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CLASSIFICATION OF GRADIENT SPACE AS s¢(2, C)
MODULE I

By JosepH SampsoN, STEPHEN S.-T. YAu*, and YunG Yu**

Dedicated to Professor Heisuke Hironaka on his sixtieth birthday.

1. Introduction. Let M) be the space of homogeneous polyno-
mials of degree k in n variables x,, x,, . . ., x,. Let us fix a nontrivial
s€(2, C) action on M, (and hence on M%). We shall denote S¥ the
subspace of M% on which s€£(2, C) acts trivially. Let S, = @;~¢ Sk be
the graded ring of invariants. The main object of the invariant theory
is to give explicit description of S, in case s€(2, C) acts on &y, M via

ad
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d
T=(n- l)x.a—xI +(n—3)x,

bt (~(n- 3))x,,_,a—x%+ (= (n— 1))x,,£"

ad ad
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This situation is identical with the theory of binary quantics, which was
diligently studied in second half of the nineteenth century. It is an
amazingly difficult job to describe S, explicitly. Complete success was
achieved only for n = 6, the cases n = 5 and 6 being one of crowning
glories of the theory. Elliott’s book [E1] has an excellent account on
this subject. In 1967 Shioda [Sh] was able to describe Sy explicitly.

In [Yal] and [Ya2], the second author developed a new theory
which connects isolated singularities on the one hand, and finite di-
mensional Lie algebras on the other hand. The natural question arising
there is the following. Let f be a homogeneous polynomial of degree
k + 1 in n variables. Consider the vector subspace I(f) spanned by
aflox,, aflax,, . . ., df/ox,. Give a necessary and sufficient condition
for I(f) to be a s€(2, C) submodule. If I(f) is a s€(2, C)-submodule,
give a complete classification of /(f) as s€ (2, C)-module. Here we con-
sider all possible s€(2, C) actions on C[[x,, . . ., x,]] via derivations
preserving the m-adic filtration. In [Ya4], the second author first observe
that if f € Sk*' is an s€(2, C) invariant polynomial, then I(f) is a
s€(2, C)-submodule. In this paper we shall only consider the s€ (2, C)-
action given by (1.1). In [Ya4], the second author proved that for n <
5,if I(f) is a s€(2, C) submodule, then I(f) = (n) and f is an invariant
polynomial, where (n) is an n-dimensional irreducible representation of
s€(2, C). The main purpose of this paper is to generalized this result.

Main THeoreM. For n = 2, let f be a homogeneous polynomial
of degree k + 1 = 3. If I(f) = (3f/dx, 0f/0xs, . . . , Of/dx,) is a s€(2,
C) submodule with respect to (1.1), then I(f) = (n) and f is an invarient
polynomial. Moreover X, af/ox, = —i(n — i) 0f/ox,.1, X_ dflox; =
—af/ox,.,, and 7 3f/ox, = —[n — (2i — 1)] 3f/ax; where we denote
aflax, = 0 and af/ox,., = 0.

In a subsequent paper we consider all possible reducible s€¢(2, C)
actions (i.e. all possible s€ (2, C) actions other than (1.1)). We are able
to classify I(f) as s€(2, C) module. After completing the proof of the
above results, the second author conjectured that the special case of
our results can be generalized to other simple Lie algebras. This was
finally proved by George Kempf, although his proof is somewhat com-
plicated. The second author has applied the above results to prove the
Lie algebras that he constructed from isolated hypersurface singularities
(cf. [Yal]) are solvable (cf. [Ya5]). This depends on the observation
that the variety defined by s€(2, C) invariant polynomial f is highly
singular. As a consequence, the statement Theorem 1(a) of Kempf’s
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paper [Ke] is vacuous. On the other hand, we do not know yet any
application of his theorem other than the s€ (2, C) case. The proof of
our main theorem is very elementary. We only make use of the clas-
sification theorem of s€(2, C) representations which can be found for
instance in Samelson’s book [Sa]. Thus anyone can understand our proof
easily.

The second author gratefully acknowledges the support from the
University of Illinois and Johns Hopkins University while he was on
leave from University of Illinois and visiting at Johns Hopkins Univer-
sity. He would also like to thank the N.S.F. for its support. The third
author would like to thank the N.S.C. for its support.

