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Governing Equation

We seek outgoing/bounded, 2r—periodic solutions of

Au + (ku)Qu =0, r> g+ g(0), (1a)
Aw + ()*w = 0, r<g-+g(d), (1b)
u—w =, r=g+g(0), (lc)
Onu —T°ONw = ¢, r=g+g9(0), (1d)
where the Dirichlet and Neumann data are
0): = _—uinc}
0):=|—0 uinc} :
Vi) e r=g-+9(0)
and
9 1, Transverse Electronic (TE),
T p—
(k" /E")?  Transverse Magnetic (TM).
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S’LL

Figure 1 : Cross-section of a metallic nanorod

Regarding the Outgoing Wave Condition (Sommerfeld Radiation Con-
dition) and Boundedness Boundary Condition, the solutions to (1a) and
(1b) are equivalent to

Au+ (E%u=0, g+g0) <r<R° (1a)
Oyu+ T [u] =0, r=R°>qg+ 9|7,
Aw+ (K" w=0, R;<r<g+glh), b
Orw —TW [w] =0, r=R; <g—|g|r~,

with order—one Fourier multipliers {7, T(*)} .= {—k2 ’;g; kwﬁ:ug;}

1 Boundary Formulation
1.1 Dirichlet-Neumann Operator (DNO)

Let the outer/inner Dirichlet traces and their (outward) Neumann coun-
terparts be

- ).0),  U0) = —(0yu)(g +9(0),0), (2a)
W(0) == w(g+g(0),0), W(O):=(Oyw)(g+g0),0). (2b)

Define the Dirichlet—Neumann Operators

GW U] = GW(R®, g, 9)[U] := U,
G W] =GR, g.g9) W] = W

GW.U U,
GW) W — W,

The boundary conditions, (1¢) and (1d), become

U-W=¢, —-GWU -2 w]
— (G + 22" [U] = -y + 2G W) (3)

|
=

1.2 Impedance-Impedance Operator (I110)

Let the outer/inner Impedance and their outer/inner counterparts be

I = —oyOnu + i77“‘r=§+9(§)7 [" = —oydyu — inu‘rngrg(Q)’
[”LU — O'wan + inw‘ng—l—g(@)’ [w = O'wan — inw\T:ngg(@),

where n € RT, 0, = 00y = 1 (TE) or {0y = 1/n2, 00 = 1/02,} (TM).
Define the Impedance—Impedance Operators

Q:I"—I" QU" =Q(R,g,9)[I"] = I", (4a)
S IV — 1, S[I") = S(R; g, g) [I") =1 (4b)

The boundary conditions, (Ic) and (1d), become
"+ S =in—oup, QU+ I1"=—in— oyu1.

2 HOPS Methods
2.1 Method of Field Expansions (FE)

We view ¢(0) = ¢f(0). For ¢ sufficiently small and f smooth the op-

erators, {G\"), G(W)}, and data, {¢, v}, can be shown to be analytic in
e so that the following Taylor series are strongly convergent

{GY, G, ¢y ={G", G, ¢y} ef) = Z{Gn G, Gy te

Suppose that scattered fields, {u, w}, depend analytically upon . Take
the field « in the outer domain, {r > g + ¢ f(0)},

u=u(r,0;e) = Zunrﬁ or UzU(Ef)zZUné”.

Inserting this into (1a’) with DNO (2a), finds that the u,, must be 27—
periodic, outward—propagating solutions of the elliptic boundary value
problem

Auy, + (k%) u, = 0, g<r<R°
n—1 fn—€ ,
un(g79>:5n,0U_Z<n_€>'0;}_ Ug(é,@), T:§7
(=0 '
o, + TW [u,| =0, r= R°.

