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Introduction

Localized Surface Plasmon Resonance
The (surface) plasmon field in the metal is about 5 nm meaning that
the surface plasmon does not penetrate deep into the metal.
When light strikes the surface of a metal nanoparticle, if the electron
cloud is excited at the resonance frequency, the light is absorbed more
strongly. This case is called a resonance.
When the dimension of the interface is much less than the surface
plasmon propagation length (measured in µm or mm), the surface
plasmon is localized.

The figure is from Metal nanoparticle photocatalysts: emerging processes for green
organic synthesis.
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Introduction

Localized Surface Plasmon Resonance

There is an example showing that the resonance can be induced by
selecting the appropriate light wavelength (frequency).
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Penetrable obstacle scattering problem

The Geometry

We consider a y-invariant, doubly layered
structure.
Dielectrics occupy the unbounded exterior;
a metal fills the bounded interior.
The interface is described in polar
coordinates by r = ḡ + g(θ).
exterior domain Su := {r > ḡ + g(θ)}
interior domain Sw := {r < ḡ + g(θ)}
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Penetrable obstacle scattering problem

Incident Radiation

The structure is illuminated by
monochromatic plane-wave incident
radiation of frequency ω.
Consider the reduced electric and magnetic
fields

E(r , θ) = eiωtE, H(r , θ) = eiωtH.

Incident, scattered, total fields are all
2π-periodic in θ.
The scattered radiation is “outgoing” in Su

and bounded in Sw .

Xin Tong (UIC) LSPR March 1, 2019 4 / 25



Penetrable obstacle scattering problem

The Penetrable obstacle scattering problem

In this 2D setting the time-harmonic Maxwell equations decouple into
two scalar Helmholtz problems: Transverse electric (TE) and
transverse magnetic (TM) polarizations.
We define the invariant (y) directions of the scattered (electric or
magnetic) fields by {u(r , θ),w(r , θ)} in Su and Sw , respectively.

We seek outgoing/bounded, 2π -periodic solutions of

∆u + (ku)2u = 0, r > ḡ + g(θ),
∆w + (kw )2w = 0, r < ḡ + g(θ),
u − w = −uinc, r = ḡ + g(θ),
∂Nu − τ2∂Nw = −∂Nuinc, r = ḡ + g(θ),

where uinc is the incident radiation, and τ2 =
{

1, TE
(ku/kw )2 TM.
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Penetrable obstacle scattering problem

Transparent Boundary Conditions
Regarding the Outgoing Wave Condition (Sommerfeld Radiation
Condition), we introduce an artificial boundary —
{r = Ro, Ro > ḡ + |g |L∞} and define the domain So := {r > Ro}.

The solution of Helmholtz problem on So with
Dirichlet boundary data, say u(Ro, θ) = ξ(θ), is

u(r , θ) =
∞∑

p=−∞
ξ̂p

Hp(kur)
Hp(kuRo)eipθ,

where Hp is the pth Hankel function of first kind.
We compute the outward–pointing Neumann data at the artificial
boundaries, and define the order-one Fourier multipliers T (u),

−∂r u(Ro, θ) =
∞∑

p=−∞
−ku ξ̂p

H ′p(kuRo)
Hp(kuRo)eipθ =: T (u) [ξ(θ)] .
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Penetrable obstacle scattering problem

Then the periodic, outward propagating solutions to

∆u + (ku)2 u = 0, r > ḡ + g(θ),

equivalently solve

∆u + (ku)2 u = 0, ḡ + g(θ) < r < Ro,

∂r u + Tu [u] = 0, r = Ro.

