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An Estimate of the Gap of the First Two Eigenvalues
in the Schrödinger Operator.

I. M. SINGER - BUN WONG

SHING-TUNG YAU - STEPHEN S.-T. YAU

1. - Introduction.

We shall consider the following Dirichlet eigenvalue problem on a smooth
bounded domain S~ eRn, I

where V is a nonnegative function defined on ,~. As is well-known, the
eigenvalues of problem (1.1) can be interpreted as the energy levels of a
particle travelling under an external force field of a potential q in Rn, where

and the corresponding eigenfunctions are wave functions of the Schrodinger
equation - J~ + qu = lu. Furthermore, the set of eigenvalues {A,} of (1.1 )
are nonnegative and can be arranged in a nondecreasing order as follows,

It is a significant problem to find a lower bound for ~,1 in terms of the
geometry of Q. This subject has been studied extensively by many authors.
A rather precise bound in the case V== 0 was worked out not only for a
bounded domain in but actually valid for a general Riemannian manifold
with certain curvature conditions; we refer to [4] for these recent develop-
ments. Nevertheless, very little is known about the obvious interesting
question of how big the gap is between Å2 and Ål. There are both physical
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and mathematical interests in finding out a lower bound for Â2 - Âl in terms
of the geometrical invariants of Q and the given potential function V.
Our main result is the following.

THEOREM (1.1). Let Q be a smooth convex bounded domain in l~n and
V: S~ --~ R a nonnegative convex smooth potential function.

Suppose Â2 and Â1 are the first and second nonzero eigenvalues of (1.1),
then the following pinching inequality holds

where d = diameter of Q, D = the diameter of the largest inscribed ball in Q,
M = sup Y, and m = inf V.

9 S2

In the last section, we demonstrate how to make use of the main the-
orem here to obtain a similar theorem when S~ = Rn.

In Appendix B), we give a short proof of a theorem of Brascamp and
Lieb on the log concavity of the first eigenfunction. A similar method of
gradient estimate was used by Li and the third author in [4].

2. - A gradient estimate.

Let f 1 and f 2 be the first and second eigenfunctions of (1.1). It is a

known fact that fi must be a positive function (a theorem of Courant [3]),
and thus u = is a well-defined smooth function on Q. Using the Hopf
lemma and the Malgrange preparation theorem, one can actually verify that
u is smooth up to the boundary 8Q (for a short proof of the case we need,
see § 6). In this section, the following gradient estimate will be established,
which is the key step to derive the lower bound for 2, - ~,1.

THEOREM 2.1. With the same conditions stated in Theorem (1.1 ), hacve

the following estimate for the gradient of u,

_ ,2 - Â1, p is a constant not less than sup u.
n

We proceed to give the proof by dividing our argument into two propo-
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sitions. In the sequel of this, we denote by G = IVul2 + Â(p, - U)2, which
is a smooth function on Q as u is.

PROPOSITION 2.2. With the same conditions in Theorem (1.2), if G attains
its maximum in an interior point of D, we have the following inequality

PROOF. By direct computation, we have

It is by straightforward computation that

(log f 1 is well-defined since f 1 &#x3E; 0 on S~).
We substitute (2.3) into (2.2) and obtain

Suppose G attains its maximum in an interior point p E ,~. If (Vu)(p) =1= 0,
then we can choose a coordinate such that 0, = 0 for 2  i  n.
Furthermore, since VG(p) = 0, one easily deduces from (2.1) that relative
to the above coordinate the following is true

Putting (2.5) and (2.6) into (2.4), we find a simplification for 4G(p) with
respect to this particular coordinate system,
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Since both V and Q are convex by assumption, according to a result of
Brascamp and Lieb [1], log fl is concave, in particular (log /,),, (p)  0. Con-

sequently, the second term of (2.7), namely - is nonnegative.
Therefore, we have

Furthermore, u£(p) &#x3E; 0 Vi, j implies

Again from (2.5), this leads to

We can assume that sup ~c is positive. On the other hand, sup ~c is greater
12 Q

than u(p) as ui(p) =1= 0. If p&#x3E;sup u &#x3E; 0, it gives rise to a contradiction
of (2.9). 

n

Our argument above shows that Vu(p) = 0 and establishes the inequality
G c sup £(p - U)2 as desired..Q

PROPOSITION 2.3..Let us assume equation (1.1 ) satisfying all the condi-

tions in Theorem (2.1). If G attains its maximum on c’~,5~, then we have the
same estimate

REMARK. We recall a differential geometric description of convexity
here which will be used later. Suppose H = (ha~)2~a,~n is the second

fundamental form of 8Q relative to a unit normal of 8Q pointing outward
to Q. It is known that 3D is convex iff .g’ is positive definite.

