$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h \\
y_{n+1}=y_{n}+f\left(x_{n}, y_{n}\right)
\end{array}\right.
$$

1. Use Euler's method to approximate the solution to the given initial problem at the points $x=$ $0.1,0.2,0.3,0.4,0.5, h=0.1$.

$$
\begin{aligned}
& \}_{y_{n+1}=y_{n n}}^{x_{n}+0.1 x_{n}+0.1 x_{n n}} \\
& f(x, y)=\frac{x}{y} \quad \begin{array}{ll}
x_{0}=0 \\
y_{0}=-1
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1}=0+0.1=0.1 & y_{1}=y_{0}+0.1\left(\frac{x_{0}}{y_{1}}\right)=-1+0.1\left(\frac{0}{-1}\right)=-1 \\
x_{2}=x_{1}+0.1=0.2 & y_{2}=y_{1}+0.1\left(\frac{x_{1}}{y_{1}}\right)=-1+0.1\left(\frac{0.1}{-1}\right)=-1.01 \\
x_{3}=x_{2}+0.1=0.3 & y_{3}=-1.01+0.1\left(\frac{0.2}{-1.01}\right) \approx-1.030 \\
x_{4}=x_{3}+0.1=0.4 & y_{4}=-1.030+0.1\left(\frac{0.3}{1.303}\right) \approx-1.059 \\
x_{5}=x_{4}+0.1=0.5 & y_{5}=-1.059+0.1\left(\frac{0.4}{-1.099}\right) \approx-1.097 \\
\text { 2. Given the Initial Value Problem }
\end{array}
$$

Actual: $y(\phi)=e^{-1} \approx 0.3679 \quad y^{\prime}=x-y, \quad y(0)=0 . \quad \begin{cases}x_{n+1}=x_{n}+h \\ y_{n+1}=y_{n}+h\left(x_{n}-y_{n}\right) & y_{0}=0\end{cases}$
The actual solution is $y=e^{-x}+x-1$. Find a value of $h$ for Euler's method such that $y(1)$ is approximated to within $\pm 0.01$.


Also find, to within $\pm 0.05$, the value of $x_{0}$ such that $y\left(x_{0}\right)=0.2$.
Take $h=0.1 \Leftarrow$ Because (with in $\pm 0.05$ ) $\Rightarrow 0.1$ is a best choice.

$$
\left.\begin{array}{ll}
x_{1}=0.1 & y_{1}=0+0.1(0-0)=0 \\
x_{2}=0.2 & y_{2}=0+0.1(0.1-0)=0.01 \\
x_{3}=0.3 & y_{3}=0.01+0.1(0.2-0.01) \approx 0.03 \\
x_{4}=0.4 & y_{4}=0.03+0.1(0.3-0.03) \approx 0.06 \\
x_{5}=0.5 & y_{5}=0.04+0.1(0.4-0.06) \approx 0.09 \\
x_{6}=0.6 & y_{6}=0.09+0.1(0.5-0.09) \approx 0.13 \\
x_{7}=0.7 & y_{7}=0.13+0.1(0.6-0.13) \approx 0.18<0.2 \\
x_{8}=0.8 & y_{8}=0.18+0.1(0.7-0.18) \approx 0.23>0.2
\end{array}\right)
$$

Use Euler's method Calculator online

You can choose $\mathrm{h}=0.05$

$$
y(0.7)=0.1877, y(0.75)=0.2133
$$

so we can choose any number between 0.7 and 0.75 , for example $x=0.74$

There is an $x$ between 0.7 and 0.8
2 such that $y(x)=0.2$
Take 0.75 since "within $\pm 0.05$ "
2.2 Separable Equation

1. Solve the equation
(a) $\frac{d x}{d t}=\frac{t}{x e^{t+2 x}}=\frac{t}{x e^{t} e^{2 x}}=\frac{t}{e^{t}} \cdot \frac{1}{x e^{2 x}}$

Separate: $x e^{2 x} d x=t e^{-t} d t$
$\int x e^{2 x} d x=\int t e^{-t} d t \quad$ Integrate
Simplify: $\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}=-t e^{-t}-e^{-t}+C$

Integration by parts: $u d v=u v-v d u$

$$
\begin{array}{rlrl}
\text { Left: } \begin{aligned}
u & =x
\end{aligned} \quad d u=d x \\
d v & =e^{2 x} d x & v & =\frac{1}{2} e^{2 x} \\
\frac{1}{2} x e^{2 x}-\int \frac{1}{2} e^{2 x} d x \Rightarrow & \frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}
\end{array}
$$

Right: $u=t$ d $d u=d t$

$$
\begin{aligned}
u & =\tau, \\
d v & =e^{-t} d t,
\end{aligned}
$$

$$
-t e^{-t}-\left(-e^{-t}\right) d t \Rightarrow-t e^{-t}-e^{-t}
$$

2. Solve the initial value problem
(a) $\frac{1}{2} \frac{d y}{d x}=\sqrt{y+1} \cos x, \quad y(\pi)=0$

Separate: $\frac{1}{2} \frac{1}{\sqrt{y+1}} d y=\cos x d x$
Integrate: $\int \frac{1}{2} \frac{1}{\sqrt{y+1}} d y=\int \cos d x$

$$
(y+1)^{\frac{1}{2}}=\sin x+C
$$

(b) $x^{2} d x+2 y d y=0, \quad y(0)=2$

Separate: $\quad x^{2} d x=-2 y d y$
Integrate: $\int x^{2} d x=\int-2 y d y$

$$
\begin{gathered}
\frac{1}{3} x^{3}=-\frac{y^{2}}{4}+c \\
x=0 \cdot y=2 \\
0=-\frac{4}{4}+c \Rightarrow c=4 \\
-y^{2}+4=\frac{1}{3} x^{3} \\
y^{2}=4-\frac{1}{3} x^{3} \Rightarrow y=\sqrt{4-\frac{1}{3} x^{3}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Use } y(\pi)=0 \Rightarrow x=\pi, y=0 \\
& (0+1)^{\frac{1}{2}}=\sin \pi+C \Rightarrow C=1 \\
& (y+1)^{\frac{1}{2}}=\sin x+1 \\
& y=(\sin x+1)^{2}-1
\end{aligned}
$$

