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Introduction

Maxwell's Equations

The governing equations are the Time-Harmonic Maxwell's
Equations in a homogeneous region

VxE =iwugH

VxH = —iweeE
V-E =0
V-H =0

E-electric field, H-magnetic field
There is no free charge.
The complex permittivity is defined by € := ¢’ + io/(wep)

The o is conductivity.
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Introduction

Two-Dimensional Simplifications

@ The grating shape is invariant in the 3-direction:
r=a-+ 9(91)

@ In this 2-D setting Maxwell’s Equations we consider Transverse
Electric (TE) and Transverse Magnetic (TM) polarizations.

@ Boundary conditions: at any material interface we enforce
tangential continuity of E and H

NxE=0 NxH=0,

where N is a normal to the interface.

@ Incident, scattered, total fields are all 27-periodic.
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Introduction

Governing Equation for Doubly-layered medium

We seek periodic solutions of

Au+kiu =0 r>a+ g(0)
Aw + k2w =0 r<a+ g(0)
u—w=—u’ r=a+ g(0)
Onu — T20nw = —Onu' T = a+ g(h)

@ u' is the incident radiation.
e N=(a+g,—¢)
o 72=1inTE, 72 = (ky/ky)? in TM.
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Governing Equations
Exterior to a bounded obstacle Field Expansion

Numerical Approach

Governing Equation

We are solving the Helmholtz equation on a two-dimensional
domain exterior to a bounded obstacle:

Au+k*u =0 r>a+ g(f) (1)
u(r,0) = £(9) r=a+g(0)  (2)
TILIEO 28 — iku) = 0 r — 00 (3"

@ The solution must satisfy (3') the Sommerfeld radiation
condition (SRC) to guarantee a physical solution.

@ Let b > a+ |g|p~, then using method of separation of
variables gives the general solution u(r, ) of (1') and (3') for
r>b.
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Governing Equations
Exterior to a bounded obstacle Field Expansion

Numerical Approach

General Solution

Considering the bounded domain {(r,0) : a + g(0) < r < b}
instead of the former unbounded domain {(r,0) : r > a + g(0)},
we rewrite our governing equation as

Au+k*u=0 a+g0) <r<b (1)
u(r,0) = £(0) r=a+g(0)  (2)
Oru(b,0) — Tu(b,0) =0 r==>b (3)

where we define an operator 1" by T'(u(b,0)) := 0,u(b, 9).
@ The solution to (1) and (3) is

(1)
u(r,0) = E appie”’
P Hzgl)(ka)
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Governing Equations
Exterior to a bounded obstacle Field Expansion

Application to DNO

Numerical Approach

Field Expansion 1

@ Suppose u depends analytically upon € so that we can write
Taylor expansion of u and the series converges in a proper
function space:

u=u(r,0) =u(r,0;e) = Zunre

@ Plug the u(r, 6;¢) into the governing equations and find
equation on each order of n. The solution u is of the form

u(r.0:9) = 33 any 207 o e

n=0 p )

@ We are looking for the coefficients {anm} using the boundary
data £(6) and let g(6) = f(0).



Governing Equations
Exterior to a bounded obstacle Field Expansion

Application to DNO

Numerical Approach

Field Expansion 2

e Define a,,(6) and a(6) by
suminp: ap(f):= Zp ampeipe
suminn: a(f):=> " ane” = u(a,d)
@ Define the 'zero-trace’ to 'boundary-trace’ operator D by
D :u(a,0) = u(a+cf(0),0)
Then the equation (2) u(a +ef(0),0) = £(0) is expressed as
D(a(0)) = £(0)
@ HOPS scheme

[i Dns”] [Z an5”] = Z Ene”
n=0 n=0 n=0
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Governing Equations
Exterior to a bounded obstacle Field Expansion

Application to DNO

Numerical Approach

Field Expansion 3

At each n, we have

n=20 Doao = &o

n—1
n Z 1 Doan = fn - Z ,anmam
m=0

where
Do=1, Dy'=I
d2Hy" (ka) ipo
HY (ka)

At each wave number p, we can solve (in Fourier space) for {a,,}

D, [e*’] = k"F,

B = F o) = 19"

n!

aop = (§o)p

n-l n—m py(1)
: S kS 4 HY (ka)
QAn,p = (fn)P - k § (Fn—m)p—qipam,q
m=0 q Hé,l)(ka)
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Governing Equations
Exterior to a bounded obstacle Field Expansion
Application to DNO

Numerical Approach

Application: Dirichlet-to-Neumann Operator

We will use the coefficients {ay, p} to approximate the exterior
Neuman boundary condition v(6):

v(0):=[-0onu] (a+ef,0) =[-N-vu](a+ef,0)
—(a+ef)oru(a+ef,0) + e(0pf)Opu(a+¢€f,0)

