High-Order Perturbation of Surfaces Algorithms for the Simulation of Localized Surface Plasmon Resonances

Xin Tong

Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

Chicago Area SIAM Student Conference 2018

June 17, 2018

Outline

- Introduction
- Governing Equation
- High-Order Perturbation of Surfaces (HOPS) Methods
 - The Method of Field Expansions
 - The Method of Transformed Field Expansions
- Numerical simulations
- Future Work

< □ > < □ > < □ > < □ > < □ > < □ >

Collaborators and References

Collaborator on this project:

• David Nicholls: my PhD advisor at UIC

Thanks:

- Youngjoon Hong
- Marieme Ngom

References:

• DPN and XT, "High-Order Perturbation of Surfaces Algorithms for the Simulation of Localized Surface Plasmon Resonances in Two Dimensions", to appear, *Journal of Scientific Computing*

Nanoplasmonics

- Nanoplasmonics: The study of optical phenomena in the nanoscale vicinity of metal surfaces.
- **Question**: Can electromagnetic radiation be concentrated or confined in a region less than half the light's wavelength? (Visible light: 400-700 nm)
- **Answer**: Yes, for a conducting metal. For instance, for a nanoparticle:
 - smaller than the skin depth (roughly 25 nm),
 - larger than distance electron moves in one period (roughly 2 nm)
- A plane electromagnetic wave drives the free electrons in the metal generating a charge and restoring force. This electron oscillator has quanta: a surface plasmon (SP).
- We will investigate a surface plasmon resonance (SPR) between a surface plasmon on a grating and the incident radiation.

Nanoplasmonics

Remark: this figure is from the paper "Metal nanoparticle photocatalysts: emerging processes for green organic synthesis", *Catalysis Science & Technology*

Xin Tong (UIC)

Governing Equation for Doubly-Layered Medium

We seek outgoing/bounded, 2π -periodic solutions of

$$\begin{aligned} \Delta u + (k^u)^2 u &= 0, \qquad r > a + g(\theta), \qquad \text{(1a)} \\ \Delta w + (k^w)^2 w &= 0, \qquad r < a + g(\theta), \qquad \text{(1b)} \\ u - w &= \zeta, \qquad r = a + g(\theta), \qquad \text{(1c)} \\ \partial_{\mathbf{N}} u - \tau^2 \partial_{\mathbf{N}} w &= \psi, \qquad r = a + g(\theta), \qquad \text{(1d)} \end{aligned}$$

where the Dirichlet and Neumann data are

$$\begin{split} \zeta(\theta) &:= \left[-u^{\mathrm{inc}} \right]_{r=a+g(\theta)} = -e^{i(a+g(\theta))(\alpha\cos(\theta)-\gamma^{u}\sin(\theta))} \\ \psi(\theta) &:= \left[-\partial_{N}u^{\mathrm{inc}} \right]_{r=a+g(\theta)}. \end{split}$$

and

 $\tau^{2} = \begin{cases} 1, & \text{Transverse Electronic (TE)}, \\ (k^{u}/k^{w})^{2} & \text{Transverse Magnetic} (TM). \quad \text{Transverse Magnetic} \\ \text{HOPS} & \text{June 17, 2018} & 5/30 \end{cases}$

Governing Equation: Exterior Problem

Definition 1: Given a sufficiently smooth deformation $g(\theta)$, the unique periodic solution of

$$\begin{aligned} \Delta u + (k^u)^2 & u = 0, & a + g(\theta) < r < b, \\ u = U &:= u(a + g(\theta), \theta), & r = a + g(\theta), \end{aligned}$$
 (2a)

$$\partial_r u + T^{(u)}[u] = 0, \qquad r = b,$$
 (2c)

defines the Dirichlet-Neumann Operator (DNO)

$$G^{(u)}[U] = G^{(u)}(b, a, g)[U] := -(\partial_N u)(a + g(\theta), \theta) = \tilde{U}.$$