PROOF oF PROPOSITION 2.3. Suppose G attains its maximum on 8Q at
a point p. We can choose an orthonormal frame ~Zl , l2 , ... , Zn~ around p
such that Z1 is perpendicular to 8Q and pointing outward. We also use
the notation a/aXl to denote the restriction of l1 on that is the normal

unit vector field along 3D.
A simple computation shows
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Consider the equation 4u = - Âu - 2(Vu. V log f 1 ), where both d u and
u are smooth up to the boundary and thus attain finite values on 3D.

Hence, achieves finite values on
*’ 

8Q as well. Nevertheles8, since f 1 1 0 on we have ( f 1 ) i = 0 V2 In
(ii, is in the tangential direction). This implies that 
must be finite. By the Hopf lemma, (fi)1 = 5~ 0 on we get the

important observation that

Using (2.11) one can rewrite (2.10) as follows

From the definition of second fundamental form of a hypersurface in Rn,
one can derive

where (bij) is a skew symmetric matrix i. e. Putting (2.13)
into (2.12 ), we have

This contradicts the convexity = 0 for all and

yields our inequality G c sup , (,u - u ) .
D

Theorem 2.1 follows from the above two propositions.

3. - Lower bound.

In this section, we shall derive our lower bound n2/4d2  Â2 - Âl.
Recall our basic estimate (Theorem 2.1) which says that for p &#x3E; sup u:

In particular, we have
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Furthermore,

Let A = sup u - inf u and W = sup u - u. One can rewrite (3.3) as

Let q2 be two points of D such that u(q,) =sup u, 
and a is the line segment joining them. 6 lies in Q since it is convex by
assumption. We integrate both sides of (3.3) along a from q, to q2 and

obtain

Changing variables, y we have

By elementary calculus, one has

where = length of 0’, d = diameter This proves
as has been claimed.
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4. - Upper bound.

The major step to establish our upper bound
is the following.

LEMMA 4.1. Let S2 be a smooth bounded domain in Rn and V a bounded

nonnegative potential de f ined on D. Suppose Â1, Â2 are the first and second
nonzero eigenvalues of the Dirichlet boundary problem

then

where

Some results of this sort in the case of Y --- 0 were given by Payne,
Polya and Weinberger [6].

PROOF. Let fi be the first eigenfunction of (4.1). Take a trial function

f = xifl - afl, where xi is any fixed coordinate function for some 
and a is a constant chosen to satisfy ff.fl = 0. The following computation
shows that 0

Multiplying both sides of (4.1) by f, integrating over and then dividing
we have

.Q

The following formula is well-known,
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(4.3) together with (4.2) and the fact that f i fi imply

Substituting f = xifl - all and integrating by parts, gives

We can always normalize fi such that f f i = 1. Combining (4.5) and (4.6),
we have

Again from (4.6) moreover, the Schwarz lemma says that

This implies that

since Bringing (4.7) and (4.9) together, we have

Since and it is easy to see that
A
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Using this fact, one can conclude from (4.10) that

This completes the proof.

REMARK. It is in general true that ,

PROOF OF UPPER BOUND OF ~,2 - ~,1. Recall the identity (4.3)

Let us choose g vanishing on 8Q s.t. flVgl2ffg2 = where i is the first-
2 n

nonzero eigenvalue of the Dirichlet problem (1.1) on Q with V== 0. Clearly
we have

Using a theorem of Cheng [2], we have

when

and D = the diameter of the largest inscribed ball in Q. With Lemma 4.1,
we can now establish our upper bound for 2, - £i asserted in Theorem 1.1.

5. - Gap of eigenvalues over 

In this section, we extend the estimate for eigenvalues of bounded domain
to eigenvalues of Rn. We need the following well-known fact.