1
+ef
@ Define the Dirichlet-to-Neumann operator by G(g) : £ — v

such that G(g9){ = v
e HOPS Scheme: G(ef)¢ = Z?OGnés = v. Next, evaluate

u(r,0) =300 2, anp H(l)(kr; e at r = a +¢f then

compute v(6) by definition.
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Governing Equations
Exterior to a bounded obstacle Field Expansion
Application to DNO

Numerical Approach

Application: Dirichlet-to-Neumann Operator

For each n, we can get G,,¢ in terms of {a,;}.

d.-HS" (ka) i
Go€ = —ak ag,p——A "L et
; " HY (ka)

f - S 42" HS) (ka) e
Gné=—-2CGn1f—a am pk From () 2— 2 ip
a mz::ozp: ’ @) H (ka)

n—1 mn—m py(1) .
221 S S B B (8) 2 (K)o

m=0 p ngl)(ka’)
n-2 n—m—1ry(1)
f? Z Z n—m—1 dZ YHy ' (ka) ipe
- am,pk Fn—m—Q(Q)—e
a m=0 p HI(’I)(ka)
Bof = — A2 Y (ka) i
T (N LAy .. i LOWE
e H,(Jl)(ka)
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Governing Equations
Exterior to a bounded obstacle Field Expansion

Application to DNO

Numerical Approach

Numerical Approach

We choose the parameters:
e k=1,f= ecos(9)
e &(0) = [Hzgl)(kr)eipe] (r = a+¢cf) for any wave number p
@ exact solution: u(r,0) = ngl)(kr)eipg

List of all Matlab files:

test_helmholtz_polar.m

field_fe_helmholtz_polar.m

dno_fe_helmholtz_polar.m

compute_errors_2d_polar.m

make_plots_polar.m
diff_besselh.m
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Governing Equations and solutions
Field Expansion

Interior to a bounded obstacle Application to DNO
Numerical Approach

Governing Equation and General Solutions

The Helmholtz equation on a two-dimensional domain interior to a
bounded obstacle:

Aw + kw =0 r<a+g(9) (4)
w(r, ) =¢(0) r=a+g(0) (5)
7141_1}1(1) w(r, §) is bounded r—0 (6)

The solution to (4) and (6) is

w(r,8) = Z d, jﬁg:;; e'P?
p

Xin Tong 13/20



Governing Equations and solutions
Field Expansion

Interior to a bounded obstacle Application to DNO
Numerical Approach

Field Expansion

Following steps of field expansion above, we can also get the
coefficients {d,, ,,} at each wave number p (in Fourier space)

dO,p (50)
nem g, (k
7'71’ (gn) - an mz n— m qwam,,q

m=0
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Governing Equations and solutions
Field Expansion

Interior to a bounded obstacle Application to DNO
Numerical Approach

Application: Dirichlet-to-Neumann Operator

The idea here are similar the exterior domain and the only
difference is the sign

v(0) : = [+0nw] (a+ef,0) = [+N - Vw] (a +&f, )

= (a+ef)Oulatef,0) — —— ;

e(Opf)Opw(a +cf,0)

@ Define the Dirichlet-to-Neumann operator by G(g) : £ — v
such that G(g9){ = v
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Governing Equations and solutions
Field Expansion

Interior to a bounded obstacle Application to DNO
Numerical Approach

Application: Dirichlet-to-Neumann Operator

For each n, we can also get G, in terms of {d, ;}.

Goé = ak Z dO,p#GiPB

J(ka)
Gné = —gGHg + a;zp:dm,pk"m“nm(e)wew
+of Z:()Zd k" B (0) S To(ka) Jm(‘;:cf)’w)ew@
=o'
+*MZQZd Ky a0) B )
m=0 p
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Governing Equations and solutions
Field Expansion

Interior to a bounded obstacle Application to DNO
Numerical Approach

Numerical Approach

We choose the parameters:
o k=1, f = eos0)
o £(0) = [Jp(kr)e®?)(r = a+cf) for any wave number p
e exact solution: w(r,0) = J,(kr)e®?

List of all Matlab files:

test_helmholtz_polar_interior.m
field_fe_helmholtz_polar_interior.m
dno_fe_helmholtz_polar_interior.m
compute_errors_2d_polar.m

make_plots_polar.m

diff _besselj.m
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Future Work

Future work: Doubly-layered medium

We seek periodic solutions of

Au+k2u=0 r>a+ g(h)
Aw+ k2w =0 r<a+g(h)
u—w = —u' r=a+ g(0)
Onu — T20Nw = —Onu' T = a+ g(h)

o Define ((0) = _ui|7“:a+g(0) and ¥(0) = _aNui|r:a+g(€)
@ the boundary conditions can be expressed as
u—w = ¢(0) r=a+g(0)
GUu + 172G w = —1(h) r=a+ g(0)
e Use G" and G (known) to find the solution.
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Thank you!

Comments and Questions!
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Future Work
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