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Introduction

Nanoplasmonics

@ Nanoplasmonics: The study of optical phenomena in the nanoscale
vicinity of metal surfaces.

@ Question: Can electromagnetic radiation be concentrated or confined
in a region less than half the light's wavelength?
(Visible light: 400-700 nm)
@ Answer: Yes, for a conducting metal.
For instance, for a nanoparticle:
o smaller than the skin depth (roughly 25 nm),
o larger than distance electron moves in one period (roughly 2 nm)
@ A plane electromagnetic wave drives the free electrons in the metal
generating a charge and restoring force. This electron oscillator has
quanta: a surface plasmon (SP).

e We will investigate a surface plasmon resonance (SPR) between a
surface plasmon on a grating and the incident radiation.
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Introduction

Nanoplasmonics
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Magnetic
Etmin field
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Remark: this figure is from the paper “Metal nanoparticle photocatalysts: emerging

processes for green organic synthesis”, Catalysis Science & Technology
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Governing Equation for Doubly-Layered Medium

We seek outgoing/bounded, 27 -periodic solutions of

Au+ (kY)?u =0, r>a+g(h), (1a) o
Aw + (K")2w =0, r<a+g(h), (1b)

u—w=2¢, r=a+g(9), (1c) G
ONU — T2ONw = 1), r=a+ g(6), (1d)

where the Dirichlet and Neumann data are
4(0) — [_uinc] e(®) _ _ei(a+g(0))(acos(0)f’y” sin(0))
r=a+g

0(0) = [N,y

and

s 1, Transverse Electronic (TE),
(k“/k")? Transverse Magnetic (TM).
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Governing Equations Exterior Problem

Governing Equation: Exterior Problem

Definition 1: Given a sufficiently smooth deformation g(#), the unique
periodic solution of

Au+ (k") u=0, a+g(0) <r<b, (2a)
u=U:=u(a+ g(b),0), r=a+g(b), (2b)
Au+ TW[u] =0, r=b, (2¢)

defines the Dirichlet—-Neumann Operator (DNO)
GW U] = G)(b,a,g) [U] := —(dnu)(a+ g(0),0) = U.
We define the order-one Fourier multiplier at the boundary as
o0 n H/(kub) .
(u) — _qpu P ip6

p=—oc
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Governing Equations Interior Problem

Governing Equation: Interior Problem

Definition 2: Given a sufficiently smooth deformation g(#), if we are not
at a Dirichlet eigenvalue of the Laplacian on {c < r < a+ g(0)}, the
unique periodic solution of

Aw + (k") w =0, c<r<a+g(9), (3a)
w =W :=w(a+g(9),0), r=a+g(h), (3b)
ow — TW [w] =0, r=c, (3¢)

defines the Dirichlet—-Neumann Operator (DNO)

G W] = 6™ (c,a,8) [W] = (Onw)(a+g(60),0) = W.  (4)
We define the order-one Fourier multiplier at the boundary as
J’ k¥c) .
T kWA lp0
,,_Zoo L
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I S TG Dooly-Lovered Problem
Doubly-Layered Problem, revisit

Rewrite the boundary conditions (1c) and (1d)
U—W =g, r=a+g(0), (5a)
~ W] - 26w = v, r=a+g(t), (5b)
Eliminate W in (5a), the (5b) becomes
(6 4+ r26tN)[U] = —¢ + 72 6M[¢]. (6)

We use a High-Order Perturbation of Surfaces (HOPS) scheme to
simulate scattering returns with g(0) = ef(6). For ¢ sufficiently small and

f smooth the DNOs, {G(“), G(W)}, and data, {(, %}, can be shown to be
analytic in € so that the following Taylor series are strongly convergent

{6, 6W) ¢y} = {GW, 6™, ¢, v} (ef) Z{ 9, G$), oy n}e".
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Governing Equations Doubly-Layered Problem

Doubly-Layered Problem, revisit

The resulting scattered field can be shown to be analytic as well

[o.¢]
= Z U,e"
n=0

We write (6) as

<i (G Y47 G(W ) [Z Une 1 =— iwnfs" + 72 (i G,SW)E”> [i (jmam] ,
n=0 n=0 n=0 m=0
and at order O(&")

n—1

(6" + 76" )[unl——wn+zcn Gl =Y (G +72G) [Un]

m=0 m=0
The data, {Cn,¥n}, is easy to get by Taylor expansions. All that remains
is to specify forms for DNOs, {G,g”), G,(,W)}.
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High Order Perturbation of Surfaces (HOPS) Methods Method of Field Expansions

