A Guaranteed, Adaptive, Automatic Algorithm for Univariate Function Minimization

Xin Tong

Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago xtong20@uic.edu

Joint work with Prof Fred J. Hickernell and Prof Sou-Cheng Choi Department of Applied Mathematics, Illinois Institute of Technology

Motivation

Construct an adaptive algorithm for solving global univariate function minimization problem, which is guaranteed to provide an answer to within a user-specified tolerance

For example, MATLAB's fminbnd uses the golden section search method. Unfortunately, fminbnd might give only a local minimum, and it has no

Algorithm funmin_g

Initialize sample size *n*.

Stage 1. Estimate the semi-norms of *f* that define C_{τ} using sample size *n*. **Stage 2.** Check the condition for $f \in C_{\tau}$.

Stage 3. Compute the estimated error $err_n(f)$ and the possible solution set $\mathcal{X}_n(f)$. If *n* is large enough to satisfy either the error tolerance or the X tolerance, i.e.,

guarantee of meeting the tolerance.

Problem Definition

Let $S(f) := \min_{a \le x \le b} f(x) = f(x^*)$. Given tolerances ε and δ , find approximate minimum value U(f) and possible solution set $\mathcal{X}(f)$ such that

$$U(f) - S(f) \le \varepsilon$$
 or $x^* \in \mathcal{X}$, $Vol(\mathcal{X}(f)) \le \delta$

for $f \in C_{\tau} := \left\{ f \in C^{1}[a, b] : \|f''\|_{\infty} \le \frac{\tau}{b-a} \|f' - \frac{f(b) - f(a)}{b-a}\|_{\infty} \right\}$, i.e., f is not too *spiky*.

Data-Based Approximations

Our algorithm is based on the following approximations computed in terms of function values:

$$A_n(f)(x) := \text{linear spline of } f \text{ at } x_i = (i-1)\frac{b-a}{n-1}, \quad i = 1, \dots, n,$$

$$\widetilde{F}_n(f) := \left\| A_n(f)' - \frac{f(b) - f(a)}{b-a} \right\|_{\infty} \approx \left\| f' - \frac{f(b) - f(a)}{b-a} \right\|_{\infty}.$$

Then for $f \in C_{\tau}$ we have the data-based:

$$T \rightarrow \tilde{T} \rightarrow \tilde{T} \rightarrow 1$$

 $\operatorname{err}_n(f) \leq \varepsilon$ or $\operatorname{Vol}(\mathcal{X}_n(f)) \leq \delta$,

return the approximations U_n and $\mathcal{X}_n(f)$. If not, increase *n* and go to **Stage 1**.

Numerical results

• A family of bump test functions

$$f(x) = \begin{cases} \frac{1}{2a^2} [-4a^2 - (x - z)^2 - (x - z - a)|x - z - a| + (x - z + a)|x - z + a|] & \text{if } |x - z| \le 2a \\ 0 & \text{otherwise} \end{cases}$$

with $\log_{10}(a) \sim \mathcal{U}[-4, -1]$ and $z \sim \mathcal{U}[2a, 1-2a]$. The table shows the empirical success rates with $\varepsilon = 10^{-8}$, $\delta = 10^{-6}$, and sample n = 10000.

		Success	Success	Failure	Failure
τ	$Prob(f \in \mathcal{C}_{\tau})$	No Warning	Warning	No Warning	Warning
11	$1.50\% \rightarrow 21.32\%$	21.32%	0.00%	78.68%	0.00%
101	$33.28\% \rightarrow 53.36\%$	52.38%	0.00%	47.62%	0.00%
1001	$66.98\% \rightarrow 85.37\%$	85.39%	0.00%	14.61%	0.00%

• Functions with two local minimum points

$$f(x) = -5 \exp(-[10(x - a_1)]^2) - \exp(-[10(x - a_2)]^2), \quad 0 \le x \le 1,$$

with $a_1, a_2 \sim \mathcal{U}[0, 1]$. The table shows the success rates of our algorithm compared to **fminbnd**.

		fminbnd		
δ	Success	Success No Warning	Success Warning	Success
10 ⁻²	100.00%	100.00%	0.00%	68.36%

 $\|f''\|_{\infty} \leq \frac{\iota}{b-a} \mathfrak{C}_n \widetilde{F}_n(f), \qquad \mathfrak{C}_n = \frac{1}{1-\tau/(2n-2)}.$

The bounds on f and $\min_{a < x < b} f(x)$

The difference between f(x) and its linear spline approximation is bounded by

$$|f(x) - A_n(f)(x)| \leq \frac{\tau}{b-a} \mathfrak{C}_n \widetilde{F}_n(f) \frac{(x-x_i)(x_{i+1}-x)}{2}.$$

Then the lower bound for f(x) is a piecewise quadratic function:

$$A_n(f)(x) - \frac{\tau \mathfrak{C}_n \widetilde{F}_n(f)(x - x_i)(x_{i+1} - x)}{b - a} \le f(x) \quad \text{for all } x \in [x_i, x_{i+1}]$$

The upper bound on $\min_{a < x < b} f(x)$ is given by

$$\mathcal{J}_n := \min_{a \le x \le b} \mathcal{A}_n(f)(x) = \min_{1 \le i \le n} f(x_i) \ge \min_{a \le x \le b} f(x).$$

10^{-4}	100.00%	100.00%	0.00%	68.36%
10^{-7}	100.00%	0.00%	100.00%	68.36%

Further Work

We are writing a paper with the following additional topics:

- **Computational cost.** Find the theoretical lower and upper bounds for the cost;
- Experimental cost bounds. Numerical results of the lower and upper bounds for the cost.

