuRo)

}
≥ 1

2Ro
> 0, p 6= 0.

Therefore
Re
{

̂(−T (u)
)
p

}
≤ 0, p 6= 0,

and our proof can proceed.

7 Numerical Results

We now present results of simulations of our implementations of the algorithms outlined
above. The schemes are essentially High–Order Spectral (HOS) [GO77, CHQZ88, DFM02]
with nonlinearities approximated by convolutions implemented with the Fast Fourier Trans-
form algorithm.
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7.1 Implementation Details

The numerical approaches we describe in this section utilize either the Dirichlet–Neumann
operator (DNO) formulation of the problem [NT18] or its IIO alternative specified in (3.8).
The relevant operators (DNO and IIO, respectively) are simulated using the TFE method-
ology [NR01a, NR03, NR04b]. The TFE method is a Fourier collocation/Taylor method
[NR01b, NR04b] enhanced by Padé summation [BGM96]. In more detail, for the IIO S we
approximate W by

WNθ,N (θ) :=
N∑
n=0

Nθ/2−1∑
p=−Nθ/2

Ŵn,pe
ipθεn,

and insert this into (3.14) for 0 ≤ n ≤ N to determine approximation vNθ,Nr,Nn (r, θ) which
are used in (6.7) to simulate the IIO. As has been pointed out in [NR01b, NN04, NT18],
the TFE approach requires an additional discretization in the radial direction which we
achieve by a Chebyshev collocation approach. An important consideration is how the Taylor
series in ε are summed. The classical numerical analytic continuation technique of Padé
approximation [BGM96] has been used very successsfully for HOPS methods (see, e.g.,
[BR93b, NR03]), and we will use it here.

7.2 The Method of Manufactured Solutions

Before proceeding to our simulation of LSPRs, we begin by demonstrating the validity of our
algorithm by conducting experiments using the Method of Manufactured Solutions (MMS)
[Bur66, Roa98a, Roa98b, Roa02, KS03, OTH04, Roy05]. To be more specific we consider
the 2π–periodic, outgoing solutions of the Helmholtz equation, (2.1a),

uq(r, θ) = AquHq(k
ur)eiqθ, q ∈ Z, Aqu ∈ C,

and their bounded counterparts for (2.1b)

wq(r, θ) = AqwJq(k
wr)eiqθ, q ∈ Z, Aqw ∈ C.

We select an analytic profile
g(θ) = εf(θ) = εecos(θ), (7.1)

and define, for any choice of the radius of the interface ḡ, the Dirichlet and Neumann traces

uex(θ) := u(ḡ + g(θ), θ), ũex(θ) := (−∂Nuex)(ḡ + g(θ), θ),

and
wex(θ) := w(ḡ + g(θ), θ), w̃ex(θ) := (∂Nw

ex)(ḡ + g(θ), θ).

From these we define, for any real η > 0, the impedances

U ex(θ) := τuũex + iηuex, Ũ ex(θ) := τuũex − iηuex,

and
W ex(θ) := τww̃ex + iηwex, W̃ ex(θ) := τww̃ex − iηwex.

(In this case Y = iη and Z = −iη.) We select the following physical parameters

q = 2, Aqu = 2, Aqw = 1, η = 3.4, λ = 0.45, ku = 13.9626, kw = 5.13562230,
(7.2)
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and numerical parameter choices

Nθ = 64, N = 16, Nr = 32. (7.3)

To demonstrate the behavior of our scheme we studied four choices of ε = 0.005, 0.01, 0.05, 0.1.
For this we supplied {uex, wex} to our HOPS algorithm to simulate DNOs producing,
{ũapprox, w̃approx}, and computed the relative error

ErrorDNO
rel =

∣∣∣w̃ex − w̃approx
Nθ,N

∣∣∣
L∞

|w̃ex|L∞
.