2. Notations and some lemmas. In this paper, we assume that
s€(2, C) acts on the space of homogeneous polynomials of degree k& +
1=3inx,x,...,x,1n=2by

n . a
T = 2. [n — (20 — 1)]x,a—Xi

ad ad
- Dx,— + (n - —
(n )x o, (n — 3)x, o

o == D~ [~ = D]

axnal axn
n—1 a
X, = a i Xi
= axl+|
d d d
= X + asXx; + -+ a,-1Xn-2 + ApXp—
axz ax} axn -1 axn
where a,, . . . , a, are positive integers.
n—1 a
X— = E blxi+l o
i ax

ad a ad ad
=bx,— + b X3— + -+ + b,,— Xy — + bn— Xn 7
12 aX| > axz : : axn~2 : axnal
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where b,, . . ., b,_, are positive integers.

The weight of x, is given by the corresponding coefficient in the
expression of 7 above, i.e.,

wt(x) =n - Qi-1) i=12,...,n

Assume I = <af/ox,, af/ox,, . . . , af/dx,> is a s€ (2, C) module, where
f is the homogeneous polynomial of degree £ + 1. In the following we
write f = 27 _.. fi.1, where f;., is a homogeneous polynomial of degree
k + 1and weightj. If I = (m), m-dimensional irreducible representation
of s€(2, C), then by the classification theorem of s¢(2, C), we know
that af/ox;, i = 1,2, ..., n, is a linear combination of homogeneous
polynomials in I of degree k and weight m — 1, m — 3, ...,
—(m - 3), —(m — 1).

In what follows, if D, and D, are two differential operators, we
shall denote [D,, D,] = DD, — D,D, the commutator of D, and D,.

LEmMA 2.1.

(a) If g = 2g' € I, where g' is of weight i, then g' € I, Y i.

(b) [0/ox;, X+] = aj41 0/3x;41, for i = j = n. Here we denote
an+l = O

(c) For any i, 3lox; (X fis1) € I, wherei<j<nand € = 0.

(d) [8/ox;, X_] = b,_, dlox,_, for i = j = n. Here we denote
b(] = 0

(e) Forany i, 3/dx; (X" fis1) E I, wherei=j=<n,£=0.

Proof. (a) Since g € I and [ is a s€(2, C)-module, we have
g=23g'€el
(g =2igel
@) =2rg el

(@) =2i"g' eL

Because the Vandermonde matrix is invertible, we have g' € I, V i.
(b) and (d) These are immediate.
(c) We shall prove this by induction on €. For £ = 0, this follows



CLASSIFICATION OF GRADIENT SPACE 1151

from (a). Suppose that 9/0x; (X4 'fi+,) € I for anyiand 1 < j < n. By
(b), we have the following equation.

d . d
=X firr = Xo — (XS foen) + @
axj +fk+l + axj( fk+|) j+1 axj-“

X by 'f e ).
Since / is a s¢ (2, C)-module, the right hand side of the above equation
is in I by induction hypothesis.

(e) The proof is similar to that of (c). Q.E.D.

LEMMA 2.2.

(a) If X", fiz%lox. depends only on x, variable, then dX', fi37/0x,
= 0.

(b) If X', fi% depends only on x, variable, then X', fi ;2 =

(c) If aX " fir2ilox, depends only on x, variable, then dX" fi13/dx,

(d) If X " fi*X depends only on x, variable, then X"_ fi}% = 0.

Proof. (a) Since aX', fi3%/dx, € I by lemma 1(c), —(n — 1) =
wt(3X", fiz3/0x;) = n — 1. Recall that wt(x,) = n — 1. Therefore, if
wt(0X', fizdilox) < n — 1, then clearly X' fiz3/0x, = 0. Since
X', fi2lax, depends only on x,, if wt(dX", fiz%/dx.) = n — 1, then
X", fiz’lax, = cx, where c is a constant. As k = 2 by assumption, we
have ¢ = 0.

(b) If X’, fi-% depends only on x,, then so is d.X", fi3’i/dx,. By (a),
X", fi2lox, = 0. This implies X', fiz5 =

The proofs of (c) and (d) are 51m11ar to that of (a) and (b)
respectively. Q.E.D.

