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Maxwell’s Equations

The governing equations are the Time-Harmonic Maxwell’s
Equations in a homogeneous region

∇× E = iωµ0H

∇×H = −iωε0εE
∇ · E = 0

∇ ·H = 0

E-electric field, H-magnetic field

There is no free charge.

The complex permittivity is defined by ε := ε′ + iσ/(ωε0)

The σ is conductivity.
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Two-Dimensional Simplifications

The grating shape is invariant in the θ2-direction:

r = a+ g(θ1)

In this 2-D setting Maxwell’s Equations we consider Transverse
Electric (TE) and Transverse Magnetic (TM) polarizations.

Boundary conditions: at any material interface we enforce
tangential continuity of E and H

N× E = 0, N×H = 0,

where N is a normal to the interface.

Incident, scattered, total fields are all 2π-periodic.
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Governing Equation for Doubly-layered medium

We seek periodic solutions of
∆u+ k2uu = 0 r > a+ g(θ)

∆w + k2ww = 0 r < a+ g(θ)

u− w = −ui r = a+ g(θ)

∂Nu− τ2∂Nw = −∂Nui r = a+ g(θ)

ui is the incident radiation.

N = (a+ g,−g′)
τ2 = 1 in TE, τ2 = (ku/kw)2 in TM.
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Governing Equation

We are solving the Helmholtz equation on a two-dimensional
domain exterior to a bounded obstacle:

∆u+ k2u = 0 r > a+ g(θ) (1’)

u(r, θ) = ξ(θ) r = a+ g(θ) (2’)

lim
r→∞

r1/2(∂ru− iku) = 0 r →∞ (3’)

The solution must satisfy (3’) the Sommerfeld radiation
condition (SRC) to guarantee a physical solution.

Let b > a+ |g|L∞ , then using method of separation of
variables gives the general solution u(r, θ) of (1’) and (3’) for
r > b.
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General Solution

Considering the bounded domain {(r, θ) : a+ g(θ) < r < b}
instead of the former unbounded domain {(r, θ) : r > a+ g(θ)},
we rewrite our governing equation as

∆u+ k2u = 0 a+ g(θ) < r < b (1)

u(r, θ) = ξ(θ) r = a+ g(θ) (2)

∂ru(b, θ)− Tu(b, θ) = 0 r = b (3)

where we define an operator T by T (u(b, θ)) := ∂ru(b, θ).

The solution to (1) and (3) is

u(r, θ) =
∑
p

ap
H

(1)
p (kr)

H
(1)
p (ka)

eipθ
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Field Expansion 1

Suppose u depends analytically upon ε so that we can write
Taylor expansion of u and the series converges in a proper
function space:

u = u(r, θ) = u(r, θ; ε) =

∞∑
n=0

un(r, θ)εn

Plug the u(r, θ; ε) into the governing equations and find
equation on each order of n. The solution u is of the form

u(r, θ; ε) =
∞∑
n=0

∑
p

an,p
H

(1)
p (kr)

H
(1)
p (ka)

eipθεn

We are looking for the coefficients {an,p} using the boundary
data ξ(θ) and let g(θ) = εf(θ).
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Field Expansion 2

Define an(θ) and a(θ) by{
sum in p : an(θ) :=

∑
p an,pe

ipθ

sum in n : a(θ) :=
∑∞

n=0 anε
n = u(a, θ)

Define the ’zero-trace’ to ’boundary-trace’ operator D by

D : u(a, θ)→ u(a+ εf(θ), θ)

Then the equation (2) u(a+ εf(θ), θ) = ξ(θ) is expressed as

D(a(θ)) = ξ(θ)

HOPS scheme[ ∞∑
n=0

Dnεn
][ ∞∑

n=0

anε
n

]
=

∞∑
n=0

ξnε
n
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Field Expansion 3

At each n, we have

n = 0 D0a0 = ξ0

n ≥ 1 D0an = ξn −
n−1∑
m=0

Dn−mam

where

D0 = I, D−1
0 = I

Dn[eipθ] = knFn
dnzH

(1)
p (ka)

H
(1)
p (ka)

eipθ, Fn = Fn(θ) =
f(θ)n

n!
.

At each wave number p, we can solve (in Fourier space) for {an,p}
a0,p = (ξ̂0)p

an,p = (ξ̂n)p −
n−1∑
m=0

kn−m
∑
q

(F̂n−m)p−q
dn−mz H

(1)
p (ka)

H
(1)
p (ka)

am,q
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Application: Dirichlet-to-Neumann Operator

We will use the coefficients {an,p} to approximate the exterior
Neuman boundary condition ν(θ):

ν(θ) : = [−∂Nu] (a+ εf, θ) = [−N · Ou] (a+ εf, θ)

= −(a+ εf)∂ru(a+ εf, θ) +
1

a+ εf
ε(∂θf)∂θu(a+ εf, θ)

Define the Dirichlet-to-Neumann operator by G(g) : ξ → ν
such that G(g)ξ = ν

HOPS Scheme: G(εf)ξ =
∑∞

n=0Gnξε
n = ν. Next, evaluate

u(r, θ) =
∑∞

n=0

∑
p an,p

H
(1)
p (kr)

H
(1)
p (ka)

eipθεn at r = a+ εf then

compute ν(θ) by definition.
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Application: Dirichlet-to-Neumann Operator

For each n, we can get Gnξ in terms of {an,p}.

