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1. Introduction 

Let (9,+1 be the ring of germs of holomorphic functions (C ~+ 1, 0 ) ~  C. There are 
many important equivalence relations that have been defined on the elements of 
(9+ 1. ~ ' ,  ~s and ~f-equivalence are well known in function theory. Each 
of these equivalence relations can be defined in terms of a Lie group action on 
(9 +1- For instance two functions are defined to be ~-equivalent if they are the 
same up to a holomorphic change of coordinates in the domain. In this case the 
Lie group acting on (9+ 1 is the group of all holomorphic change of coordinates 
preserving the origin. Simple complete characterizations of when two functions 
are ~'-, ~L,r or J~f-equivalent were given by Yau I-9] and by Mather and Yau 
[6]. 

.~_, ~t_, and ~-equivalence come from singularity theory. These equivalence 
relations are defined on the basis of algebra isomorphisms. For example, we can 
associate a C-algebra (9,+ JA(f), the Milnor algebra, to any fE(_9, + 1, where A(f) 
is the ideal in (9,+ 1 generated by the partial derivatives of f.  We say that two 
functions are S-equivalent if their associated Milnor algebras are isomorphic. 

It is an interesting question to determine the relationships between these six 
equivalences. The goal of this paper is to study these relationships. For  a 
holomorphic function f with a critical point at the origin, we determine when the 
equivalence classes o f f  with respect to two different equivalence relations coincide. 

The purpose of this paper is two-fold. On the one hand, we give a necessary 
and sufficient condition for ~ - e q u i v a l e n c e  to coincide with ~-equivalence (cf. 
Theorem 5.1). This leads us to define the new notion of almost quasi-homogeneous 
functions. We suspect that the singularities defined by almost quasi-homogeneous 
functions may form a distinguished class of singularities which have some special 
properties shared by quasi-homogeneous ones. 

In Sect. 6, we discuss the relationship between .~- and ~r Perhaps 
the most striking result here is Theorem 6.9, which provides us a lot of examples 
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with two holomorphic functions having isolated critical points at the origin and 
the same Jacobian ideals, but their zero sets are not biholomorphically equivalent. 
We also give an example (cf. Example 6.8) such that 

~ ( f )  ~ ~'Ae(f) ~ o,-f(f) 

.~(f) 
with .~(f) ~ .,~(f) and ~,V'(f) ~ .~(f). This answers a question raised by G . M  Greuel, 
who asked whether such functions exist. The computation of this example is 
extremely difficult, if not impossible, by hand. We have developed a computer 
program which allows us to check all of the equivalence relations. The examples 
show the effectiveness of our criteria in checking whether the equivalence classes 
coincide or not. 

In Sect. 7, we explain how the computer programs work, and how they can 
be used to compute generators of the modules and ideals discussed in this paper, 
including a(f), which is an important notion in Z-equivalence. 

The results mentioned above, together with results obtained in [6,8-10-1, 
complete the solution of the problem of determining the equivalence between 
isolated hypersurface singularities began in the sixties. On the other hand, since 
the problem is completely solved and the method here can prove the previous 
results as well, we also give a complete and self-contained account of the 
relationship between these equivalences. Our methods are elementary and easy to 
comprehend. Development of important tools such as computations of the tangent 
spaces to the orbit manifolds by Mather I-4, 5] and Shoshitaishvili 1"8] have been 
included here to assist the reader. 

2. The hierarchy of equivalence relations 

Let d;+~ denote the ring of germs at the origin of holomorphic functions 
f : (C n§ ~,0l--+ C. (gn+ 1 has a unique maximal ideal m,+ ~ consisting of the germs 
of holomorphic functions which vanish at the origin. Let G,+~ be the set of germs 
at the origin of biholomorphisms ~b: (C" + 1,0) ~ (C" + t, 0). G n + ~ can be made into 
a group by using composition of map germs for the group operation. 

