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Construct an adaptive algorithm for solving global univariate function minimization problem,
which is guaranteed to provide an answer to within a user-specified tolerance.

Motivation

For example, MATLAB’s fminbnd uses the golden section search method.

Unfortunately, fminbnd might give only a local minimum, and it has no

guarantee of meeting the tolerance.
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Let S(f ) := mina≤x≤b f (x) = f (x∗). Given tolerances ε and δ , find approximate minimum
value U(f ) and possible solution set X(f ) such that

U(f )− S(f ) ≤ ε or x∗ ∈ X , Vol(X(f )) ≤ δ

for f ∈ Cτ :=
{
f ∈ C1[a, b] :

∥∥f ′′
∥∥
∞ ≤

τ
b− a

∥∥∥f ′ −
f (b)− f (a)
b− a

∥∥∥
∞

}
,

i.e., f is not too spiky.

Problem Definition

Our algorithm is based on the following approximations computed in terms of function
values:

An(f )(x) := linear spline of f at xi = (i− 1)b− an− 1 , i = 1, . . . , n,

F̃n(f ) :=
∥∥∥An(f )′ − f (b)− f (a)

b− a

∥∥∥
∞
≈
∥∥∥f ′ −

f (b)− f (a)
b− a

∥∥∥
∞
.

Then for f ∈ Cτ we have the data-based:
∥∥f ′′
∥∥
∞ ≤

τ
b− aCnF̃n(f ), Cn = 1

1− τ/(2n− 2).

Data-Based Approximations

The difference between f (x) and its linear spline approximation is bounded by

|f (x)− An(f )(x)| ≤ τ
b− aCnF̃n(f )(x − xi)(xi+1 − x)

2 .

Then the lower bound for f (x) is a piecewise quadratic function:

An(f )(x)− τCnF̃n(f )
b− a

(x − xi)(xi+1 − x)
2 ≤ f (x) for all x ∈ [xi, xi+1].

The upper bound on mina≤x≤b f (x) is given by

Un := min
a≤x≤b

An(f )(x) = min
1≤i≤n

f (xi) ≥ min
a≤x≤b

f (x).

Un
 

 

f (x)

The bounds on f and mina≤x≤b f (x)

Initialize sample size n.
Stage 1. Estimate the semi-norms of f that define Cτ using sample size n.
Stage 2. Check the condition for f ∈ Cτ .
Stage 3. Compute the estimated error errn(f ) and the possible solution set Xn(f ).
If n is large enough to satisfy either the error tolerance or the X tolerance, i.e.,

errn(f ) ≤ ε or Vol(Xn(f )) ≤ δ,

return the approximations Un and Xn(f ). If not, increase n and go to Stage 1.

Algorithm funmin_g

• A family of bump test functions

f (x) =
{

1
2a2 [−4a2 − (x − z)2 − (x − z − a)|x − z − a|+ (x − z + a)|x − z + a|] if |x − z| ≤ 2a
0 otherwise

with log10(a) ∼ U[−4,−1] and z ∼ U[2a, 1−2a]. The table shows the empirical success rates with ε = 10−8,
δ = 10−6, and sample n = 10000.

Success Success Failure Failure
τ Prob(f ∈ Cτ) No Warning Warning No Warning Warning
11 1.50%→ 21.32% 21.32% 0.00% 78.68% 0.00%

101 33.28%→ 53.36% 52.38% 0.00% 47.62% 0.00%
1001 66.98%→ 85.37% 85.39% 0.00% 14.61% 0.00%

• Functions with two local minimum points

f (x) = −5 exp(−[10(x − a1)]2)− exp(−[10(x − a2)]2), 0 ≤ x ≤ 1,

with a1, a2 ∼ U[0, 1]. The table shows the success rates of our algorithm compared to fminbnd.

funmin_g fminbnd
δ Success Success No Warning Success Warning Success

10−2 100.00% 100.00% 0.00% 68.36%
10−4 100.00% 100.00% 0.00% 68.36%
10−7 100.00% 0.00% 100.00% 68.36%

Numerical results

We are writing a paper with the following additional topics:
•Computational cost. Find the theoretical lower and upper bounds for the cost;
•Experimental cost bounds. Numerical results of the lower and upper bounds for the

cost.
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