Math 220, Week 2 Tuesday, Section 1.2-1.3

1.2 Solutions and Initial Value Problems

1. Determine whether the given function is a solution to the given differential equation.
$y=\sin x+x^{2}, \quad \frac{d^{2} y}{d x^{2}}+y=x^{2}+2$
2. Determine whether the given relation is an implicit solution to the given differential equation. $e^{x y}+y=x-1, \quad \frac{d y}{d x}=\frac{e^{-x y}-y}{e^{-x y}+x}$
3. Verify that the function $\phi(x)=c_{1} e^{x}+c_{2} e^{-2 x}$ is a solution to the linear equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0
$$

for any choice of the constants c_{1} and c_{2}. Determine c_{1} and c_{2} such that each of the following initial conditions is satisfied.
(a) $y(0)=2, y^{\prime}(0)=1$
(b) $y(1)=1, y^{\prime}(1)=0$
4. Determine whether the Theorem of Existence and Uniqueness of Solutions applies.
$\frac{d y}{d t}-t y=\sin ^{2} t, \quad y(\pi)=5$

1.3 Direction Fields

1. Consider the differential equation

$$
\frac{d p}{d t}=p(p-1)(2-p)
$$

for the population p (in thousands) of a certain species at time t.
(a) Sketch the direction field.
(b) If the initial population is 4000 , what is $\lim _{t \rightarrow+\infty} p(t)$?
(c) If $p(0)=1.7$, what is $\lim _{t \rightarrow+\infty} p(t)$?
(d) If $p(0)=0.8$, what is $\lim _{t \rightarrow+\infty} p(t)$?
(e) Can a population of 900 ever increase to 1100 ?

