Math 220, Week 2 Thursday, Section 1.3-1.4

1.3 Direction Fields

1. Consider the differential equation

$$
\frac{d p}{d t}=p(p-1)(2-p)
$$

for the population p (in thousands) of a certain species at time t.
(a) Sketch the direction field.
(b) If the initial population is 4000 , what is $\lim _{t \rightarrow+\infty} p(t)$?
(c) If $p(0)=1.7$, what is $\lim _{t \rightarrow+\infty} p(t)$?
(d) If $p(0)=0.8$, what is $\lim _{t \rightarrow+\infty} p(t)$?
(e) Can a population of 900 ever increase to 1100 ?

1.4 The Approximation Method of Euler

1. Use Euler's method to approximate the solution to the given initial problem at the points $x=$ $0.1,0.2,0.3,0.4,0.5, h=0.1$.

$$
\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-1
$$

2. Given the Initial Value Problem

$$
y^{\prime}=x-y, \quad y(0)=0
$$

The actual solution is $y=e^{-x}+x-1$. Find a value of h for Euler's method such that $y(1)$ is approximated to within ± 0.01.

Also find, to within ± 0.05, the value of x_{0} such that $y\left(x_{0}\right)=0.2$.