Similarly, we choose another artificial boundary —
{r = Ri , 0 < Ri < ḡ − |g |L∞} which defines the domain
Si := {r < Ri}.
The order-one Fourier multiplier T (w) is

∂r w(Ri , θ) =
∞∑

p=−∞
kw µ̂p

J ′p(kw Ri )
Jp(kw Ri )

eipθ =: T (w) [µ(θ)] ,

where Jp is the pth Bessel function of first kind.
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Penetrable obstacle scattering problem

A summary

The Penetrable obstacle scattering problem is
equivalent to solve

∆u + (ku)2u = 0, r > ḡ + g(θ),
∆w + (kw )2w = 0, r < ḡ + g(θ),
u − w = −uinc, r = ḡ + g(θ),
∂Nu − τ2∂Nw = −∂Nuinc, r = ḡ + g(θ),
∂r u + T (u) [u] = 0, r = Ro,

∂r w − T (w) [w ] = 0, r = Ri .
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Non-Overlapping Domain Decomposition Method

Non-Overlapping Domain Decomposition Method

The idea is thinking the solution layer by layer. What about the
interface?
Let the outer/inner Dirichlet traces and their (outward) Neumann
counterparts be

U(θ) := u(ḡ + g(θ), θ), Ũ(θ) := −(∂Nu)(ḡ + g(θ), θ),
W (θ) := w(ḡ + g(θ), θ), W̃ (θ) := (∂Nw)(ḡ + g(θ), θ).

At the interface, we have{
u − w = −uinc

∂Nu − τ2∂Nw = −∂Nuinc ⇒
{

U −W = ζ,

−Ũ − τ2W̃ = ψ.

Define the Dirichlet–Neumann Operators

G (u) : U → Ũ, G (w) : W → W̃ .

(
⇒
{

U −W = ζ,

−G (u)[U]− τ2G (w)[W ] = ψ.

)
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Non-Overlapping Domain Decomposition Method

Impedance–Impedance Operator (IIO)
Let the outer/inner Impedance and their outer/inner counterparts be

Iu := [−τu∂Nu + Yu]r=ḡ+g , Ĩu := [−τu∂Nu + Zu]r=ḡ+g ,

Iw := [τw∂Nw − Zw ]r=ḡ+g , Ĩw := [τw∂Nw − Yw ]r=ḡ+g ,

where τu = τw = 1 (TE) or {τu = 1/ε(u), τw = 1/ε(w)} (TM).
The Y and Z are unequal operators to be specified. We choose ±iη
for a constant η ∈ R+ later for numerical experiment.
Define the Impedance–Impedance Operators

Q : Iu → Ĩu, S : Iw → Ĩw ,

The boundary conditions at the interface{
u − w = −uinc

∂Nu − τ2∂Nw = −∂Nuinc⇒
{

Iu + Ĩw = ξ

Ĩu + Iw = χ
⇒
(

1 S
Q 1

)(
Iu

Iw

)
=
(
ξ
χ

)
.

’
Why IIO?
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Non-Overlapping Domain Decomposition Method

Definition 1 [Exterior Problem with DNO]: Given a sufficiently smooth
deformation g(θ), the unique periodic solution of

∆u + (ku)2 u = 0, ḡ + g(θ) < r < Ro,

u(ḡ + g(θ), θ) = U, r = ḡ + g(θ),
∂r u + T (u) [u] = 0, r = Ro,

defines the DNO
G (u) [U] = G (u)(Ro, ḡ , g) [U] := −(∂Nu)(ḡ + g(θ), θ) = Ũ.

Definition 2 [Interior Problem with DNO]: Given a sufficiently smooth
deformation g(θ), if we are not at a Dirichlet eigenvalue of the Laplacian
on {Ri < r < ḡ + g(θ)}, the unique periodic solution of

∆w + (kw )2 w = 0, c < r < ḡ + g(θ),
w(ḡ + g(θ), θ) = W , r = ḡ + g(θ),
∂r w − T (w) [w ] = 0, r = Ri ,

defines the DNO
G (w) [W ] = G (w)(Ri , ḡ , g) [W ] := (∂Nw)(ḡ + g(θ), θ) = W̃ .
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Non-Overlapping Domain Decomposition Method

Definition 3 [Exterior Problem with IIO]: Given a sufficiently smooth
deformation g(θ), the unique periodic solution of

∆u + (ku)2 u = 0, ḡ + g(θ) < r < Ro,

− τu∂Nu + Yu = Iu, r = ḡ + g(θ),
∂r u + T (u) [u] = 0, r = Ro,

defines the IIO
Q [Iu] = Q(Ro, ḡ , g) [Iu] := −τu∂Nu + Zu := Ĩu.