In a similar way, we passed {U ex,W ex} to our HOPS algorithm to approximate IIOs giving,
{Ũapprox, W̃ approx}, and computed the relative error

ErrorIIO
rel =

∣∣∣W̃ ex − W̃ approx
Nθ,N

∣∣∣
L∞∣∣∣W̃ ex

∣∣∣
L∞

.

7.3 Robust Computation: DNOs versus IIOs

To begin our study, we chose ḡ = 0.5, carried out the MMS simulations with our IIO
method, (3.8), and report our results in Figures 2(a) and 2(b). We repeated this with
our DNO approach [NT18] and display the outcomes in Figures 3(a) and 3(b). We see in
this generic, non–resonant, configuration that both algorithms display a spectral rate of
convergence as N is refined (up to the conditioning of the algorithm) which improves as ε
is decreased.
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Figure 2: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a non–resonant
configuration using the IIO formulation.

Before proceeding, we note that the choice of radius

ḡ = 1,

will induce a singularity in the interior DNO resulting in a lack of uniqueness. To test
performance of our methods near this scenario we selected

ḡ = 1− τ, (7.4)
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Figure 3: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a non–resonant
configuration using the DNO formulation.

for two choices of τ . With the same choices of geometrical, (7.1), physical, (7.2), and
numerical, (7.3), parameters as before, we selected τ = 10−12 resulting in

ḡ = 1− 10−12.

Once again, we conducted simulations with the IIO method, (3.8), and display our results
in Figures 4(a) and 4(b). We revisited these computations with our DNO approach [NT18]
and show our results in Figures 5(a) and 5(b). We see in this nearly resonant configuration,
that while the IIO methodology continues to display a spectral rate of convergence as N
is refined (improving as ε is decreased), the DNO approach does not provide results of the
same quality.
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Figure 4: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a nearly resonant
configuration using the IIO formulation.

To close, we chose τ = 10−16 in (7.4) resulting in

ḡ = 1− 10−16.

After running simulations with the IIO method, (3.8), we display our results in Figures 6(a)
and 6(b). We revisited these computations with our DNO approach [NT18] and show our
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Figure 5: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a nearly resonant
configuration using the DNO formulation.

results in Figures 7(a) and 7(b). We see in this resonant (to machine precision) configura-
tion, the IIO again displays a spectral rate of convergence as N is refined (improving as ε
is decreased), while the DNO approach delivers completely unacceptable results.
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Figure 6: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a resonant config-
uration using the IIO formulation.

7.4 Simulation of Nanorods

We close by returning to the problem of scattering of plane–wave incident radiation uinc =
exp(iαx−iγuz) by a nanorod (which demands the Dirichlet and Neumann conditions, (2.1c)
and (2.1d), respectively). More specifically, we considered metallic nanorods housed in a
dielectric with outer interface shaped by

r = ḡ + g(θ) = ḡ + εf(θ).

We illuminated this structure over a range of incident wavelengths λmin ≤ λ ≤ λmax and
perturbation sizes εmin ≤ ε ≤ εmax, and computed the magnitudes of the reflected and
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Figure 7: Plot of relative error with five choices of N = 0, 4, 8, 12, 16 for a resonant config-
uration using the DNO formulation.

transmitted surface currents, ũ and w̃. These we term the “Reflection Map” (RM) and
“Transmission Map” (TM) in analogy with similar quantities of interest in the study of
metallic gratings [Pet80, Rae88, Mai07, NH12, EB12]. Our study of the Fröhlich condition,
(1.1), indicates that there should be a sizable enhancement in each at an LSPR. In the
case of a nanorod with a perfectly circular cross–section we computed the value as the λF
satisfying (1.1), and in subsequent plots this is depicted by a dashed red line.

