High–Order Perturbation of Surfaces (HOPS) Algorithms for the Simulation of Localized Surface Plasmon Resonances Xin Tong, Joint work with Professor David Nicholls, University of Illinois at Chicago

Governing Equation

We seek outgoing/bounded, 2π -periodic solutions of

$\Delta u + (k^u)^2 u = 0,$	$r>\bar{g}+g(\theta),$	(1a)
$\Delta w + (k^w)^2 w = 0,$	$r < \bar{g} + g(\theta),$	(1b)
$u - w = \zeta,$	$r=\bar{g}+g(\theta),$	(1c)
$\partial_N u - \tau^2 \partial_N w = \psi,$	$r=\bar{g}+g(\theta),$	(1d)

where the Dirichlet and Neumann data are

$$\begin{split} \zeta(\theta) &:= \left[-u^{\mathrm{inc}} \right]_{r=\bar{g}+g(\theta)} \\ \psi(\theta) &:= \left[-\partial_N u^{\mathrm{inc}} \right]_{r=\bar{g}+g(\theta)}, \end{split}$$

and

$$\tau^2 = \begin{cases} 1, & \text{Transverse Electronic (TE),} \\ (k^u/k^w)^2 & \text{Transverse Magnetic (TM).} \end{cases}$$

Figure 1 : Cross-section of a metallic nanorod

Regarding the Outgoing Wave Condition (Sommerfeld Radiation Condition) and Boundedness Boundary Condition, the solutions to (1a) and (1b) are equivalent to

$$\begin{cases} \Delta u + (k^{u})^{2} u = 0, & \bar{g} + g(\theta) < r < R^{o}, \\ \partial_{r} u + T^{(u)} [u] = 0, & r = R^{o} > \bar{g} + |g|_{L^{\infty}}, \end{cases}$$
(1a')

$$\begin{cases} \Delta w + (k^w)^2 w = 0, & R_i < r < \bar{g} + g(\theta), \\ \partial_r w - T^{(w)} [w] = 0, & r = R_i < \bar{g} - |g|_{L^{\infty}}, \end{cases}$$
(1b')

with order–one Fourier multipliers $\{T^{(u)}, T^{(w)}\} := \{-k^u \frac{H'_D(k^u R^o)}{H_D(k^u R^o)}, k^w \frac{J'_D(k^w R_i)}{J_D(k^w R_i)}\}$.

Boundary Formulation

Dirichlet–Neumann Operator (DNO)

Let the outer/inner Dirichlet traces and their (outward) Neumann counterparts be

$$U(\theta) := u(\bar{g} + g(\theta), \theta), \qquad \tilde{U}(\theta) := -(\partial_N u)(\bar{g} + g(\theta), \theta), \qquad (2a)$$
$$W(\theta) := w(\bar{g} + g(\theta), \theta), \qquad \tilde{W}(\theta) := (\partial_N w)(\bar{g} + g(\theta), \theta). \qquad (2b)$$

Define the Dirichlet–Neumann Operators

$$G^{(u)}: U \to \tilde{U}, \qquad G^{(u)}[U] = G^{(u)}(R^o, \bar{g}, g)[U] := \tilde{U}, G^{(w)}: W \to \tilde{W}, \qquad G^{(w)}[W] = G^{(w)}(R_i, \bar{g}, g)[W] := \tilde{W}.$$

The boundary conditions, (1c) and (1d), become

$$U - W = \zeta, \quad -G^{(u)}[U] - \tau^2 G^{(w)}[W] = \psi,$$

$$\implies (G^{(u)} + \tau^2 G^{(w)})[U] = -\psi + \tau^2 G^{(w)}[\zeta].$$
(3)

Impedance–Impedance Operator (IIO)