LemMA 2.3.  Let g be a homogeneous polynomial

(a) Suppose X. g = 0. If dgloxg # 0, then og/ox; # 0 for all 1 =

j=B
(b) Suppose X_ g = 0. If aglaxg # 0, then dglox, # 0 for all B <
j=n.
Proof.
0= X.g=X, 98 +a3£

xg_, xg_, axg
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The above equation says that if 9g/dx; # 0, then dg/ox_, # 0. Statement
(a) follows immediately by induction.
(b) Similarly, statement (b) follows from the following equation.

X g=x. %8 14 %

0=
axB.H 6x3+. Bxg.

Q.E.D.

LemMMA 2.4. Let g be a homogeneous polynomial. Suppose
X.g =0

(a) If agloxg = 0, then dglox, = 0 forall B =j = n.
(b) If 3%glox,oxg = 0 and 9°g/ax,.,dx; = 0, for all B < j < n, where
1= ¢ = n, then 3g/oxdx, = 0 forall B =j =< n.

Proof. (a) 0 = d/oxg X+ g = X, 3g/ldxg + ap. 9g/dxg.1. The
above equation says that if dg/dx, = 0, then dg/dx,., = 0. Statement
(a) follows immediately by induction.

(b) Differentiate the above equation with respect to x, variable.
We have

2 2 2

9’8

0=X + A+ g .
* 9x,0xp ! 0X (41 0Xp Bt 0X¢0Xp 4

The above equation says that if 3°g/dx,dxs = 0 and 3°g/dx,.,0xs = 0,
then 9°g/dx.dxg,1 = 0. Statement (b) follows immediately by
induction. Q.E.D.

3. Proof of the Main Theorem. We begin with special cases of
the Main Theorem.

THEOREM 3.1. Assume that I = <3f/dx,, af/dx,, . . . , f/dx,> is
a st(2, C)-module, where f is a homogeneous polynomial of degree
k+ 1, k=2 IfI = (p) where p < n, then f is a s€(2, C) invariant
polynomial and I = (n). Moreover X . (3f/0x;) = —ais, 3f/0xi11, X (3f/
ax) = —b,_, 9f/ox,_ and v(3f/ox;)) = —[n — (2i — 1)] of/dx, where
1 <i = nand we denote a,., = 0 = b,.

Proof. Let f = =7 _. f where f/ is a homogeneous polynomial
of degree k + 1 and weight j. We shall prove by decreasing induction
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on j that X', f~% = 0 for all j > 0 and i = 0. Observe that for j = 2
n—-1)+1

i =20
WtaXc;f =2 -D+1-(-1)=n foralll=€¢€<n
X
y—2i
:>6_X1+‘f“"=0 foralll = ¢ =<n
ax,
> X, 7 =0.

Now suppose that X', (f/~*) = 0 for all i = 0 and j = m. We are going
to prove that X’ (f"~'%) = 0 for all i = 0, provided m > 1.

Suppose that X', f~'~% depends only on x;, x5, . . ., X, Since
m—1>0,wt(dX’, f*~'"%/3x,) =m — 1 + (n — 1) > n — 1. Therefore,
axX, fm'"%ax, = 0, i.e., X', f*~ '~ is independent of x, variable. Thus
1 = a = n — 1. We claim that aX’ f"~'"*/ox, = 0. For if
aX, f'"%lax, # 0, then aX', f"~'"%¥/ax; # 0 for 1 = j < a by lemma
2.3(a) since X, (X', f"~'"*) = X[f'fr+1720+0 = ( by induction hy-
pothesis. Now for 2 = € < o, wt(X_aX% f"'"%ox) = m — n + 2¢
— 4 = wt(aX", f"'"%/ox,_,). Since by hypothesis I = (p), the vector
subspace of I with weight m — n + 2€ — 4 is of dimension one. There
exists a constant ¢, such that

aXi m~1-2 aXl m—1—2i
X (_f_“) N €% iy
aX( 6x(_|

Differentiate this equation with respect to the x,.,, variable, we have

aZXi+ fm —1-2i aZXi+ fm —-1-2 _ aZXi+ fm— 1-2i
T 910X R TN
Since X', f"~'~* depends only on the variables x,, . . . , X, the above

equation implies

62X1'+ fm—l—Z:

=0 for2 =¢ =< a.
0X, 0X¢
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So aX", f"~'~%/ax, depends only the x, variable. In view of lemma 2(a),
X', f"'"%/9x, = 0. This simply means that X', f"~'~* is independent
of x,. By induction, we see that X", f"~'~* depends only on x,. In view

of lemma 2.2(b), we have X', f"~'~* = 0. This completes our induction
step. Hence we have shown

