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Introduction Background

Introduction

Collaborators on this project:

Professor Fred Hickernell and Professor Sou-Cheng Choi at Illinois
Institute of Technology (IIT)

Yuhan Ding and the GAIL team

Motivation:

fminbnd in Matlab1: may report a local minimum

Linear spline is used to construct L∞ approximation of univariate
functions2.

We constructed a globally adaptive algorithm for univariate function
minimization3.

1R. P. (Richard Peirce) Brent. Algorithms for minimization without derivatives. Englewood
Cliffs, N.J. : Prentice-Hall, 1973.

2N. Clancy et al. “The Cost of Deterministic, Adaptive, Automatic Algorithms: Cones, Not
Balls”. In: Journal of Complexity 30 (2014), pp. 21–45.

3X. Tong. “A Guaranteed, Adaptive, Automatic Algorithm for Univariate Function
Minimization”. MA thesis. Illinois Institute of Technology, 2014.
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Introduction Problem Description

Problem Description

Locally adaptive algorithms for global minimization problems:

For some suitable set, ‘cone’ C, real-valued functions defined on a finite
interval [a, b], we construct algorithm M : (C, (0,∞))→ R such that for
any f ∈ C and any error tolerance ε > 0,

0 ≤M(f, ε)− min
a≤x≤b

f(x) ≤ ε.
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Introduction Linear Spline and Upper bound

Linear Spline

The Algorithm is based on the linear spline for x ∈ [xi−1, xi] by

S(f, x0:n)(x) =
x− xi
xi−1 − xi

f(xi−1) +
x− xi−1
xi − xi−1

f(xi), i ∈ 1:n.

x0:n is an ordered sequence of n+ 1 points including the endpoints of
the interval, i.e., a =: x0 < x1 < · · · < xn−1 < xn := b.

The error of the linear spline is bounded in terms of the second
derivative of the input function as follows

‖f − S(f, x0:n)‖[xi−1,xi]
≤

(xi − xi−1)2 ‖f ′′‖[xi−1,xi]

8
, i ∈ 1:n,

where ‖f‖[α,β] denotes the L∞-norm of f restricted to the interval
[α, β] ⊆ [a, b].

This error bound leads us to focus on input functions in the Sobolev
space W 2,∞ :=W 2,∞[a, b] := {f ∈ C1[a, b] : ‖f ′′‖ <∞}.
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Introduction Linear Spline and Upper bound

An Upper Bound

|min f(x)− S(f, x0:n)| ≤ sup {|f(x)− S(f, x0:n)|} , x ∈ [xi−1, xi]

Take the minimum on each interval [xi−1, xi]:

0 ≤ min(f(xi−1), f(xi))−min f(x) ≤
(xi−xi−1)

2‖f ′′‖[xi−1,xi]

8 .

For each subinterval, we take the minimum value of function,
min(f(xi−1), f(xi)), as the approximation, then the error in that
subinterval has an upper bound.

Next, if we take min
i∈0:n

f(xi) as a candidate for mina≤x≤b f(x), then

we demand that each upper bound of the subinterval is less than the

tolerance ε, i.e.
(xi−xi−1)

2‖f ′′‖[xi−1,xi]

8 ≤ ε.

Question: What is a proper bound/approximation on ‖f ′′‖[xi−1,xi]
?

Remember that we want the second derivatives f ′′ do not change
dramatically over a short distance. We will define a set of such
functions.
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Main Algorithm The Cone

Idea of defining the Cone of function set

For any subinterval [α, β], we use quadratic Newton’s Interpolation
polynomial at nodes {α, (α+ β)/2, β} to compute

‖f ′′‖−∞,[α,β] := inf
α≤η<ζ≤β

∣∣∣∣f ′(ζ)− f ′(η)ζ − η

∣∣∣∣
≤ 2 |D(f, α, β)| ≤ sup

α≤η<ζ≤β

∣∣∣∣f ′(ζ)− f ′(η)ζ − η

∣∣∣∣ = ‖f ′′‖[α,β] ,
with the divided difference D(f, α, β) := 2f(β)−4f((α+β)/2))+2f(α)

(β−α)2 .

2 |D(f, α, β)| is an upper bound for ‖f ′′‖−∞,[α,β].
2 |D(f, α, β)| is a lower bound for ‖f ′′‖[α,β].
We define the Cone of interesting functions, C, containing f for which
‖f ′′‖[α,β] is not drastically greater than the maximum of

‖f ′′‖−∞,[β−h−,α] and ‖f ′′‖−∞,[β,α+h+] with h± > β − α.
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Main Algorithm The Cone

Cone: definition

For any [α, β] ⊂ [a, b] and any h± satisfying 0 < β − α < h± < h, define

B(f ′′, α, β, h−, h+) :=
max

(
C(h−) ‖f ′′‖−∞,[β−h−,α] ,C(h+) ‖f

′′‖−∞,[β,α+h+]

)
,

a ≤ β − h− < α+ h+ ≤ b,
C(h−) ‖f ′′‖−∞,[β−h−,α] , a ≤ β − h− < b < α+ h+, left end

C(h+) ‖f ′′‖−∞,[β,α+h+] , β − h− < a < α+ h+ ≤ b. right end

The Cone is defined as

C :=
{
f ∈W 2,∞ :

∥∥f ′′∥∥
[α,β]
≤ B(f ′′, α, β, h−, h+) for all [α, β] ⊂ [a, b]

and h± ∈ (β − α, h)
}
.
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Main Algorithm The Cone

Cone: An Example
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Main Algorithm Motivation

Algorithm: Motivation

On [xi−1, xi]:

min(f(xi−1), f(xi))−min f(x) ≤
(xi−xi−1)

2‖f ′′‖[xi−1,xi]

8
1 We estimate the right-hand-side and we want

erri :=
1

8
C(3hl) |f(xi+1)− 2f(xi) + f(xi−1)| ≤ ε, ∀i.

2 Take M̂ = min
i∈0:n

f(xi) as the approximation to min[a,b] f(x).