Using the TFE approach to compute the IIOs, we studied the periodic sinusoidal profile

f(θ) = cos(4θ), (7.5)

see Figure 8. With this we considered the following physical configuration

Figure 8: Plot of the cross–section of a metallic nanorod (occupying Sw) shaped by r =
ḡ+ε cos(4θ) (ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave illumination
with wavenumber (α,−γu). The dash–dot blue line depicts the unperturbed geometry, the
circle r = ḡ.
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ḡ = 0.025, nu = nVacuum, nw = nAg,

λmin = 0.300, λmax = 0.800, εmin = 0, εmax = ḡ/5,

so that a silver (Ag) nanorod sits in vacuum, with numerical parameters

Nλ = 201, Nε = 201, Nθ = 32, Nr = 16, N = 8.

Plots of the RM and TM are displayed in Figure 9. In Figure 10 we show the final slice
(ε = εmax) of each of these, together with the Fröhlich value of the LSPR, (1.1), as a dashed
red line. Here we see how even a relatively moderate value of the deformation parameter

Figure 9: Reflection Map and Transmission Map for a silver nanorod shaped by the si-
nusoidal profile, (7.5), in vacuum. Here εmax = ḡ/5, ḡ = 0.025, λmin = 0.300, and
λmax = 0.800.
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Figure 10: Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod
shaped by the analytic profile, (7.5), in vacuum.

(one fifth of the rod radius) can produce a sizable shift in the LSPR location which our
novel approach can accurately capture.

8 Conclusion

In this paper we have investigated a High–Order Perturbation of Surfaces (HOPS) algorithm
for the numerical simulation of a novel formulation of the problem of scattering of linear
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waves by a nanorod in terms of Impedance–Impedance Operators (IIOs). Not only does our
new methodology enjoy the same advantages of our previous implementation in terms of
Dirichlet–Neumann Operators (e.g., surface formulation, exact enforcement of Sommerfeld
radiation conditions, High–Order Spectral accuracy), but it is also immune to the Dirichlet
eigenvalues which cause artificial singularities in our previous approach. In addition, our new
formulation enables us to establish the existence, uniqueness, and analyticity of solutions
to this problem, which we have taken pains to deliver. Finally, we have given a detailed
description of our algorithm, and not only validated it but also demonstrated its efficiency,
fidelity, and high–order accuracy.
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A Volumetric Function Spaces

With the goal of establishing the analyticity results of Section 6 we discuss necessary volu-
metric function spaces in addition to the interfacial spaces we described in Section 4. For this
we consider the domain Ω := {a < r < b} with inner and outer boundaries Γa := {r = a}
and Γb := {r = b}, respectively. For clarity of presentation we use the following notation
for the classical θ–periodic volumetric and surface Sobolev spaces

V := H1(Ω), Wm := H1/2(Γm), m ∈ {a, b}.

The precise nature of the spaces Wm has already been presented, and the details of the
space V can be made clear by considerations akin to those for the quasiperiodic functions
featured in the Habilitationsschrift of Arens [Are09]. Informally, if v ∈ V then

v(r, θ) =
∞∑

p=−∞
v̂p(r)e

ipθ, v̂p(r) =
1

2π

∫ 2π

0
v(r, θ)e−ipθ dθ,

and ‖v‖V <∞ where

‖v‖2V :=

∞∑
p=−∞

(
〈p〉2 ‖v̂p‖2L2(dr) + ‖∂rv̂p‖2L2(dr)

)
, ‖v̂p‖2L2(dr) :=

∫ b

a
|v̂p(r)|2 r dr.

The existence, uniqueness, and elliptic regularity results we are about to establish de-
mand an understanding of the duals of both V and Wm. As we have seen, the latter are
simply the spaces H−1/2(Γm). However, the former require a little more work to character-
ize. Following Evans [Eva10] (Section 5.9.1) we use the Riesz Representation Theorem to
identify any F ∈ V ′ with an element uF ∈ V such that

〈F, v〉 = (uF , v)V , ∀v ∈ V,

where 〈·, ·〉 is the duality pairing between V and V ′, and (·, ·)V is the V inner product

(u, v)V =

∫
Ω
∇u · ∇v + uv dV.
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As uF ∈ V we can identify F 0, F r, F θ ∈ L2(Ω) such that, in the weak sense,