We define the order-one Fourier multiplier at the boundary as

$$T^{(u)}[\xi(\theta)] := \sum_{p=-\infty}^{\infty} -k^{u} \hat{\xi}_{p} \frac{H'_{p}(k^{u}b)}{H_{p}(k^{u}b)} e^{ip\theta}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Governing Equation: Interior Problem

Definition 2: Given a sufficiently smooth deformation $g(\theta)$, if we are not at a Dirichlet eigenvalue of the Laplacian on $\{c < r < a + g(\theta)\}$, the unique periodic solution of

$$\Delta w + (k^w)^2 w = 0,$$
 $c < r < a + g(\theta),$ (3a)

$$w = W := w(a + g(\theta), \theta), \qquad r = a + g(\theta),$$
 (3b)

$$\partial_r w - T^{(w)}[w] = 0, \qquad r = c, \qquad (3c)$$

defines the Dirichlet-Neumann Operator (DNO)

$$G^{(w)}[W] = G^{(w)}(c, a, g)[W] := (\partial_N w)(a + g(\theta), \theta) = \tilde{W}.$$

$$\tag{4}$$

We define the order-one Fourier multiplier at the boundary as

$$T^{(w)}\left[\mu(\theta)\right] := \sum_{p=-\infty}^{\infty} k^{w} \hat{\mu}_{p} \frac{J_{p}'(k^{w}c)}{J_{p}(k^{w}c)} e^{ip\theta}$$

Doubly-Layered Problem, revisit

Rewrite the boundary conditions (1c) and (1d)

$$U - W = \zeta, \qquad r = a + g(\theta), \qquad (5a)$$

- $G^{(u)}[U] - \tau^2 G^{(w)}[W] = \psi, \qquad r = a + g(\theta), \qquad (5b)$

Eliminate W in (5a), the (5b) becomes

$$(G^{(u)} + \tau^2 G^{(w)})[U] = -\psi + \tau^2 G^{(w)}[\zeta].$$
 (6)

June 17, 2018

8 / 30

We use a High-Order Perturbation of Surfaces (HOPS) scheme to simulate scattering returns with $g(\theta) = \varepsilon f(\theta)$. For ε sufficiently small and f smooth the DNOs, $\{G^{(u)}, G^{(w)}\}$, and data, $\{\zeta, \psi\}$, can be shown to be analytic in ε so that the following Taylor series are strongly convergent

$$\{G^{(u)}, G^{(w)}, \zeta, \psi\} = \{G^{(u)}, G^{(w)}, \zeta, \psi\}(\varepsilon f) = \sum_{n=0}^{\infty} \{G_n^{(u)}, G_n^{(w)}, \zeta_n, \psi_n\} \varepsilon^n.$$

Doubly-Layered Problem, revisit

The resulting scattered field can be shown to be analytic as well

$$U=U(\varepsilon f)=\sum_{n=0}^{\infty}U_n\varepsilon^n$$

We write (6) as

$$\left(\sum_{n=0}^{\infty} \left(G_n^{(u)} + \tau^2 G_n^{(w)}\right)\varepsilon^n\right) \left[\sum_{m=0}^{\infty} U_m \varepsilon^m\right] = -\sum_{n=0}^{\infty} \psi_n \varepsilon^n + \tau^2 \left(\sum_{n=0}^{\infty} G_n^{(w)} \varepsilon^n\right) \left[\sum_{m=0}^{\infty} \zeta_m \varepsilon^m\right]$$

and at order $O(\varepsilon^n)$

$$(G_0^{(u)} + \tau^2 G_0^{(w)})[U_n] = -\psi_n + \sum_{m=0}^n G_{n-m}^{(w)}[\zeta_m] - \sum_{m=0}^{n-1} (G_{n-m}^{(u)} + \tau^2 G_{n-m}^{(w)})[U_m].$$

The data, $\{\zeta_n, \psi_n\}$, is easy to get by Taylor expansions. All that remains is to specify forms for DNOs, $\{G_n^{(u)}, G_n^{(w)}\}$.