G0ξ = −ak
∑
p

a0,p
dzH

(1)
p (ka)

H
(1)
p (ka)

eipθ

Gnξ = −
f

a
Gn−1ξ − a

n∑
m=0

∑
p

am,pk
n−m+1Fn−m(θ)

dn−m+1
z H

(1)
p (ka)

H
(1)
p (ka)

eipθ

− 2f

n−1∑
m=0

∑
p

am,pk
n−mFn−m−1(θ)

dn−mz H
(1)
p (ka)

H
(1)
p (ka)

eipθ

− f2

a

n−2∑
m=0

∑
p

am,pk
n−m−1Fn−m−2(θ)

dn−m−1
z H

(1)
p (ka)

H
(1)
p (ka)

eipθ

+
∂θf

a

n−1∑
m=0

∑
p

am,pk
n−m−1Fn−m−1(θ)

dn−m−1
z H

(1)
p (ka)

H
(1)
p (ka)

eipθ
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Numerical Approach

We choose the parameters:

k = 1, f = ecos(θ)

ξ(θ) = [H
(1)
p (kr)eipθ](r = a+ εf) for any wave number p

exact solution: u(r, θ) = H
(1)
p (kr)eipθ

List of all Matlab files:

test helmholtz polar.m

field fe helmholtz polar.m

dno fe helmholtz polar.m

compute errors 2d polar.m

make plots polar.m

diff besselh.m
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Governing Equation and General Solutions

The Helmholtz equation on a two-dimensional domain interior to a
bounded obstacle:

∆w + k2w = 0 r < a+ g(θ) (4)

w(r, θ) = ξ(θ) r = a+ g(θ) (5)

lim
r→0

w(r, θ) is bounded r → 0 (6)

The solution to (4) and (6) is

w(r, θ) =
∑
p

dp
Jp(kr)

Jp(ka)
eipθ
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Field Expansion

Following steps of field expansion above, we can also get the
coefficients {dn,p} at each wave number p (in Fourier space)

d0,p = (ξ̂0)p

dn,p = (ξ̂n)p −
n−1∑
m=0

kn−m
∑
q

(F̂n−m)p−q
dn−mz Jp(ka)

Jp(ka)
am,q
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Application: Dirichlet-to-Neumann Operator

The idea here are similar the exterior domain and the only
difference is the sign

ν(θ) : = [+∂Nw] (a+ εf, θ) = [+N · Ow] (a+ εf, θ)

= (a+ εf)∂rw(a+ εf, θ)− 1

a+ εf
ε(∂θf)∂θw(a+ εf, θ)

Define the Dirichlet-to-Neumann operator by G(g) : ξ → ν
such that G(g)ξ = ν
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Application: Dirichlet-to-Neumann Operator

For each n, we can also get Gnξ in terms of {dn,p}.

G0ξ = ak
∑
p

d0,p
dzJp(ka)

Jp(ka)
eipθ

Gnξ = −
f

a
Gn−1ξ + a

n∑
m=0

∑
p

dm,pk
n−m+1Fn−m(θ)

dn−m+1
z Jp(ka)

Jp(ka)
eipθ

+ 2f

n−1∑
m=0

∑
p

dm,pk
n−mFn−m−1(θ)

dn−mz Jp(ka)

Jp(ka)
eipθ

+
f2

a

n−2∑
m=0

∑
p

dm,pk
n−m−1Fn−m−2(θ)

dn−m−1
z Jp(ka)

Jp(ka)
eipθ

− ∂θf

a

n−1∑
m=0

∑
p

dm,pk
n−m−1Fn−m−1(θ)

dn−m−1
z Jp(ka)

Jp(ka)
eipθ
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Numerical Approach

We choose the parameters:

k = 1, f = ecos(θ)

ξ(θ) = [Jp(kr)e
ipθ](r = a+ εf) for any wave number p

exact solution: w(r, θ) = Jp(kr)e
ipθ

List of all Matlab files:

test helmholtz polar interior.m

field fe helmholtz polar interior.m

dno fe helmholtz polar interior.m

compute errors 2d polar.m

make plots polar.m

diff besselj.m
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Future work: Doubly-layered medium

We seek periodic solutions of
∆u+ k2uu = 0 r > a+ g(θ)

∆w + k2ww = 0 r < a+ g(θ)

u− w = −ui r = a+ g(θ)

∂Nu− τ2∂Nw = −∂Nui r = a+ g(θ)

Define ζ(θ) = −ui|r=a+g(θ) and ψ(θ) = −∂Nui|r=a+g(θ)
the boundary conditions can be expressed as

u− w = ζ(θ) r = a+ g(θ)

Guu+ τ2Gww = −ψ(θ) r = a+ g(θ)

Use Gu and Gw (known) to find the solution.
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Thank you!

Comments and Questions!
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