F = F 0 + (∂rF
r)r̂ +

(∂θF
θ)

r
θ̂,

and

‖F‖2V ′ =
∥∥F 0

∥∥2

L2(Ω)
+ ‖F r‖2L2(Ω) +

∥∥∥∥F θr
∥∥∥∥2

L2(Ω)

gives the norm of V ′. We note that since 0 < a < b <∞ this is equivalent to∥∥F 0
∥∥2

L2(Ω)
+ ‖F r‖2L2(Ω) +

∥∥∥F θ∥∥∥2

L2(Ω)
.

Remark A.1. We note, for later use, the important fact that V embeds compactly into
L2(Ω) while Wm embed compactly into L2(Γm) [SS11].

B The Elliptic Estimate

We now present the fundamental result which enables the proof of our analyticity theorems.
For this we consider the generic Helmholtz problem

∆v + k2v = F, in Ω, (B.1a)

∂rv −Av = K, at Γa, (B.1b)

∂rv −Bv = L, at Γb, (B.1c)

where A and B can be order–one Fourier multipliers

A : Wa →W ′a, B : Wb →W ′b,

though they can also be constants, e.g., the choice of Despres [Des91b, Des91a] A = iηa,
B = iηb, where ηm ∈ R.

B.1 Uniqueness

We can decide decisively upon uniqueness of solutions to (B.1) by considering this problem
with F ≡ K ≡ L ≡ 0 and writing the exact solution via separation of variables. The
solution of (B.1a) with F ≡ 0 is

v(r, θ) =
∞∑

p=−∞
{cpJp(kr) + dpYp(kr)} eipθ, (B.2)

where Yp(z) is the order p second kind Bessel function, with derivative

∂rv(r, θ) =
∞∑

p=−∞

{
cpkJ

′
p(kr) + dpkY

′
p(kr)

}
eipθ, (B.3)

while the boundary conditions, (B.1b)–(B.1c), in the case K ≡ L ≡ 0 deliver(
kJ ′p(ka)− ÂpJp(ka) kY ′p(ka)− ÂpYp(ka)

kJ ′p(kb)− B̂pJp(kb) kY ′p(kb)− B̂pYp(kb)

)(
cp
dp

)
=

(
0
0

)
. (B.4)
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Clearly, this has only the zero solution provided that the determinant function is non–zero

Λp(k, a, b, Âp, B̂p) :=
(
kJ ′p(ka)− ÂpJp(ka)

)(
kY ′p(kb)− B̂pYp(kb)

)
−
(
kY ′p(ka)− ÂpYp(ka)

)(
kJ ′p(kb)− B̂pJp(kb)

)
.

If we define a “configuration” (k, a, b, A,B) then we can specify a δ–permissible configuration
set

Cδ(k, a, b, A,B) :=

{
(k, a, b, A,B) |

∣∣∣Λp(k, a, b, Âp, B̂p)∣∣∣2 > δ2,∀p ∈ Z

}
, (B.5)

From here we only consider δ–permissible configurations for some δ > 0.
For later reference we explicitly mention the case k = 0 which corresponds to Laplace’s

equation:

∆v = F, in Ω, (B.6a)

∂rv −Av = K, at Γa, (B.6b)

∂rv −Bv = L, at Γb. (B.6c)

The exact solution of (B.6a) is, in the case F ≡ 0,

v(r, θ) = c0 log(r) + d0 +

∞∑
|p|=1

{
cp

(r
b

)|p|
+ dp

(r
a

)−|p|}
eipθ, (B.7)

with derivative

∂rv(r, θ) =
c0

r
+
∞∑
|p|=1

|p|
{
cp
b

(r
b

)|p|−1
− dp

a

(r
a

)−|p|−1
}
eipθ. (B.8)

The boundary conditions (B.6b)–(B.6c), for K ≡ L ≡ 0, demand, for p 6= 0,q|p| (|p| /(bq)− Âp) (
− |p| /a− Âp