Xin Tong (UIC)

June 17, 2018 9 / 30

The Method of Field Expansions: Exterior Problem

The method of Field Expansions is based on the supposition that the scattered fields, $\{u, w\}$, depend *analytically* upon ε . Focusing on the field u in the outer domain, this implies

$$u = u(r, \theta; \varepsilon) = \sum_{n=0}^{\infty} u_n(r, \theta) \varepsilon^n.$$

Inserting into (2), one finds that the u_n must be 2π -periodic , outward-propagating solutions of the elliptical boundary value problem:

$$\Delta u_n + (k^u)^2 u_n = 0, \qquad a < r < b, \qquad (7a)$$
$$u_n(a, \theta) = \delta_{n,0} U - \sum_{m=0}^{n-1} \frac{f^{n-m}}{(n-m)!} \partial_r^{n-m} u_m(a, \theta), \qquad r = a, \qquad (7b)$$

$$\partial_r u_n + T^{(u)}[u_n] = 0, \qquad r = b, \qquad (7c)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 17, 2018

10 / 30

The exact solution to (7a) and (7c) is

$$u_n(r,\theta) = \sum_{p=-\infty}^{\infty} \hat{u}_{n,p} \frac{H_p(k^u r)}{H_p(k^u a)} e^{ip\theta},$$

and the $\hat{u}_{n,p}$ are determined *recursively* from the boundary conditions, (7b), for example, at zero order,

$$\hat{u}_{0,p} = \hat{U}_{p}$$

From this the DNO, $G^{(u)}[U]$, can be computed from

$$G^{(u)}[U] = -(\partial_N u)(a + g(\theta), \theta)$$

= $\sum_{n=0}^{\infty} \sum_{p=-\infty}^{\infty} \left\{ -k^u(a + \varepsilon f) \frac{H'_p(k^u(a + \varepsilon f))}{H_p(k^u a)} + \frac{\varepsilon f'}{(a + \varepsilon f)} (ip) \frac{H_p(k^u(a + \varepsilon f))}{H_p(k^u a)} \right\} \hat{u}_{n,p} e^{ip\theta} \varepsilon^n.$

Expanding the Hankel functions $H'_p(k^u(a + \varepsilon f))$ and $H_p(k^u(a + \varepsilon f))$ in ε one can get the operators $\{G_n^{(u)}(f)\}$.

The Method of Transformed Field Expansions

The method of Transformed Field Expansions proceeds a domain-flattening change of variables prior to perturbation expansion. We consider the TFE method applied to the interior problem (3). The change of variable is

$$r'=rac{(a-c)r+cg(heta)}{a+g(heta)-c}, \quad heta'= heta,$$

which maps the perturbed domain $\{c < r < a + g(\theta)\}$ to the separable one $\{c < r' < a\}$. This transformation changes the field *w* into

$$v(r', heta') := w\left(\frac{(a+g(heta')-c)r'-cg(heta')}{a-c}, heta'
ight),$$

and modifies (3) to (dropped the primed notation)

$$\begin{split} \Delta v + (k^w)^2 v &= F(r,\theta;g), & c < r < a, \\ v &= W, & r = a, \\ \partial_r v - T^{(w)}[v] &= K(\theta;g), & r = c. \end{split}$$

TFE: Interior Problem

It is not difficult to see that

$$-(a-c)^{2}F = g(a-c)(r-c)\partial_{r}[r\partial_{r}v] + g\partial_{\theta}[g\partial_{\theta}v] + \cdots + \sum_{j=1}^{4} C_{j}(g)(k^{w})^{2}v$$

with

$$\begin{split} C_1(g) &= g[2(a-c)r^2 + 2g(a-c)(r-c)r], \\ C_2(g) &= g^2[r^2 + 4(r-c)r + (r-c)^2], \\ C_3(g) &= g^3[2(r-c)r/(a-c) + 2(r-c)^2/(a-c)], \\ C_4(g) &= g^4(r-c)^2/(a-c)^2, \end{split}$$

and

$$K=g/(a-c)T^{(w)}\left[v
ight]$$
 .