@) X,fir*=0 forallj>0andi=0
Similarly, we can prove
(**) X f*? =0 forallj<Oandi=0

From (*) and (**), we conclude that f/ = 0 for j # 0. This means that
f is the polynomial f° of weight 0. Notice that

X f=X'f'=Xf72=0
by (*). Similarly,
X_f=0
by (**). In view of lemma 2.3, we know that if f # 0, then df/dx; # 0
for all 1 = i =< n. Since wt(df/ox,) = —wt(x,;), oflox;, . . . , df/ox, are

linearly independent and hence I = (n).
Observe that 0 = 0/dx,(X.f) = X, (of/ox;)) + aiv, 0f/dx;s, fori =

1,2,...,n — 1. So if we denote a,,, = 0, then

J d

X+(—f) = —a,+l——f—f0ri =1,2,...,n

ax,' 8x,»+|

since
af) 9
X+ - = X+ = 0.
(ax,, ax,,( f)

Similarly,

_ 9 af of .
0= X_ =X_ =+ b_, — = L .
6xi( f ox, b, ' fori = 2,3, , n

Xi—1
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If we denote b, = 0, then

X_(a—f) = —b,._,—qji-fori“—‘ 1,2,' -5 hn
ax,' ox;

Xi—1
since X_ (af/0x,) = 9/dx,(X-f) = 0. Finally, 1(af/ox;) = —[n — (2i —
1)] af/ox; because wt(df/ox;) = —[n — (2i — 1)] Q.E.D.

PRrOPOSITION 3.2.  Assume that I = <af/dx,, 0f/9x,, - -+, af/0x,> is

a s¢(2, C)-module, where f is a homogeneous polynomial of degree
k+1,k=2 Thenl# (p) + (p) + -+ + (p,) wheren > p, = p,
Z=Zpn,q=2,py +tprt+ o+ p,=nandp, = [n/2] (i.e., n=2p).

Proof. Suppose I = (p)) + (p2) + - + (p,).- Letf =3~ __. f
where f’ is a homogeneous polynomial of degree k + 1 and weight j.
We shall prove by decreasing induction on j that X', f~* = 0 for all j,
and for all i = 0. Observe that forj=p, + n — 1

wta—X;;f:—_i=j—[n——(2€—1)]2p,+n—1—(n—1)
=pforalll =€ =n

ia—X;;{i—_ﬁ=0 foralll=¢=n

>X. 7 =0.

Now suppose that X', f~* = 0 for all i = 0 and j = m. We are going
to prove that X', (f"~'"%) = 0 for all { = 0. Observe that

X, frE 8 . .
X+ +f — XI:IfI)I—I—Z! — Qesr Xl+ fl)l~l—21
ax ¢ dxe 0X¢41
— a Xi:l m+1=2(i+1) __ i a Xi+ fm—l—Zi
0X¢ 0X( 41

d . .
= —ay Xl+ fm—l—2l‘
0X¢y1
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It follows that there are at most p, €’s such that

. a)(iJr m—1-2i
—(p - I)Swt—({T{—Sp. -1,

so X', f"~'~* depends only on at most p, variables x,. In fact the above
equation implies that X', f”~'~% depends only on x,, x,, . . . , X, Where
1 =< a = p,. Hence 3X", f"'~%/dx, depends only on the variables x,, x,,

., X, where 1 = € = o and 8X" f"'"%/ox, = Oforalla + 1 = ¢
=< n. Since X', f"""Flox, € I, so wt(dX' f" ' "Foxe) = pi — 1
<n—1.Sincewt(x,) =n—-2k+1=n-2a +1=2p, — 2p, +
1 =1foralll <k=aandwt(x;)) =n — 1, so oX, f" ""%ox, is
independent of x, variable, i.e., °X", f"~'"*/dx.0x, = 0. Now we have
FX, "% 9x, ax, = 0 and °X" f" ' ¥oxox, = Ofora + 1 = ¢
= nand 1 = k = n. In particular, *°X", f" ' "%/0x+19x, = 0 and
X', fm'"2ox,0x, = 0 for 1 = k = n. By lemma 2.4(b)
X', f"'"2/9x,dx, = 0 for all 1 = k = n. By induction, we see that
’*X, fm " ¥oxdx, = 0 for all 1 = k = n, 1 = £ = n. Thus
X', f"~'~% = 0. This completes our induction step. Therefore, f = 0
for all j. Thus f = 0 which contradicts degf =k + 1=3.Hence I #

() + (o) + -0+ (py) Q.E.D.