)(
|p| /b− B̂p

)
q|p|
(
−(|p| q)/a− B̂p

)(cp
dp

)
=

(
0
0

)
, (B.9)

where q := a/b (note that 0 < q < 1), and, for p = 0,(
1/a− Â0 log(a) −Â0

1/b− B̂0 log(b) −B̂0

)(
c0

d0

)
=

(
0
0

)
. (B.10)

Once again, the uniqueness of solutions to this problem is determined by the vanishing of
a determinant function

Λp(0, a, b, Âp, B̂p) =

(
|p|
a

+ Âp

)(
|p|
b
− B̂p

)
− q2|p|

(
|p|
bq
− Âp

)(
|p| q
a

+ B̂p

)
, (B.11)

for p 6= 0, and

Λ0(0, a, b, Â0, B̂0) =
aÂ0 − bB̂0

ab
+ Â0B̂0 log(q), (B.12)

for p = 0. Again, we specify a δ–permissible configuration set

Cδ(0, a, b, A,B) :=

{
(0, a, b, A,B) |

∣∣∣Λp(0, a, b, Âp, B̂p)∣∣∣2 > δ2, ∀p ∈ Z

}
. (B.13)

As before, from here we only consider δ–permissible configurations for some δ > 0.
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Remark B.1. Regarding the possibility of Λp being zero, general statements are difficult
to make. However, if, for instance, we make the choice of Despres [Des91b, Des91a], Âp =
B̂p = iη, then

Λp =
(

1− q2|p|
)(
|p|2 + η2

)
+ i |p| q2|p|η (q − 1/q) = O(p2),

and both the real and imaginary parts of Λp are non–zero [Mar06, Mar18].

B.2 Existence

We are now in a good position to establish existence of solutions and estimates on these in
permissible configurations satisfying (B.5) and (B.13) which, by defintion, are unique.

Theorem B.2. If F ∈ V ′, K ∈W ′a, L ∈W ′b, the configurations satisfy

(k, a, b, A,B) ∈ Cδ(k, a, b, A,B), (0, a, b, A,B) ∈ Cδ(0, a, b, A,B),

for some δ > 0, and the Fourier multiplier operators satisfy the conditions

Re
{
Âp

}
≥ 0, Re

{
B̂p

}
≤ 0,

∣∣∣Im{Âp}∣∣∣ <∞, ∣∣∣Im{B̂p}∣∣∣ <∞, p 6= 0, (B.14)

then there exists a unique solution of the Helmholtz problem, (B.1), which satisfies the
estimate

‖v‖V ≤ Ce
{
‖F‖V ′ + ‖K‖W ′a + ‖L‖W ′b

}
, (B.15)

for some universal constant Ce > 0.

Remark B.3. We only demand (B.14) for p 6= 0 as in several cases of interest these
conditions are violated only at p = 0 which, as we will show, does not affect the results.

Proof. To establish this result we write the solution v = v0 + v1 where the first function
satisfies (B.1) with homogeneous boundary conditions and slightly modified inhomogeneity

∆v0 + k2v0 = G, in Ω, (B.16a)

∂rv0 −Av0 = 0, at Γa, (B.16b)

∂rv0 −Bv0 = 0, at Γb, (B.16c)

and the second resolves the boundary conditions

∂rv1 −Av1 = K, at Γa, (B.17a)

∂rv1 −Bv1 = L, at Γb. (B.17b)

We produce a choice of v1 which, for convenience, is harmonic

∆v1 = 0, in Ω, (B.17c)

though this is not necessary. Since the configuration is in the set Cδ(k, a, b, A,B), we will
show in Theorem B.4 that (B.16) has a unique solution satisfying the estimate

‖v0‖V ≤ C0 ‖G‖V ′ , (B.18)
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and, since the configuration is in the set Cδ(0, a, b, A,B), we will show in Theorem B.5 that
(B.17) has a unique solution such that