The Method of Field Expansions: Exterior Problem

The method of Field Expansions is based on the supposition that the

scattered fields, {u, w}, depend analytically upon . Focusing on the field
u in the outer domain, this implies

u=u(r,b;¢) i

Inserting into (2), one finds that the u, must be 2w —periodic ,
outward-propagating solutions of the elliptical boundary value problem:

Aup + (k") u, =0, a<r<b, (7a)

un(a,0) = 50U — Z(nf_ 07 Mum(a,0),  r=a, (7b)

Artin + TW [up] =0, r=b, (7¢)
Xin Tong (UIC)
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High Order Perturbation of Surfaces (HOPS) Methods EENVE{ It RGEIE N SNELEINH

The exact solution to (7a) and (7c) is

= i Hp(K“r) ipg
up(r,0) = p_z_:oo ,pmep ,
and the 0, , are determined recursively from the boundary conditions,
(7b), for example, at zero order,
top = Up.
From this the DNO, G(”)[U], can be computed from
GW[U] = —(owu)(a + g(0),0)

. Hy(k“(a +¢ef))
—Z Z { k“( a—l—ef)—Hp(ku)

n=0 p=—o00

ef’ . \Hp(k"(a+ef)) 6 _n
+(a+5f)(lp) H,(ka) } iy pe".

Expanding the Hankel functions Hy,(k“(a+¢f)) and Hy(k"(a+¢f)) in e
one can get the operators {G,g”)(f)}.
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High Order Perturbation of Surfaces (HOPS) Methods RV It RIMIELE TR RS N SNELHTN

The Method of Transformed Field Expansions

The method of Transformed Field Expansions proceeds a domain-flattening
change of variables prior to perturbation expansion. We consider the TFE
method applied to the interior problem (3). The change of variable is
L a-or+a)
atg0)—c ’
which maps the perturbed domain {c < r < a+ g(6)} to the separable
one {c < r’ < a}. This transformation changes the field w into

() (CEED = ) ),

0 =9,

a—c

and modifies (3) to (dropped the primed notation )
Av+ (k") v = F(r,0;g), c<r<a,
v=W, r=a,

8rV — T(W) [V] = K(O,g),

Xin Tong (UIC) HOPS June 17, 2018 12 / 30



High Order Perturbation of Surfaces (HOPS) Methods Method of Transformed Field Expansions
TFE: Interior Problem

It is not difficult to see that

—(a—c)’F=g(a—c)(r—c)d[rd,v] + gds[gdev] + - - —|—ZC )(K¥)v

with
Ci(g) = gl2(a — c)r* +2g(a— c)(r — c)r],
G(g) =&°[r* +4(r — o)r + (r — ¢)’],
G(g) = g’[2(r — c)r/(a—c) +2(r — c)*/(a— )],
Cig) =g*(r—¢)’/(a—¢)’,

and

K=g/(a—c)T™[v].
In addition, the (4) changes when we proceed the change of variables.
(&')?
atg

a_
a—-c+g

8rV — g agv

MWW =
atg

(a+g)+
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High Order Perturbation of Surfaces (HOPS) Methods Method of Transformed Field Expansions
TFE: Interior Problem

Setting g = ef and expanding

[e.9]

v(r,0,e) = Z va(r,0)e",

n=0
the interior problem (8) results to find solutions v, of

Av, + (k") v, = F, c<r<a,

Vn = dno W, r=a,

vy — TW [va] = Ko, r=c,
where

—(a—c)?’Fn=f(a—c)(r— )0 [rdvo_1] + FO[fOovn_o] + - + Z Gi(F)(K")vaj

and
Ko=g/(a—c)T™ [vo_1].
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High Order Perturbation of Surfaces (HOPS) Methods Method of Transformed Field Expansions
TFE: Interior Problem

Provided with the {v,}, the opertors {G,(,W)(f)} can be computed by

w) _ 1 i (w) 7f2 (w) ao,v,
W)= =7 (5+ 572 SV - 55— AW + 30, v,
£2 + (F')2 f! £(F))