Definition 4 [Interior Problem with IIO]: Given a sufficiently smooth
deformation g(θ), the unique periodic solution of

∆w + (kw )2 w = 0, Ri < r < ḡ + g(θ),
τw∂Nw − Zw = Iw , r = ḡ + g(θ),
∂r w − T (w) [w ] = 0, r = Ri ,

defines the IIO
S [Iw ] = S(Ri , ḡ , g) [Iw ] := τu∂Nw − Yw := Ĩw .
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HOPS

Numerical Methods

Many numerical algorithms have been devised for the simulation of
these problems, for instance, Finite Differences, Finite Elements,
Spectral Elements.
These methods suffer from the requirement that they discretize the
full volume of the problem domain.
Surface Methods, especially the High-Order Perturbation of Surfaces
(HOPS) methods:

provide the solution at interface (we want)
only discretize the layer interfaces;
deliver high-accuracy simulations with greatly reduced operation
counts.

Foundational contributions:
1 Field Expansions: Bruno & Reitich (1993);
2 Transformed Field Expansions: Nicholls & Reitich (1999).
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HOPS

Perturbation Expansions

As with all HOPS schemes, the Method of Field Expansions (FE)
begins with the g(θ) = εf (θ).
Provided that f is sufficiently smooth, {Q,S}, and data, {ν, χ}, can
be shown to be analytic in ε so that the following Taylor series are
strongly convergent

{Q, S, ν, χ, Iu, Iw} = {Q,S, ν, χ, Iu, Iw}(ε) =
∞∑

n=0
{Qn,Sn, νn, χn, Iu

n , Iw
n }εn.

It is straightforward to identify a recursive formula for {Iu
n , Iw

n }(
1 S0

Q0 1

)(
Iu
n

Iw
n

)
=
(
νn
χn

)
−

n−1∑
m=0

(
0 Sn−m

Qn−m 0

)(
Iu
m

Iw
m

)
, O(εn).

We need {Q0,S0} and {Qm,Sm}, m = 1, . . . n − 1.
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HOPS Method of Field Expansions

Method of Field Expansions
Focusing upon the field u (outer domain), with u =

∑∞
n=0 un(r , θ)εn.

Insert it into the Exterior Problem with IIO
∆u + (ku)2 u = 0, ḡ + g(θ) < r < Ro,

− τu∂Nu + Yu = Iu, r = ḡ + g(θ),
∂r u + T (u) [u] = 0, r = Ro,

The un must be 2π–periodic, outward–propagating solutions of the
elliptic boundary value problem

∆un + (ku)2 un = 0, ḡ < r < Ro,

− τu∂Nun + Yun = Iu
n + Ln−1, r = ḡ ,

∂r un + T (u) [un] = 0, r = Ro,

The exact solution to is, with ûn,p determined by given data Iu
n + Ln−1

un(r , θ) =
∞∑

p=−∞
ûn,p

Hp(kur)
Hp(kuḡ)eipθ.
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HOPS Method of Field Expansions

Method of Field Expansions

Looking for {Q0,S0} and {Qm,Sm}, m = 1, . . . n − 1.
Recall that
∞∑

n=0
Qnε

n = Q[Iu] := −τu(∂Nu)(ḡ + g(θ), θ) + (Zu)(ḡ + g(θ), θ)

u =
∞∑

n=0
un(r , θ)eipθ, and un(r , θ) =

∞∑
p=−∞

ûn,p
Hp(kur)
Hp(kuḡ)eipθ.