‖v1‖V ≤ C1

{
‖K‖W ′a + ‖L‖W ′b

}
. (B.19)

Inserting v = v0 + v1 into (B.1) we find that v0 satisfies (B.16) with G = F − k2v1 so that

‖v‖V ≤ ‖v0‖V + ‖v1‖V
≤ C0

∥∥F − k2v1

∥∥
V

+ ‖v1‖V
≤ C0

{
‖F‖V ′ + k2 ‖v1‖V ′

}
+ ‖v1‖V

≤ C0

{
‖F‖V ′ + k2 ‖v1‖V

}
+ ‖v1‖V

≤ C0 ‖F‖V ′ + (C0k
2 + 1)C1

{
‖K‖W ′a + ‖L‖W ′b

}
,

and we are done provided

Ce = max
{

2C0, 2C1(C0k
2 + 1)

}
.

We begin with the estimate for v0.

Theorem B.4. If G ∈ V ′, the configuration {k, a, b, A,B} ∈ Cδ for some δ > 0, and
the Fourier multiplier operators satisfy the conditions (B.14), then there exists a unique
solution of the Helmholtz problem, (B.16), which satisfies the estimate (B.18) for some
universal constant C0 > 0.

Proof. We follow very closely the work of Harari and Hughes [HH92] and Demkowicz and
Ihlenburg [DI01], which was later enhanced by the author and Nigam [NN06] for use on
domains with perturbed interface shape. Here, once again, we modify this approach to
address a related but significantly different problem.

To begin, we define the zero–mode Fourier multiplier operators A0 and B0 by

A0[ψ(θ)] :=
∞∑

p=−∞
Âpψ̂pe

ipθδp,0 = Â0ψ̂0, B0[ψ(θ)] :=
∞∑

p=−∞
B̂pψ̂pe

ipθδp,0 = B̂0ψ̂0.

It is easy to show that A0 and B0 each map L2(Γm) to L2(Γm). With this, a weak formu-
lation of (B.16) is:

Find v0 ∈ V such that A(v0, φ) +D1(v0, φ) +D2(v0, φ) = L(φ), ∀φ ∈ V,
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where

A(v, φ) :=

∫
Ω
∇v · ∇φ dV +

∫
Ω
vφ dV

+ Re

{∫
Γa

((A−A0)v)φ ds

}
− Re

{∫
Γb

((B −B0)v)φ ds

}
,

D1(v, φ) := −(k2 + 1)

∫
Ω
vφ dV,

D2(v, φ) := Im

{∫
Γa

((A−A0)v)φ ds

}
− Im

{∫
Γb

((B −B0)v)φ ds

}
+

∫
Γa

(A0v)φ ds−
∫

Γb

(B0v)φ ds,

L(φ) := −
∫

Ω
Gφ dV.

Following [HH92, DI01, NN06] it is not difficult to show that A is a continuous, sesquilinear
form from V × V to C which induces a bounded operator A : V → V ′ (see Lemma 2.1.38
of [SS11]). The first two terms are “standard” while the latter two require that A and B
be at most order–one Fourier multipliers. For instance∣∣∣∣Re

{∫
Γa

A[vr=a]φr=a ds

}∣∣∣∣ ≤ |〈A[vr=a], φr=a〉| ≤ ‖A[vr=a]‖W ′a ‖φr=a‖Wa
,

which is bounded as v, φ ∈ V , the trace operator maps each to Wa, and A : Wa →W ′a.
Furthermore, A is V –elliptic [SS11], i.e., there is a γ > 0 such that

Re {A(v, v)} ≥ γ ‖v‖2V .

Again, the first two terms do not cause any problem as they are the V –norm, however the
second two must be handled by estimates such as

Re

{∫
Γa

(A−A0)[vr=a]vr=a ds

}
=

∞∑
p=−∞,p 6=0

Re
{
Âp

}
|v̂p(a)|2 ≥

∞∑
p=−∞,p 6=0

|v̂p(a)|2 ≥ 0,

and

− Re

{∫
Γb

(B −B0)[vr=a]vr=b ds

}
=

∞∑
p=−∞,p 6=0

Re
{
−B̂p

}
|v̂p(b)|2

≥
∞∑

p=−∞,p 6=0

|v̂p(b)|2 ≥ 0.