In addition, the (4) changes when we proceed the change of variables.

$$G^{(w)}[W] = \frac{a-c}{a-c+g} \left[(a+g) + \frac{(g')^2}{a+g} \right] \partial_r v - \frac{g'}{a+g} \partial_\theta v.$$

TFE: Interior Problem

Setting $g = \varepsilon f$ and expanding

$$v(r,\theta,\varepsilon) = \sum_{n=0}^{\infty} v_n(r,\theta)\varepsilon^n,$$

the interior problem (8) results to find solutions v_n of

$$\begin{split} \Delta v_n + (k^w)^2 v_n &= F_n, & c < r < a, \\ v_n &= \delta_{n,0} W, & r = a, \\ \partial_r v_n - T^{(w)} [v_n] &= K_n, & r = c, \end{split}$$

where

$$-(a-c)^2 F_n = f(a-c)(r-c)\partial_r [r\partial_r v_{n-1}] + f\partial_\theta [f\partial_\theta v_{n-2}] + \cdots + \sum_{j=1}^4 C_j(f)(k^w)^2 v_{n-j}$$

and

$$K_n = g/(a-c)T^{(w)}[v_{n-1}].$$

< □ > < □ > < □ > < □ > < □ > < □ >

TFE: Interior Problem

Provided with the $\{v_n\}$, the opertors $\{G_n^{(w)}(f)\}$ can be computed by

$$G_{n}^{(w)}[W] = -f\left(\frac{1}{a} + \frac{1}{a-c}\right)G_{n-1}^{(w)}[W] - \frac{f^{2}}{a(a-c)}G_{n-2}^{(w)}[W] + a\partial_{r}v_{n} + 2f\partial_{r}v_{n-1} + \frac{f^{2} + (f')^{2}}{a}\partial_{r}v_{n-2} - \frac{f'}{a}\partial_{\theta}v_{n-1} - \frac{f(f')}{a(a-c)}\partial_{\theta}v_{n-2}.$$

Remark: The TFE approach to compute DNOs requires an additional discretization in the vertical direction (r direction) which we achieve by a Chebyshev collocation approach.

		(1110)
Xin	long	
- XIII	i i Olig	1010

June 17, 2018

15 / 30

Validation by the Method of Manufactured Solutions

We take an exact solution to (1) and compare our numerically simulated solution. For the implementation we consider 2π -periodic, outgoing solutions of the Helmholtz equation, (1a), and the bounded counterpart for (1b)

$$u^q(r, heta) = A^q_u H_q(k^u r) e^{iq heta}, \qquad q \in \mathbf{Z}, \quad A^q_u, A^q_w \in \mathbf{C},
onumber \ w^q(r, heta) = A^q_w J_q(k^w r) e^{iq heta},$$

For a given choice of $f = f(\theta)$ we compute, e.g., the exact exterior Neumann data

$$\nu^{\mathsf{ex}}(\theta) := \left[-\partial_{\mathsf{N}} u^{\mathsf{q}}\right]_{\mathsf{r}=\mathsf{a}+\varepsilon f(\theta)} = \tilde{U}(\theta).$$

We approximate $\{u, w\}$ by

$$u^{N_{\theta},N}(r,\theta) := \sum_{n=0}^{N} \sum_{p=-N_{\theta}/2}^{N_{\theta}/2-1} \hat{u}_{n,p} e^{ip\theta} \varepsilon^{n}, \quad w^{N_{\theta},N}(r,\theta) := \sum_{n=0}^{N} \sum_{p=-N_{\theta}/2}^{N_{\theta}/2-1} \hat{w}_{n,p} e^{ip\theta} \varepsilon^{n}.$$

June 17, 2018

16 / 30

Xin Tong (UIC)