PROPOSITION 5.1. Let Â2(R) be the second eigenvalue of L1 - V defined
on the ball B(R) with Dirichlet boundary condition. Then ~,2(.1~) is a con-
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tinuons piecewise smooth function o f R when R &#x3E; 0. When it is smooth,

is a normalized second eigenfunction of L1 - V de f ined on B(R).

PROOF. Let r,) be the normalized second eigenfunction of d - V
defined on the ball B(r2) with Dirichlet boundary condition. In polar co-
ordinates, q; is a function of the form q;(O, r,; r2) where 0 E Sn-1, the unit
sphere, and 00.

It is well-known that we can assume ~9 to be piecewise smooth as a
function of r2. At the points where u is smooth, we can differentiate the
equantion for 99 and obtain

Integrating by parts, we derive

Notice that g~(8, r, r) = 0 for all r. Hence

Putting this into (5.3) we have

PROPOSITION 5.2. Let 99 be an eigenfunction of d - V defined on the ball
B(R) c Rn with Dirichlet boundary condition and eigenvalue 2. Then



329

PROOF. Let dO be the volume element of the unit sphere in Rn

and de be the spherical Laplacian. Then

and

Multiplying this equation by rk (with k &#x3E; 2) and integrating from 0 to 1~,
we have

Integrating by parts, we have the following
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Putting (5.11), (5.12) and (5.13) into (5.10), we have

Hence,

By the divergence theorem,

Hence,

The proposition follows from (5.15) and (5.17).
It is straighforward to derive from Theorem 1.1 and the last two pro-

positions the following theorem.

THEOREM 5.1..Let V be a C1- f unction de f ined on Rn with n &#x3E; 4. Let

~,2(~O) be the second eigenvalue of the operator - d + V defined on the ball
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j5(p) with Dirichlet boundary conditions. Suppose that V is convex in the ball
B(R), then

where 2n - 2 &#x3E; k &#x3E; n and ~ f ~+ stands for the positive part of f.

(ii) When k &#x3E; 2n - 2, k &#x3E; n and k &#x3E; 2,

REMARK. If lim V(x) = oo and 0, k - n &#x3E; 2 and R large, we
can obtain a positive lower estimate for Â2 - Â1. Note also that

Hence (Â2(R) - V(x))+ can be estimated easily if lim oo.

6. - Appendix.

A) Here we shall give a quick argument to verify the  standard » fact

that u = is smooth up to the boundary aS2. In the whole discussion,
we assume ,S~ to be smooth convex. Our conditions in Theorem 2.1 allow

us to apply the classical Hopf lemma to f 1.
Let us choose local coordinates ..., on a sufficiently small

open set U such that U r1 aS2 = U n = 0}. Since fl is identically equal
to zero on 8Q and t &#x3E; 0 in S~, by the Hopf lemma we have  0 on 8Q.

Furthermore, fi is smooth up to the boundary, thus one can consider fi
as a smooth function which is defined on U restricted to Using the

Malgrange preparation theorem [5], together with the fact that ~ 0

on 8Q, we have locally

where is a unit which is smooth on D r1 U.
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Moreover, y 12 is identically zero on aS2; applying the Malgrange’s the-
orem again, one can write locally

where g2 is a unit which is smooth in Sz n U, and h2 is also a smooth

function in D r1 U. Now it is clear

must be smooth on U n .Q. 

B) Here we give a proof of a theorem of Brascamp and Lieb.
Let tl be the first positive eigenfunction of the operator d -V on a convex

domain ,~2 with Dirichlet condition. Then u = log f satisfies the equation

By convexity of SZ, it is easy to see that u is concave in a neighborhood
of 8Q. If we consider the Hessian of u as a function of the frame bundle
of S~, it achieves a maximum in the interior of S~. At such a point,

and

Hence

By using (6.5), we can prove the concavity of u by the method of con-
tinuity. In fact, we can find family Dt and Yt so that and 7i = V.

Furthermore, we may assume Do is a ball in SZ and Vo is a quadratic func-
tion so that by computation, the theorem is valid in this case. In fact,
we can let (1 - t) Yo and ,S2t = and 

Then 

If for t  1, ut is not concave, at the maximum point will be positive
by (6.5). This is not possible if we have a sequence with max 

Hence we have proven the log concavity of fl.
The proof actually shows that
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