By the Lax–Milgram Lemma (see Lemma 2.1.51 of [SS11]) the operator A satisfies∥∥A−1
∥∥
V←V ′ ≤

1

γ

(see Theorem 2.1.44 of [SS11]).
Again, as shown in [HH92, DI01, NN06] it is not hard to show that D1 is a continuous

sesquilinear form from L2(Ω) × L2(Ω) to C which induces another bounded operator D1 :
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L2(Ω) → L2(Ω). Since V embeds compactly into L2(Ω) we have that D1 is a compact
operator.

It is a little more difficult to show that D2 is a continuous sesquilinear form mapping
L2(Γm)× L2(Γm) to C. For instance, of special note is the calculation

Im

{∫
Γa

(A−A0)[vr=a]φr=a ds

}
=

∞∑
p=−∞,p 6=0

Im
{
Âpv̂p(a)φ̂p(a)

}
,

which is bounded by the boundedness of Im
{
Âp

}
and the Cauchy–Schwartz inequality. In

addition A0 : L2(Γa)→ L2(Γa) so∫
Γa

A0[vr=a]φr=a ds ≤ ‖A0[vr=a]‖L2(Γa) ‖φr=a‖L2(Γa) .

So, since Wm embeds compactly into L2(Γm) we have that the induced operator D2 is a
compact operator.

Thus, the governing equations can be written as

(A + D1 + D2)v0 = G =⇒ (I + A−1(D1 + D2))v0 = A−1G,

where A−1(D1 + D2) is a compact map from V to V . Thus, by Fredholm’s theory [HH92,
DI01, NN06], provided that the null space of (A + D1 + D2) is trivial (which we are
guaranteed by our choice of configuration), there exists a (unique) solution satisfying

‖v0‖V ≤
∥∥(I + A−1(D1 + D2))A−1G

∥∥
V
≤
∥∥I + A−1(D1 + D2)

∥∥
V←V

∥∥A−1
∥∥
V←V ′ ‖G‖V ′ ,

and we are done.

We close with the estimate for v1.

Theorem B.5. If K ∈ W ′a, L ∈ W ′b, the configuration (k = 0, a, b, A,B) ∈ Cδ for some
δ > 0, then there exists a harmonic function satisfying (B.17) which verifies the estimate
(B.19).

Proof. The solution of (B.17c) is given by (B.7) with r–derivative specified in (B.8). To
satisify the boundary conditions we use the Fourier series representations

K(θ) =
∞∑

p=−∞
K̂pe

ipθ, L(θ) =

∞∑
p=−∞

L̂pe
ipθ,

and generate (B.9) and (B.10) with right–hand–side (K̂p, L̂p)
T . More specifically, for p 6= 0,q|p| (|p| /(bq)− Âp) (

− |p| /a− Âp
)(

|p| /b− B̂p
)

q|p|
(
−(|p| q)/a− B̂p

)(cp
dp

)
=

(
K̂p

L̂p

)
,

and, for p = 0, (
1/a− Â0 log(a) −Â0

1/b− B̂0 log(b) −B̂0

)(
c0

d0

)
=

(
K̂0

L̂0

)
.
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We recall the definition of the determinant function, (B.11),

Λp(0, a, b, Âp, B̂p) =

(
|p|
a

+ Âp

)(
|p|
b
− B̂p

)
− q2|p|

(
|p|
bq
− Âp

)(
|p| q
a

+ B̂p

)
,

for p 6= 0, and, (B.12),

Λ0(0, a, b, Â0, B̂0) =
aÂ0 − bB̂0

ab
+ Â0B̂0 log(q).