Definition. If two integers are both odd or both even, they are
said to have the same parity; if one is odd and the other even, they are
said to have different parity. N integers are said to have the same parity
if every two of them have the same parity, otherwise they are said to
have different parity.

PROPOSITION 3.3.  Assume that I = (3f/0x,, 3f/0xa, . . . , af/dx,) is
a s€(2, C)-module, where f is a homogeneous polynomial of degree
k+ 1, k=2 Then I # (p) + (p2) + -+ + (p,) where n > p, =
p»=--=p,andq=2,p + p, + - p,=nandp, > [n2] (ie.,
n < 2p,) and p\, p», ‘-, p, have the same parity.

Proof. Suppose I = (p)) + (p2) + -+ + (p,)- Let f =2 . f
where f is a homogeneous polynomial of degree k + 1 and weight j.
We shall prove by decreasing induction on j that X', f~* = 0 for all j,
and for all i = 0. Observe that forj=p, + n — 1
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wta—)%—gj=j—[n—(2€—1)]2p,+n——1—(n—1)=p.
foralll=¢€¢=n

ég%%j=0 foralll=¢€¢=n

> X7 =0,

Now suppose that X', f~* = 0 for all j = m. We are going to prove
that X', f"~'~% = 0. Observe that

aXi+ fnt*l—'li a ) a ) i
‘X"+ — _Xr+l m+1=2(i+1) __ a X m—1—2i
ax, aXx¢ o f o OX¢vi -f
9 ,
= —q ____X: m—l—21.
(+1 e +f
It follows that there are at most p, €’s such that
aXl+ fln—l—2:
— - =wt——m—= -1,
(P ) ax, D

so X', f"~'~% depends only on at most p, x,’s variables. In fact the above
p y 14

equation implies that X', f”~'~* depends only on x, x,, . . . , x, variables
where 1 < a =< p,. If a =< [n/2], then X, f”~'"* = 0 by the argument
of proposition 3.2. If a > [n/2] since pi, p,, . . ., p, have the same
parity, the possible weight of elements in Jare p, — 1, p; — 3, ...,

—p: + 3, —p, + 1. Since p, > [n/2] and p, + p, = n, so p; > p, and
(p1 — p2)/2 is a positive integer. Note that

aXi m—1-2i aX7+ m—1-2i aXl m—1—2i

X, o1 h ax;
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and
a)(i+ m—1-21 axi+ m—1-21 aXi+ m—1-21
wt f , Wt f s e e e, wt—f—-
X, 0Xe_ 1 0x,
g{pl - 1’IJI _3,' .. ’p2+ 17p2_ 1?p2_3,' sy
_(p2_3)’ _(pl_ 1)’ _(p2+ 1)’ SRR
—(p—3), —(p:— D}
Since the cardinal number of {p, — 1,p, = 3,...,p, + 1,p, — 1,

p—3 ..., =(p2=3), =(p» — D}yis(pi = p)2 + p. = (p1 + p)2
=< n/2 < a, there exists kK with 1 < k < « such that wt aX", f"~'~%/3x,
= —(p, + 1). We now claim that X" f" '""*/ox, = 0. If
ax, f"'""*/ox, # 0, then 9.X", f"~'~%/9x, # O for all 1 = € < o by lemma
2.3(a). Note that the vector subspace of I with one of weight {p, — 1,
pr—=3...,po+ 1L, —(po+D,...,=(pr—3), =(p) — D}isof
dimension one. Now for2 <= ¢ < k + 1

aXi+ fm —1- Zi)

wt (X
ax,

¢ aXi+ fm— 1-2:
0X¢_)

eE{-p.+1,...,—=(@ —3), —(pp — D}

There exists a constant ¢, such that

aXi m—1-2i aXl m—1-2i
X_ (.L) =c L
aX( ax(—l

Differentiate this equation with respect to x,., variable, we have

aZX'i+fm—|—2i N (62X1+fm—l—2i) . 62X1+fm—l—21
axaa.Xe N axm+|a‘Xe ¢ ax(,+|BX(_| ’