Let the outer/inner Impedance and their outer/inner counterparts be

$$I^{u} := -\sigma_{u}\partial_{N}u + i\eta u|_{r=\bar{g}+g(\theta)}, \quad \tilde{I}^{u} := -\sigma_{u}\partial_{N}u - i\eta u|_{r=\bar{g}+g(\theta)},$$
$$I^{w} := \sigma_{w}\partial_{N}w + i\eta w|_{r=\bar{g}+g(\theta)}, \quad \tilde{I}^{w} := \sigma_{w}\partial_{N}w - i\eta w|_{r=\bar{g}+g(\theta)},$$

where $\eta \in \mathbb{R}^+$, $\sigma_u = \sigma_w = 1$ (TE) or $\{\sigma_u = 1/n_u^2, \sigma_w = 1/n_w^2\}$ (TM). Define the Impedance–Impedance Operators

$$Q: I^{u} \to \tilde{I}^{u}, \qquad Q[I^{u}] = Q(R^{o}, \bar{g}, g) [I^{w}] := \tilde{I}^{u}, \qquad (4a)$$

$$S: I^{w} \to \tilde{I}^{w}, \qquad S[I^{w}] = S(R_{i}, \bar{g}, g) [I^{w}] := \tilde{I}^{w}. \qquad (4b)$$

The boundary conditions, (1c) and (1d), become

$$I^{u} + S[I^{w}] = i\eta - \sigma_{u}\psi, \quad Q[I^{u}] + I^{w} = -i\eta - \sigma_{u}\psi.$$

HOPS Methods **Method of Field Expansions (FE)**

We view $g(\theta) = \varepsilon f(\theta)$. For ε sufficiently small and f smooth the operators, $\{G^{(u)}, G^{(w)}\}$, and data, $\{\zeta, \psi\}$, can be shown to be analytic in ε so that the following Taylor series are strongly convergent

$$\{G^{(u)}, G^{(w)}, \zeta, \psi\} = \{G^{(u)}, G^{(w)}, \zeta, \psi\}(\varepsilon f) = \sum_{n=0}^{\infty} \{G_n^{(u)}, G_n^{(w)}, \zeta_n, \psi_n\}\varepsilon^n.$$

Suppose that scattered fields, $\{u, w\}$, depend analytically upon ε . Take the field u in the outer domain, $\{r > \overline{g} + \varepsilon f(\theta)\},\$

$$u = u(r, \theta; \varepsilon) = \sum_{n=0}^{\infty} u_n(r, \theta) \varepsilon^n$$
, or $U = U(\varepsilon f) = \sum_{n=0}^{\infty} U_n \varepsilon^n$.

Inserting this into (1a') with DNO (2a), finds that the u_n must be 2π periodic, outward–propagating solutions of the elliptic boundary value problem

$$\begin{aligned} \Delta u_n + (k^u)^2 \, u_n &= 0, & \bar{g} < r < R^d \\ u_n(\bar{g}, \theta) &= \delta_{n,0} U - \sum_{\ell=0}^{n-1} \frac{f^{n-\ell}}{(n-\ell)!} \partial_r^{n-\ell} u_\ell(\bar{g}, \theta), & r = \bar{g}, \\ \partial_r u_n + T^{(u)} \, [u_n] &= 0, & r = R^o. \end{aligned}$$

The exact solutions are

$$u_n(r,\theta) = \sum_{p=-\infty}^{\infty} \hat{u}_{n,p} \frac{H_p(k^u r)}{H_p(k^u \bar{g})} e^{ip\theta},$$
(5)

and the $\hat{u}_{n,p}$ are determined recursively from the boundary conditions, beginning at order zero, with $\hat{u}_{0,p} = U_p$. Rewrite the boundary condition (3), at order $\mathcal{O}(\varepsilon^n)$,

$$(G_0^{(u)} + \tau^2 G_0^{(w)})[U_n] = -\psi_n + \sum_{m=0}^n G_{n-m}^{(w)}[\zeta_m] - \sum_{m=0}^{n-1} (G_{n-m}^{(u)} + \tau^2 G_{n-m}^{(w)})[U_m]$$

With the exact solution (5), one can get a recurrence relation

$$G_n^{(u)}(f)[U] = -\frac{f}{\bar{g}}G_{n-1}^{(u)}(f)[U] - k^u\bar{g}\sum_{\ell=0}^n\sum_{p=-\infty}^\infty \hat{u}_{\ell,p}\frac{(k^uf)^{n-\ell}}{(n-\ell)!}\frac{H_p^{(n+1-\ell)}(k^u\bar{g})}{H_p(k^u\bar{g})}e^{ip\theta} + \cdots$$

Similar considerations hold for the DNO $G^{(w)}$.