With this we can write the solution as(
cp
dp

)
=

1

Λp


 (
|p| /a+ Âp

)
L̂p(

− |p| /b+ B̂p

)
K̂p

+ q|p|

(−(|p| q)/a− B̂p
)
K̂p(

|p| /(bq)− Âp
)
L̂p

 ,

for p 6= 0, and(
c0

d0

)
=

1

Λ0

(
−B̂0K̂0 + Â0L̂0(

−1/b+ B̂0 log(b)
)
K̂0 +

(
1/a− Â0 log(a)

)
L̂0

)
.

We have already assumed that we are in a δ–permissible configuration so we know that
Λp > δ and all of these solutions are well–defined. To study the regularity results which we
claim, we must investigate the asymptotics of (B.11). This is a little difficult as this form
is quite complicated, however, as 0 < q < 1 we can see that

Λp(0, a, b, Âp, B̂p) ∼
(
|p|
a

+ Âp

)(
|p|
b
− B̂p

)
.

Since A and B are at most order–one Fourier multipliers, i.e., there exist C̃A > 0 and
C̃B > 0 such that ∣∣∣Âp∣∣∣ < C̃A〈p〉,

∣∣∣B̂p∣∣∣ < C̃B〈p〉,

it is clear that there is a constant C̃Λ > 0, such that

1

C̃Λ

<
|Λp|
〈p〉2

< C̃Λ.

Thus, we find, as p→∞,

cp ∼

(
|p| /a+ Âp

Λp

)
K̂p, dp ∼

(
− |p| /b+ B̂p

Λp

)
L̂p,

so that

|cp|2 ≤ Cc〈p〉−2
∣∣∣K̂p

∣∣∣2 , |dp|2 ≤ Cd〈p〉−2
∣∣∣L̂p∣∣∣2 ,

for constants Cc, Cd > 0.
Regarding the V norm of v1 we note that, from Parseval’s relation,

‖v1‖2V =
∞∑

p=−∞
〈p〉2

∥∥∥(̂v1)p

∥∥∥2

L2(dr)
+
∥∥∥∂r (̂v1)p

∥∥∥2

L2(dr)
.
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From (B.7) we have∥∥∥(̂v1)p

∥∥∥2

L2(dr)
≤ |cp|2

∥∥∥∥(rb)|p|
∥∥∥∥2

L2(dr)

+ |dp|2
∥∥∥∥(ra)−|p|

∥∥∥∥2

L2(dr)

,

and from (B.8)∥∥∥∂r (̂v1)p

∥∥∥2

L2(dr)
≤ |p|2

∣∣∣cp
b

∣∣∣2 ∥∥∥∥(rb)|p|−1
∥∥∥∥2

L2(dr)

+ |p|2
∣∣∣∣dpa
∣∣∣∣2 ∥∥∥∥(ra)−|p|−1

∥∥∥∥2

L2(dr)

.

For p 6= −1 it is an elementary Calculus exercise to deduce that

‖rp‖2L2(dr) =

∫ b

a
r2p+1 dr =

b2p+2 − a2p+2

2p+ 2
< C〈p〉−1,

while
∥∥r−1

∥∥
L2(dr)

= log(b/a) <∞. With this it is not difficult to show that

‖v1‖2V ≤ C0

∞∑
p=−∞

〈p〉2〈p〉−1
(
|cp|2 + |dp|2

)
+ C1

∞∑
p=−∞

〈p〉−1 |p|2
(
|cp|2 + |dp|2

)
≤ C

∞∑
p=−∞

〈p〉1〈p〉−2

(∣∣∣K̂p

∣∣∣2 +
∣∣∣L̂p∣∣∣2)

≤ C {‖K‖H−1/2 + ‖L‖H−1/2} ,

and we are done.

Remark B.6. The reason we consider the Laplace equation at all is this latter study of
the asymptotics of the {cp, dp} which is greatly simplified in comparison to the analogous
forms in terms of Bessel functions.
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