Definition2.1. Two germs of holomorphic functions f ,g: (C"+I,0)~(C,0)  are 
called right equivalent if there exists a ~beG,+ l such that f = goq~. We use the 

notation f ~ g to denote right equivalence. 
The group ~i'= Gn+~ acts on rn,+ 1 by composition on the right. The right 

equivalence classes are the orbits of this group action. The orbit of fern ,+ 1 is 
denoted by 

Jl(f) = {g~m,+ 11g • f } 

Definition 2.2. Two germs of holomorphic functions f ,  g:(C" + i, 0) +(C, 0) are 
called right-left equivalent if there exist ~eG,+~ and ~b~G1 such that f = ~,ogoq~. 

The notation f ~ g is used to indicate right-left equivalence. 
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Right-left equivalence also arises from a group action. The group 
~.~a = GI x G,+I  acts on +%+1 by composing on the left with the G1 component 
and on the right with the component from Gn+ 1- These orbits are denoted by 

llg"~ f}  ~ v ( f )  = {gem,+ RL 

Definition 2.3. Suppose f ,  g:(C ~+ 1, 0)--* (C,0) are holomorphic map germs, f and 
g are called contact equivalent if and only if there exists a germ of a biholomorphism 
H:(C" + 2, 0) --+ (C" + 2, 0) such that 
a) H(C "+~ x {0},0)=(C "+ '  x {0},0) 
b) H(graph f )  = graph g 

The notation f c 0 is used to indicate contact equivalence. 

The contact group ~ was first defined in the C ~ category by Mather 1-4]. For 
each pair of positive integers (n,p) he associated a group o f  of germs of C ~~ 
mappings. Much later Mather and Yau I-6] defined the holomorphic analog 
associated with the pair (n + 1, 1) which we are interested in here. 

Definition 2.4. The contact group ~ consists of those germs of biholomorphisms 
H: C" § 2 _+ C n + 2 for which there exists a holomorphic map h :(C" § 1,0) ~ (C" + 1,0) 
such that the following diagram commutes 

( c . + 1 , o )  , (C .+2 ,o )  ~ ( C ~ + 1 , o )  

( r  , ( c . + 2 , 0 )  . . ( c~+1 ,o)  

where l(z o . . . . .  z.) = (Zo . . . . .  z., 0) and 7r(zo . . . . .  z., w) = (s . . . . .  z.). The group 
operation is composition. 

This condition can be stated alternately. It says that H(z o . . . . .  Z.+l) can be 
written in the form (h(z o . . . . .  z.), k(zo . . . . .  z.  + 1 )) where h:(C n + 1 0) ~ (C ~ + 1,0) is the 
germ of a biholomorphism and k:(C"+i ,0)~(C,0} is the germ of a holomorphic 
map with the property that k(z o . . . . .  z.,O) = O. 

We can now give the action of the group ~ on m,+ r If He) ["  and f a m e + l ,  
then g = H f  is defined by the equation 0 = k~ ~  It  is easy to check that 
elements of tP~ + 1 are contact equivalent if and only if they lie in the same JK-orbit. 

The ~ - o r b i t s  are denoted by 

JK(f)  = {gem.+ llg c f }  

Contact equivalence is important because it turns out to be very geometric. 
The following proposition, due to Mather [5] in the C ~ category and later 
appearing in [6], explains its significance. 

Proposition 2.5. Let (V, 0) and (W, 0) be germs of hypersurfaces in C ~ + 1 defined by 
f, g~mn+l respectively. Then f and g are in the same :/Y-orbit if and only if  the germs 
(V, O) and (W, O) are biholomorphically equivalent. 
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Proof. First, supposefand  g are in the same Jl-orbit .  Let H be an element of o,~ 
such that H (graph f )  = graph g. Then the following set germ equalities hold. 

h-  I(W) = h - 10- , graph g) = t - I(H - 1 graph g) = t -  l(graph f )  = V 

This shows that h provides a biholomorphic equivalence between (V, 0) and (W, 0). 
Now suppose that (V,0) and (W,0) are biholomorphically equivalent. Let 

h:(Cn + 1, 0)---, (C n +1,0) be a germ of a biholomorphic mapping such that h(V) = W. 
Then there is a unit us6 ,+  1 for which f = u(goh). Define H:(C'+2,0)"+(Cn+2,0) 
by H(z,w)=(h(z),u-l(z)w) where zeC "+1 and w~C. Then H = ~ f  ~ and 
n(z, f(z)) = (h(z), u-  l(z)f(z)) = (h(z), go h(z)) for z = (Zo . . . . .  z,), so n (graph f )  = 
graph g. 