3 Rewrite min(f(xi−1), f(xi))−min f(x) ≤ erri:

Ture error = M̂ −min f(x) ≤ erri+M̂ −min(f(xi−1), f(xi)).

We will focus on the intervals with

erri > ε

erri + M̂ −min(f(xi−1), f(xi)) > ε
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Main Algorithm Algorithm

Algorithm4

For finite interval [a, b], integer nninit ≥ 5, and constant C0 ≥ 1. Let

h :=
3(b− a)
nninit − 1

, C(h) :=
C0h

h− h
for 0 < h < h.

Let f : [a, b]→ R and ε > 0 be user inputs. Let n = nninit, and define the
initial partition of equally spaced points, x0:n, and certain index sets of
subintervals:

xi = a+ i
b− a
n

, i ∈ 0:n, I+ = 2:(n− 1), I− = 1:(n− 2).

Compute M̂ = min
i∈0:n

f(xi). For s ∈ {+,−} do the following.

4S.-C. T. Choi et al. “Local adaption for approximation and minimization of univariate
functions”. In: Journal of Complexity 40 (2017), pp. 17 –33.
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Main Algorithm Algorithm

Algorithm

Step 1. Check for convergence.
Compute erri =

1
8C(3hl) |f(xi+1)− 2f(xi) + f(xi−1)| for all

i ∈ I±. Let Ĩs = {i ∈ Is : erri > ε}.
Next compute

êrri,s = erri+M̂ −min
(
f(xi−s2), f(xi−s1)

)
∀i ∈ Ĩs,

Îs =
{
i ∈ Ĩs : êrri,s > ε or

(
i− s3 ∈ Ĩ−s & êrri−s3,−s > ε

)}
.

If Î+ ∪ Î− = ∅, return M(f, ε) = M̂ and terminate the algorithm.
Otherwise, continue to the next step.
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Main Algorithm Algorithm

Algorithm

Step 2. Split the subintervals as needed.
Update the present partition, x0:n, to include the subinterval
midpoints

xi−s2 + xi−s1
2

,
xi−s1 + xi

2
∀i ∈ Îs.

(The point (xi−2 + xi−1)/2 is only included for i ≥ 2, and the
point (xi+1 + xi+2)/2 is only included for i ≤ n− 2.) Update the
sets I± to consist of the new indices corresponding to the old
points

xi−s1,
xi−s1 + xi

2
for i ∈ Îs.

(The point xi−1 is only included for i ≥ 2, and the point xi+1 is
only included for i ≤ n− 2.) Return to Step 1.
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Numerical Examples

Numerical Examples: GAIL

Together with our collaborators, we have developed the Guaranteed
Automatic Integration library (GAIL)5. This algorithm is implemented as
GAIL function funmin g.

5S.-C. T. Choi et al. GAIL: Guaranteed Automatic Integration Library (Versions 1.0–2.2).
MATLAB software. 2013–2017. url: http://gailgithub.github.io/GAIL_Dev/.
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Numerical Examples

Function with two local minima

Consider the function

f(x) = −5 exp(−[10(x− 0.2)]2)− exp(−100(x− 1)2) 0 ≤ x ≤ 1.5,

It has two local minimum points at 0.2 and 1. It attains its minimum at
x = 0.2.

Our funmin g caught the
global minimum but
MATLAB’s fminbnd retured
the local minimum.
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Numerical Examples

Test Functions

Next, we compare our adaptive algorithms with MATLAB’s fminbnd and
Chebfun’ min for random samples from the following families of test
functions defined on [−1, 1]:

f1(x) =


−12.5

[
0.16 + (x− c)2 + (x− c− 0.2) |x− c− 0.2|

−(x− c+ 0.2) |x− c+ 0.2|
]
, |x− c| ≤ 0.4,

0, otherwise,

c ∼ U [0, 0.6] Bump functions

f2(x) = x4 sin(d/x), d ∼ U [0, 2], Outside the cone C
f3(x) = 10x2 + f2(x), Almost quadratic

where U [a, b] represents a uniform distribution over [a, b].
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Numerical Examples

Results of Comparison

Mean # Samples Success (%)
fminbnd min funmin g fminbnd min funmin g

f1 8 116 111 100 14 100
f2 22 43 48 27 60 100
f3 9 22 108 100 35 100

MATLAB’s fminbnd uses far fewer function values than funmin g,
but it cannot locate the global minimum (at the left boundary) for
about 70% of the f2 test cases.

Chebfun’s min6 uses fewer points than funmin g, but Chebfun is
slower and less accurate than funmin g for these tests.

6N. Hale T. A. Driscoll and L. N. Trefethen. Chebfun Guide. Pafnuty Publications,
Oxford, 2014.
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Improvements

Improvements

Output intervals containing minima

Lower bound of computational cost

Higher order splines as a basis

Interval extension: [a, b]→ [a,∞) or (−∞, b] or (−∞,∞)
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Improvements

Comments

Thank you!

Any Comments and Questions?
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