Convergence Study

We select the 2π -periodic and analytic function

$$f(\theta) = e^{\cos(\theta)},$$

and compute the exact surface current, ν^{ex} . We make the physical parameters choices

$$q = 2, \quad A_u^q = 2, \quad A_w^q = 1,$$

 $a = 0.025, \quad \varepsilon = 0.002,$

and numerical parameter choices

$$N_{\theta} = 64, \quad N = 16.$$

Convergence Study

э

< 4 → < 3

Convergence Study

We then reprise these calculations with a much larger choices of perturbation parameter, $\varepsilon = 0.01, 0.05$. We use both FE and TFE with the same choice of $f(\theta)$. The physical and numerical parameters are

$$a = 0.025$$
, $c = a/10$, $b = 10a$, $N_r = 64$, $N = 24$.

Simulation of Nanorods

Return to the problem of scattering of plane-wave incident radiation which demands the Dirichlet (1c) and Neumann conditions (1d). We consider metallic nanorods housed in a dielectric with outer interface shaped by

$$r = a + g(\theta) = a + \varepsilon f(\theta).$$

We illuminate this structure over a range of incident wavelengths $\lambda_{min} \leq \lambda \leq \lambda_{max}$ and perturbation sizes $\varepsilon_{min} \leq \varepsilon \leq \varepsilon_{max}$, and compute the magnitudes of the reflected and transmitted surface currents, \tilde{U} and \tilde{W} , using FE approach.

An Analytic Deformation

Analytic profile: $f(\theta) = e^{\cos(\theta)}$ Numerical parameters: $N_{\lambda} = 201$, $N_{\varepsilon} = 201$, $N_{\theta} = 64$, N = 16. Physical configuration:

An Analytic Deformation

In the case of a nanorod with a perfectly circular cross–section we computed the value as the λ_F satisfying the Fröhlich condition and in subsequent plots this is depicted by a dashed red line. We display the final Slice $\varepsilon = \varepsilon_{max}$ for a silver nanorod shaped by the analytic profile, in vacuum.

A Low-Frequency Cosine Deformation

Low-frequency sinusoidal profile: $f(\theta) = \cos(2\theta)$

A Low-Frequency Cosine Deformation

We display the final Slice $\varepsilon = \varepsilon_{max}$ for a silver nanorod shaped by the sinusoidal profile, in vacuum.

A Higher Frequency Cosine Deformation

Higher frequency sinusoidal profile: $f(\theta) = \cos(4\theta)$

A Higher Frequency Cosine Deformation

We display the final Slice $\varepsilon = \varepsilon_{max}$ for a silver nanorod shaped by the sinusoidal profile, in vacuum.

Future Work

• Consider the problem enforced by Impedance-to-Impedance Operator e.g.

$$U := [-\partial_N u + i\eta u]_{r=a+g}$$
$$I^u[U] := [-\partial_N u - i\eta u]_{r=a+g}$$

The existence of IIO which guarantees a complete solution scheme

< □ > < 同 > < 回 > < 回 > < 回 >

Thank you!

Comments and Questions!

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References I

- J. BILLINGHAM AND A. KING, *Wave Motion*, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2000.
- D. P. NICHOLLS AND N. NIGAM, Exact non-reflecting boundary conditions on general domains, Journal of Computational Physics, 194 (2004), pp. 278 – 303.
- D. P. NICHOLLS AND J. SHEN, A stable high-order method for two-dimensional bounded-obstacle scattering, SIAM Journal Scientific Computing, 28 (2006), pp. 1398–1419.
- D. P. NICHOLLS AND X. TONG, *High-order perturbation of surfaces algorithms for the simulation of localized surface plasmon resonances in two dimensions*, Journal of Scientific Computing, (2018).

< □ > < □ > < □ > < □ > < □ > < □ >

References II

J. SHEN, T. TANG, AND L. WANG, *Spectral Methods: Algorithms, Analysis and Applications*, Springer Series in Computational Mathematics, Springer Berlin Heidelberg, 2011.

< □ > < 同 > < 回 > < 回 > < 回 >