For any femn+ 1 we define the Jacobian ideal A(f )c (9 ,+  1 to be the ideal 
generated by the partial derivatives o f f .  The C-algebra (9,+ j A ( f )  will be called 
the Milnor algebra associated to f .  When f = 0 defines an isolated singularity at 
the origin, then the dimension of (9~+l/A(f), considered as a C-vector space, is 
the topological invariant/~, the Milnor number of the singularity. 

Definition 2.6. Two holomorphic germs f ,  g:(C n+ 1, 0) ---, (C, 0) are .~-equivalent if 
there is a C-algebra isomorphism of Milnor algebras (9,+ JA(f)~_ r jA(g). We 
also introduce the notation 

.~(f) = {g~m, +1 ](9, + l /A(f)  ~- (.9 + JA(g) } 

The C-algebra r + J( f ,  el(f)) is called the moduli algebra. This name is a natural 
choice because, considered as a C-vector space, it is the base space for the miniversal 
deformation of the singularity defined by f = O. 

Definition 2.7. Two holomorphic germs f ,  g:(C n + 1,0)-+ (C, 0) are ~r if 
there is a C-algebra isomorphism of moduli algebras d~, + i/(f, A(f)) ~_ (9, + 1/(g, A(g)). 
We will use the following notation for the ~-equivalence classes. 

a t ( f )  = {g ~m, +11(9, +l/(f,  A(f)) ~_ (gn + t/(g, A(g))} 

Definition 2.8. Two holomorphic germs f ,  g:(C "+ 1, 0) ~ (C, 0) are 2-equivalent if 
there is a C-algebra isomorphism 6n+ j ( f ,  m,+ iA(f))  ~ 0 ~+ l/(g, m, + 1A(g)). The 
h-equivalence classes are denoted by 

~'(f)  = { g ~ m, +11 (9, +l / ( f~  m ,  + 1 A( f ) )  __. (gn + 1/(g' mn +1 A(g)) } 

Proposition 2.9. The diagram shown below gives some of  the relationships between 
the different equivalence classes. 

~l(f) c_ ~._~(f) ~_ J l ( f )  ~_ ~r 

Ill Ill 

.~(f) ~( f ) .  
Proof. The inclusions ~ ( f )  _ ~ L f  ( f )  __ .,~f(f) hold because there are correspond- 
ing embeddings of the groups which respect the group actions. The embedding 
~ c . . ~ . ~  is given by g~+(id, g), while ~.L~' ~-.-~ 3g" is defined by (v,h)~-+H, where 
H f  -- (id, vo f)o h. 

To establish that ~s c .~(f) we will use the following lemma. 
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Lemma 2.10. Suppose f :(C" + 1, 0) ~ (C, 0) is a germ of a holomorphic function and 
y = (~b, q~) is an element of ~ .  Let ~b*:d9 + 1 ~ ~,+l  be the pullback map given 
br f ~ f o~. Then qb*A(f) = d(Tf). 