The calculation involves expanding Hankel functions in power series in
ε, equating like power of ε, and etc, which results in

Q0[Iu] =
∞∑

p=−∞
Îu
p
−(kuḡ)τuH ′p(kuḡ) + ZpHp(kuḡ)
−(kuḡ)τuH ′p(kuḡ) + YpHp(kuḡ)eipθ

Qn[Iu] = − f
ḡ Qn−1(f )[Iu] + Terms(un, un−1, . . . u0, f )

Similarly, S0 and Sm are computed by Interior Problem with IIO.
Xin Tong (UIC) LSPR March 1, 2019 16 / 25



HOPS Method of Transformed Field Expansions

Method of Transformed Field Expansions
The method of Transformed Field Expansions (TFE) proceeds a
domain-flattening change of variables prior to perturbation expansion.
We consider the Interior Problem with IIO.
The change of variable is

r ′ = (ḡ − Ri )r + Rig(θ)
ḡ + g(θ)− Ri

, θ′ = θ,

which maps the perturbed domain {Ri < r < ḡ + g(θ)} to the
separable one {Ri < r ′ < ḡ}.
This transformation changes the field w (denoted by v) and modifies
the problem to

∆v + (kw )2 v = F (r , θ; g), Ri < r < ḡ ,
τw∂Nv − Zv = Iw , r = ḡ ,
∂r v − T (w) [v ] = K (θ; g), r = Ri .

The Gerlakin methods is applied to solve the non-homogeneous BVP.
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Numerical simulations Method of Manufactured Solution

Validation by the Method of Manufactured Solutions

We consider 2π-periodic, outgoing solutions of the Helmholtz
equation, and the bounded counterpart

uq(r , θ) = Aq
uHq(kur)eiqθ,

wq(r , θ) = Aq
w Jq(kw r)eiqθ,

q ∈ Z, Aq
u,Aq

w ∈ C.

For a given choice of f = f (θ) we compute, the exact interior
Neumann data and the exact interior Impedance data

ρin(θ) := [∂Nwq]r=ḡ+εf (θ) = W̃ (θ),

φin(θ) := [τu∂Nwq − Ywq]r=ḡ+εf (θ) = Ĩw (θ).

We approximate {u,w} by

uNθ,N(r , θ) :=
N∑

n=0

Nθ/2−1∑
p=−Nθ/2

ûn,pe ipθεn, wNθ,N(r , θ) :=
N∑

n=0

Nθ/2−1∑
p=−Nθ/2

ŵn,pe ipθεn.
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Numerical simulations Method of Manufactured Solution

DNO versus IIO
We select the 2π-periodic and analytic function f (θ) = ecos(θ)

Set the parameters:

q = 2, Aq
u = 2, Aq

w = 1, Nθ = 64, N = 16.

The operators are Y = 3.4i ,Z = −3.4i .
To begin with our study, with the choice ḡ = 0.5, we carry out
simulations with IIO formulation.
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Numerical simulations Method of Manufactured Solution

DNO versus IIO

We repeat this with our DNO approch,
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In this non-resonant configuration (ḡ = 0.5), both algorithms display
a spectral rate of convergence as N is refined (improving as ε is
decreased).
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Numerical simulations Method of Manufactured Solution

DNO versus IIO: a nearly-resonant configuration

We note that the choice of ḡ = 1 will induce a singularity in the
interior DNO G (w).
To test the performance, we select ḡ = 1− 10−12.
The IIO algorithm shows
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Numerical simulations Method of Manufactured Solution

DNO versus IIO: a nearly-resonant configuration

The DNO algorithm shows
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In this nearly resonant configuration, while IIO algorithm displays a
spectral rate of convergence as N is refined, the DNO approach does
not provide results of the same quality.
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Numerical simulations Method of Manufactured Solution

DNO versus IIO: a resonant configuration

Last, we select ḡ = 1− 10−16 (to machine precision).
The IIO algorithm shows

0 2 4 6 8 10 12 14 16
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-2

10
-1

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Xin Tong (UIC) LSPR March 1, 2019 23 / 25



Numerical simulations Method of Manufactured Solution

DNO versus IIO: a resonant configuration

The DNO algorithm shows
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In this resonant configuration, the IIO algorithm again displays a
spectral rate of convergence as N is refined, while the DNO approach
delivers completely unacceptable results.
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Thank you!
and

Comments and Questions!
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