o
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Since X', f"~'~* depends only on x,, x,, . . . , x,, the above equation
implies

aZXi+ fm —1-2i

=0 forall2 =€ =k + 1.
0X,0X,

In particular, °X", f~'%/9x,dx, = 0. Since °X', "' "2/9xo4,0x, = 0
for 1 = ¢ =< n, by lemma 2.4(b) °X', f"'"*/ox,dx, = 0 for all 2 <
¢ = n. Thus X', f"~'"%/3x, depends only on x, variable. By lemma
2.2(a), aX" f"'"%/9x, = 0. This simply means that X', f"~'~* is in-
dependent of the x, variable. By induction, we see that X', f~'~% de-
pends only on x,. By lemma 2.2(b), X", f"~'~% = 0. This completes our
induction step. Therefore f/ = 0 for all j. Thus f = 0 and hence I #

) + (p2) + -+ + (p). Q.E.D.

THEOREM 3.4 Assume that I = (3f/9x,, 3f/ox,, . .., df/ox,) is
a s€(2, C)-module, where f is a homogeneous polynomial of degree
k+ 1, k=2 Thenl # (p) + (p) + -+ + (p,) where n > p, = p,
=--z=p,andq=2,p, + p, + - + p,=n.

Proof. 1f p, = [n/2], then the theorem follows from proposition
3.2.

If py > [n/2] and p,, ps, . . ., p, have the same parity, then the
theorem follows from proposition 3.3.

If py > [n/2] and py, p, . . . , p, have different parity, then we can
divide py, p, . . ., p, into two subsequences : p; = p;, = --- = p; and
pi, =p, = - p,, where p;,,p,,...,p, have the same parity and
Dj»» Djr» - - - » D;, have the same parity. Since ¢ = 2, s0 is = 1 and j, = 1.

Now suppose I = (p,) + (p2) + -+ + (p,)- Let f = 2~ _. f/ where
f'is a homogeneous polynomial of degree & + 1 and weight j. We shall
prove by decreasing induction on j that X', f~* = 0 for all j and for all
i = 0. Observe thatforj=p, + n — 1

. X', fj—2i

o, =j-rh-2-D]l=zpi+n-1-(n-1) =p,

w

foralll=¢ <n
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L2

$M=O foralll=€=<n
aX(

$ Xl+fj—2i = 0.

Now suppose that X', f~* = 0 for all j = m. We are going to prove

that X', f"~'~* = 0. Note that wtdX", " '"%/ox,, £ = 1,2, ..., n
have the same parity. Suppose wtoX', " '"*/ox, € {p, — 1,
pi,— 3, ..., =, —3), = (p, — 1)}. Consider the following two
cases.

Case 1. 1fis = 1, since p;, < n, so X' f"~'"* = 0 by the similar
proof of Theorem 3.1.

Case 2. 1If is = 2 then X', f"~'"* = 0 by the similar proof of
proposition 3.2 or proposition 3.3 according to p, = [n/2] or p; >
[n/2].

Similarly, we can show that X,f"'"* = 0 if
WtaX' "~ lax € p, = L p, = 3, ..., ~(p, — 3, ~(p, — D}
Thus in any case, we have X', f”~'~% = 0. This completes our induction
step. Therefore, f = 0 for all j. Thus f = 0 and hence I # (p\) + (p2)
+ -+ (p)- Q.E.D.

THEOREM 3.5. For n = 2, let f be a homogeneous polynomial of
degree k + 1 = 3. If I(f) = (3f/ox,, af/dxa, . . . , 8flox,) is a s€(2, C)
submodule with respect to (1.1), then I(f) = (n) and f is an invariant
polynomial. Moreover X . df/ox; = —i(n — i)of/dxi1, X-df/ox; = —af/
ox,_ and 7(3f/ox;)) = — [n — (2i — 1)] of/ox; for 1 = i = n where 3f/
axo = 0 = af/0x, ...

Proof. This follows immediately from Theorems 3.1 and Theorem
3.4. Q.E.D.

JOHNS HOPKINS UNIVERSITY
UNIVERSITY OF ILLINOIS AT CHICAGO
NATIONAL CHENG KUNG UNIVERSITY, REPUBLIC OF CHINA
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