Proof. According to the chain rule, 

d~,f dz, (fo~b) j 

This shows that A(yf) _ ~b*A(f). For the reverse inclusion, we use the hypothesis 
that both ff and 0 are biholomorphic at the origin. This means that the derivative 
d~b/dz and the Jacobian matrix Dq~ = (dck~/dzi) have inverses. Let (c~) be the inverse 
of D~b. Then 

verifying the opposite inclusion. []  

Suppose that g ~  (f). Then there exists 7~L ,e ,  ~ = (~k, ~b) for which g = ~f. 
Now ~b induces an isomorphism ~b*:(9,+1~(_9,+ 1. According to Lemma 2.10, 
e~*A(f) = A(g). This means that ~b* induces an isomorphism of the quotient rings, 
so g~.~(f). This proves the inclusion ~ ( f ) ~ _  .~(f). 

The inclusions i t ' ( f )  ~ ~r and ~ff(f) ~ g ( f )  follow from the next lemma in 
a similar manner. 

Lemma 2.11. Suppose f ,  g :(C" + l, 0) ~ (C, 0) are germs of holomorphic functions 
which are contact equivalent, that is, g = u(focb) for some u a unit and dp a 
biholomorphic change of coordinates. Then the following equations hold. 
a) ~b*(f, A(f))  = (O, A(g)). 

b) ~b*(f, m.+ ifl(f)) = (g, m.+ ifl(g)). 

Proof. Let g' = f o ~b. Applying the product rule to g = ug' we get 

(2.12) c~g c~u , ~g' 
Oz + 

showing that (g, A(g)) ~_ (g', A(g')). Performing the same computation except with 
a and g' interchanged, and u replaced by u-1 proves the opposite inclusion. Thus 
(g, Z~(g)) = (g', a(g ' ) ) .  

Using Lemma 2.10, (g', A(g'))= ~b*(f, A(f)). Combining the two equations 
proves a). The proof of part b) is very similar. []  

3. Finite determinacy 

For any f ,  ged~.+ 1, we say that f and g have the same k-jet at the origin if their 
derivatives at the origin agree up to order < k. The k-jet f(k) is the equivalence 
class of all ge(9.+ 1 which have the same k-jet as f .  

Definition3.1. Let fed),+ 1 and let f~ be a group which actrs on d~.+l, f is 
k-determined relative to ~ if for any g e e .  +1 such that 0 (k) = f(~, the f~-orbit of f 
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contains g. We say that f is finitely determined relative to f# if f is k-determined 
for some positive integer k. 

The following theorem shows that the notion of finite determinacy can be 
expressed in both algebraic and geometric terms. We will use the notation f - lm~ 

to represent the module consisting of all elements of the form ~ a~fi where ~ ait i 
i = 1  i = l  

is a convergent power series vanishing at zero. 

Theorem 3.2. Let (V,O) be the germ of a hypersurface in C "+1 defined by f = O. The 
following conditions are equivalent. 
a) V\{0} is nonsingular. 
b) O~+ l/(f ,  A(f)) is a finite dimensional C-vector space. 
c) ~,+ t/(f, m~+ lzl(f)) is a finite dimensional C-vector space. 
d) d~,+ l / f - l i n t  + m,+ 1A(f) is a finite dimensional C-vector space. 
e) ~ +  ~/A(f) is a finite dimensional C-vector space. 
f) •,+ 1/m~+ iA(f)  is a finite dimensional C-vector space. 
g) f is finitely determined relative to ~ .  
h) f is finitely determined relative to ~.~c~'. 
i) f is finitely determined relative to ~.  

Proof. The chain of inclusions m n + i A(f)  c f-~m~ + m, + t A( f )  ~ (f, m~ + 1A(f)) c 
(f, A(f)) implies that f) =~ d) =~ c) =~ b). Similarly, the inclusions m, + ~ A(f )  c A( f )  c 
(f, A(f))show that f)=,e)=~b). 

When b) holds, then there exists some positive integer N so that m~+ 1 c (f, A(f)). 
But then V(f, A( f ) )= {0}. This shows V\{0} is nonsingular, and so b)=:-a). 

To prove a)=:-d), we use Hilbert's NullsteUensatz. If a) holds, then mn+aA(f) 
must be m, + :primary. This means that for some positive integer N, 
m,§ ~ ~ m~ + ~A(f). But then C, + ~/m, + I A( f )  is a finite dimensional C-vector space. 