The exact solutions are

O

- Hp(K"r)

Up (1, 0) = Z pp— —e, (5)
P——00 Hp(k"g)

and the uy, ,, are determined recursively from the boundary conditions,

beginning at order zero, with ) ,, = Up
Rewrite the boundary condition (3), at order O(e"),

n—1

(G + TGN = =+ > G (Gl = 3 (G, + T2G) U]
m=0

=0
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With the exact solution (5), one can get a recurrence relation

u FLy )
K93 3 i e )

/=0 p=—0o0

Similar considerations hold for the DNO G <w>.

2.2 Method of Transformed Field Expansions (TFE)

The method of Transformed Field Expansions proceeds in much the
same way as the FE approach, save that a domain—flattening change
of variables 1s effected prior to perturbation expansion. Applied to the
interior problem (1b’), with 11O (4b), the change of variables maps
the perturbed domain {R; < r < g + g(f)} to the separable one

{R; < r’" < g}. This transformation changes the field w into

ot 0) = w ((9 +9(0) - ])% z9<9’>79,> |

and modifies the problem to

Av + (K" v =F(r', 0 g), R; <1’ <g,
Jw{A<ga ga RQ@W’U =+ B(ga g? RZ'>8,9/U} T 7’770<ga g? RZ>U — X(elv g>7 T/ — ga
oo — T o] = K(6'; g), =R,
where
—<§ — RZ)QF - g(g — RZ')<7“/ — Ri)é’ﬂ[r’@/v] + .- and K = — gR T(w) [U]
g — Iy

3 Numerical Results
3.1 Convergence Study

Take an exact solution to (1) and compare our numerically simulated
solution. For implementation, consider 27-periodic, outgoing solu-
tions of Helmholtz equation, (1a), and the bounded counterpart for (1b)

ul(r,0) = AL Hy(k"r)e',

q 44
wi(r,0) = AL J, (kVr)e'?? g€, Ay AyeC

We approximate {u,w} by

N N@/Q 1 N NQ/Q 1
S‘ S‘ unpezpe n y‘ y‘ wnpezpﬁ n
n=0 p=—Np/2 n=0 p=—Np/2
e Select the 2m-periodic and analytic function f(0) = eCOS<9>, and
compute the exterior Neumann data, U(0) := [—-Onu?,_, . £(6
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Figure 2 : Relative error versus perturbation order (FE)
g=2, A1=2 A1 =1 g=0.025, e=0002, Ny=64, N =16

e Reprise these calculations with a much larger choices of perturba-
tion parameter, € = 0.01, 0.05, using both FE and TFE.
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Figure 3 : Relative error versus perturbation order (FE)
g=10.025, ¢=g/10, b=10g, N,=064, N =24.

3.2 DNO versus IO

There exist Dirichlet eigenvalues w.r.t. DNO G such that the so-
lutions explode. However, the IIOs sovle this Problem. Use TFE ap-
proach to compute the exterior Neumann data U and impedance data

I at the interface. Both DNO and 11O converge with choices away
from Dirichlet eigenvalue but DNO fails at a Dirichlet eigenvalue.

(a) DNO (b) I10

Figure 4 : DNO versus I10
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Figure 5 : DNO versus I10: a Dirichlet eigenvalue

3.3 Simulation of Nanorods

Return to the problem of scattering of plane—wave incident radiation
u™ = exp(i(g + g(0))(acos(f) — v*sin(6))) by a nanorod which demands
the Dirichlet (1c) and Neumann conditions (1d). We consider a low—
frequency sinusoidal profile f(6) = cos(26).
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(a) Cross—section of a (b) Reflection and
silver nanorod (5") Transmission maps at
shaped by e = g/10, with the Frohlich
r = g+ € cos(26) housed value of the LSPR as a
in a vacuum (dielectric) dashed red line and

under plane (5") . g = 0.025, Ny =064, N = 16.

Figure 6 : Nanorod Simulation
The deformation parameter (one tenth of the rod radius) can produce a
sizable shift in the LSPR.

4 Forthcoming Research

e The analyticity of Dirichlet—-Neumann Operator
e The existence of I1O which guarantees a complete solution scheme

e Extension to Three Dimensional Layered-Media
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