+2f0rvp—1 + OrVn—2 — *aevn 1— ———=0pVp_2.
a(a—c)

Remark: The TFE approach to compute DNOs requires an additional
discretization in the vertical direction (r direction) which we achieve by a

Chebyshev collocation approach.
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Method of Manufactured Solution
Validation by the Method of Manufactured Solutions

We take an exact solution to (1) and compare our numerically simulated
solution. For the implementation we consider 27-periodic, outgoing
solutions of the Helmholtz equation, (1a), and the bounded counterpart
for (1b)

u9(r,0) = ATHq(k"r)e®,
w9(r,0) = A% J (k" r)e'®,

For a given choice of f = f(6) we compute, e.g., the exact exterior
Neumann data

geZ, Al Al eC.

v(0) = [~Onu],_yyere) = U(O).
We approximate {u, w} by

N Ng/2—-1 N Ng/2—1
No,N N iph Ng,N N ipf
u®(r,0) = E E inpe®e",  wN(r,0) = E E W, pe®7e".
n=0 p=—Ngy /2 n=0 p=—Ngy /2
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Numerical simulations Method of Manufactured Solution

Convergence Study

We select the 27-periodic and analytic
function

f(@) — ecos(9)7

and compute the exact surface current, .
We make the physical parameters choices

g=2 Al=2 A9 =1,
a=0.025 & =0.002,

and numerical parameter choices

Ny =64, N =16.
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Convergence Study

Relative Error versus N Relative Error versus N
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el ey
Convergence Study

We then reprise these calculations with a much larger choices of
perturbation parameter, ¢ = 0.01,0.05. We use both FE and TFE with the
same choice of f(#). The physical and numerical parameters are

a=0.025 c¢=a/10, b=10a, N,=64, N =24

. Relative Error versus N | Relative Error versus N
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INITWSIEIETUTENINE  Simulation of Nanorods

Simulation of Nanorods

Return to the problem of scattering of plane-wave incident radiation which
demands the Dirichlet (1c) and Neumann conditions (1d). We consider
metallic nanorods housed in a dielectric with outer interface shaped by

r=a+g(0) =a+ef(0).

We illuminate this structure over a range of incident wavelengths

Amin < A < Amax and perturbation sizes €min < € < €max, and compute
the magnitudes of the reflected and transmitted surface currents, U and
W, using FE approach.
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S G
An Analytic Deformation

Analytic profile: f(#) = e°s(¥)
Numerical parameters: N, =201, N. =201, NMNy=064, N =16.
Physical configuration:

a=20.025, Apmin =0.300, Apnax =0.800

Emin =0, €max = a/10, inner =silver, outer = vacuum

-3 |5 versus A and & -3 W, versus A and &
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INITWSIEIETUTENINE  Simulation of Nanorods

An Analytic Deformation

In the case of a nanorod with a perfectly circular cross—section we
computed the value as the Ar satisfying the Frohlich condition and in
subsequent plots this is depicted by a dashed red line. We display the final
Slice € = gmax for a silver nanorod shaped by the analytic profile, in

vacuum.

|U], and \W\g versus A
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INITWSIEIETUTENINE  Simulation of Nanorods

A Low-Frequency Cosine Deformation

Low-frequency sinusoidal profile:
f(0) = cos(20)
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INITWSIEIETUTENINE  Simulation of Nanorods

A Low-Frequency Cosine Deformation

We display the final Slice € = eax for a silver nanorod shaped by the

sinusoidal profile, in vacuum.
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INITWSIEIETUTENINE  Simulation of Nanorods

A Higher Frequency Cosine Deformation

Higher frequency sinusoidal profile:
f(0) = cos(40)
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INITWSIEIETUTENINE  Simulation of Nanorods

A Higher Frequency Cosine Deformation

We display the final Slice € = eax for a silver nanorod shaped by the

sinusoidal profile, in vacuum.
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Future Work

@ Consider the problem enforced by Impedance-to-Impedance Operator
e.g.

U:=[-0nu+ inulr=atg
I“[U] = [~Onu — inu]r:a-i-g

@ The existence of I10 which guarantees a complete solution scheme
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Thank you!

Comments and Questions!
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