This shows that the first six conditions are equivalent. The work of Mather 
[41, Theorem 3.5, p. 293 shows that g)ob) ,  h)od) ,  and i)r His paper uses 
notation that is somewhat different from that which is used here because the results 
were proved in the C OO category, and they were stated somewhat more generally. 
Nevertheless in Section 9, p. 307-308 he shows that they are also valid in the 
complex analytic category. [] 

The hypothesis that f is finitely determined simplifies the diagram in 
Proposition 2.9 showing the relationship between the different types of germ 
equivalence. The notions of ~f-, .at'-, and at-equivalence turn out to be exactly the 
same. This is the content of the following theorem of Mather and Yau [6]. 

Theorem 3,3. Suppose f ,  o :( C" + 1, 0) ~ (C, 0) are holomorphic function with isolated 
critical points at the origin. The following statements are equivalent. 
a) f ,  O are X'-equivalent 
b) f ,  ft are s/-equivalent 
~f) f ,  O are at-equivalent 

We will not prove this theorem here, but many of the techniques used in its 
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proof appear in this paper. The rest of this section is devoted to the computation 
of the tangent spaces to the k-jet orbits. These results will be used frequently in 
the sections which follow. 

Let dk be the set of k-jets at the origin of elements of (9,+ 1. jk has a natural 
complex analytic structure obtained by using the Taylor series coefficients as 
coordinates. For each of the groups ~ ,  ~ ' ~ ,  and Jff, let ~k, :~L:,k, and .,~ffk denote 
the respective sets of k-jets at the origin. They are complex Lie groups which act 
on jk. 

For any r e ( 9 +  1 we use the notations ~tk(f), JlL~'k(f), and ~ k ( f )  to stand for 
the orbits of ftk) with respect to ~,k, ~ ,  and ~k .  

Theorem 3.4. Let f : (C  "+ 1 , 0 ) ~ C  be the germ of a holomorphic function with an 
isolated singularity at the origin. Then ~k(f),  ~lL/,k(f), and ~ffk(f) are complex 
analytic manifolds. The following C-vector space isomorphisms exist between their 
tangent spaces at ftk) and subspaces of jk. 
a) T/(~k(f)) ~_ m.+ 1d(f)J k 
b) Tf (~ ,L /~k( f ) )  "~ ( f  - l m  I + m . +  iA(f))dk 
c) Ty(Jf*(f)) ~- (f, m,+ 1A(f))J k 

Proof. It is well known that the orbits of a Lie group fq acting analytically on a 
complex manifold M are submanifolds so we only need to compute the tangent 
spaces. 

Let nz be the map which takes any element of j k  and sends it to the values of 
its k-th order Taylor approximation at z. Each of the three isomorphisms a)-c) 
arises from the map which takes a tangent vector v and assigns it to ~b(z) = v(nz)EJ k. 
It is clear that this map is a homomorphism. It is injective because the images of 
v on the coordinate functions of jk are just the Taylor coefficients at the origin 
of ~(z). If v(nz) = 0 for all z, then v applied to the coordinate functions must be 
zero, so v would have to equal zero as well. We must calculate the image of this 
map for each group ~k, ~L~ak, and o,~ff * separately. It should be understood that 
all of these computations are to be performed modulo mk§ ~. 

We start with the case when fq = ~k. For  any tangent vector v there exists a 
germ of a holomorphic curve Yt in ~k(f)  through f<k~ such that 

, ,  dgo~, l  
 tg, = 

for all germs of maps g:.~k(f)---* C. Now 7, can be lifted to a curve ~Tt in ~t 'k, such 
that ~,, = f ~ and 

t~rrz) = d f  o~, 
dt t=o 

~, Of,:. ~.~,.~ 
~" l~ "~-'-WOJgt It= 0 

i=o czi  

But Yo is the identity and ~t(O) = O, so each component of ff'~l~= o is in m.+ ~. Therefore 

~(~,)~m.§ 
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On the other hand, suppose that c ~ m , + l A ( f ) ,  q~= ~o~,Ozl with ~,~m,+ 1. 