The method of Transformed Field Expansions proceeds in much the same way as the FE approach, save that a domain–flattening change of variables is effected prior to perturbation expansion. Applied to the interior problem (1b'), with IIO (4b), the change of variables maps the perturbed domain $\{R_i < r < \overline{g} + g(\theta)\}$ to the separable one $\{R_i < r' < \overline{q}\}$. This transformation changes the field w into

and modifies the problem to

where

 $u^{N_{\theta},I}$

• Reprise these calculations with a much larger choices of perturbation parameter, $\varepsilon = 0.01, 0.05$, using both FE and TFE.

Method of Transformed Field Expansions (TFE)

$$v(r',\theta') := w\left(\frac{(\bar{g} + g(\theta') - R_i)r' - R_i g(\theta')}{\bar{g} - R_i}, \theta'\right)$$

 $\Delta v + (k^w)^2 v = F(r', \theta'; g),$ $R_i < r' < \bar{g},$ $\sigma_w\{A(g,\bar{g},R_i)\partial_{r'}v + B(g,\bar{g},R_i)\partial_{\theta'}v\} + i\eta C(g,\bar{g},R_i)v = \chi(\theta';g), \ r' = \bar{g},$ $\partial_{r'}v - T^{(w)}[v] = K(\theta'; g),$ $r' = R_i$

 $-(\bar{g}-R_i)^2 F = g(\bar{g}-R_i)(r'-R_i)\partial_{r'}[r'\partial_{r'}v] + \cdots$ and $K = \frac{g}{-R_i}T^{(w)}[v]$. $g - n_i$

Numerical Results Convergence Study

Take an exact solution to (1) and compare our numerically simulated solution. For implementation, consider 2π -periodic, outgoing solutions of Helmholtz equation, (1a), and the bounded counterpart for (1b)

$$\begin{aligned} u^q(r,\theta) &= A^q_u H_q(k^u r) e^{iq\theta}, \\ w^q(r,\theta) &= A^q_w J_q(k^w r) e^{iq\theta}, \end{aligned} \quad q \in \mathbf{Z}, \quad A^q_u, A^q_w \in \mathbf{C}. \end{aligned}$$

We approximate $\{u, w\}$ by

$${}^{N}(r,\theta) := \sum_{n=0}^{N} \sum_{p=-N_{\theta}/2}^{N_{\theta}/2-1} \hat{u}_{n,p} e^{ip\theta} \varepsilon^{n}, \quad w^{N_{\theta},N}(r,\theta) := \sum_{n=0}^{N} \sum_{p=-N_{\theta}/2}^{N_{\theta}/2-1} \hat{w}_{n,p} e^{ip\theta} \varepsilon^{n}.$$

lect the 2π -periodic and analytic function $f(\theta) = e^{\cos(\theta)}$, and compute the exterior Neumann data, $\tilde{U}(\theta) := [-\partial_N u^q]_{r=a+\varepsilon f(\theta)}$.

Figure 2 : Relative error versus perturbation order (FE) $q = 2, \quad A_u^q = 2, \quad A_w^q = 1, \quad \bar{g} = 0.025, \quad \varepsilon = 0.002, \quad N_\theta = 64, \quad N = 16$

Figure 3 : Relative error versus perturbation order (FE) $\bar{g} = 0.025, \quad c = \bar{g}/10, \quad b = 10\bar{g}, \quad N_r = 64, \quad N = 24.$

3.2 DNO versus IIO

There exist Dirichlet eigenvalues w.r.t. DNO $G^{(w)}$ such that the solutions explode. However, the IIOs sovle this Problem. Use TFE approach to compute the exterior Neumann data \hat{U} and impedance data

References

- [2] David P. Nicholls. 474(2212), 2018.

• The analyticity of Dirichlet–Neumann Operator

• The existence of IIO which guarantees a complete solution scheme • Extension to Three Dimensional Layered-Media

[1] David P. Nicholls and Xin Tong. High-order perturbation of surfaces algorithms for the simulation of localized surface plasmon resonances in two dimensions. J. Sci. Comput., Feb 2018.

Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,