Define a holomorphic family of k-jets by yt(Zo . . . . .  Zn) = f (Zo + t~o(Zo . . . . .  Z.) . . . . .  Z~ + 
t~.(Zo . . . . .  Zn)). In a neighborhood of the origin, this is a curve in ~k(f) through 
f~k) whose tangent vector at the origin maps to q~. 

When ff = ~ f k  the argument is similar, but the lifting of the curve Yt is given 
k 

by the equation 7, = ~,~176 Expand ~, in a Taylor series ~t = Y', tP~t i'zi- Then 
i = 0  

k 

7t = ~ (Ol"(f~ ~. Here is the computation of v(G) in this case. 
i = 0  

,=o -~-I,=o ,=, ~i- ,=o 

The first term is clearly in f-~m~ and second one is in m.+~A(f)  according the 
computation made in the previous paragraph. Now we prove that all elements of 

k 

( f - l m  1 + m.+ iA( f ) )J  k are images of tangent vectors. Suppose th = ~ ~t~)fi + j/, 
i = 1  

qem.+ 1A(f). We only have to check that ~ ~")f~ is the image of a tangent vector, 
i = 0  

because we have already proved that r/ corresponds to a tangent vector of 
k 

~ ( f ) _  ~L#(f). Define y, by ~ (1 + t~(~ i. This is a curve in ~pk( f )  through 
i = l  

k 

f~k~ with a tangent vector that maps into ~ ~t:lf~. 
~=0 

Finally when ff = jgk we can use Proposition 2.5 to the lift the curve ?, to 
Yt = ut(f ~ ~t). v(Tr~) can be computed as follows 

V(~z ) = d~, ~, Of ( ,  , d~, t 
dt ,=o + aO,bo  wT/I,:o 

Using the same reasoning as in the computation of the tangent space of ~ ( f ) ,  
v(G)~(f, m. + ~A(f)). To see that all members of (f, m. + a zl(f)) are images of tangent 
vectors, we take a general element ~b = u f  + rt where qem.+ 1A(f). As above, it is 
only necessary to show that u f  corresponds to a tangent vector. For this, define 
y, by (1 + tu)f. This is a curve in ~r through f~k~ with a tangent vector that 
maps to uf. [] 

We want to look at the jet version of .~-equivalence as well. Let 
. ~ ( f )  = {g(*)[6 n + a/d(f)  + mn+ ~ ~- (~. + Jd(g)  + m, + k }, ak(f) = {g(~){ A(g) ~ A( f )  + 
m, + ~}, and Ak(f) = (ak(f) + m n + ~d(f))J ~. The following result, due to Shoshitaishvili 
[8], gives the structue of the .~k-equivalence classes. 

~ r e m  3.5. Let f : (C"+~,0)~(C,0)  be the oerm of  a holomorphic function with 
an isolated sinoularity at the orioin. Then .~k(f) is a complex analytic manifold and 
its tanoent space at f ~  is isomorphic to the vector space Ak(f). 

Proof. ran + ~ 2jk is the subspace of jk  consisting of k-jets of holomorphic functions 
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with singularities at the origin. Let L be a vector subspace of ak(f) complementary 
to (ak(f)c~ m~ + 1A(f))J k and M be a vector subspace of m, + 12J k complementary to 
Ak(f). Within ~k let T be a local transversal through the identity to the subgroup 
which fixes ftk~. 

Define a mapping tk :L x M x T ~ m n + 12jk by ~b(/, m, t) = (I + m + f(k)) o t. From 
the way L and M were chosen, L x M is transverse to the tangent space of ~k( f )  
at f  tk~. For this reason, the differential ~b. at (0, 0, id) is an isomorphism. The inverse 
function theorem implies that locally the map ~b is biholomorphic. 

We want to prove that there exist neighborhoods U o f f  (kl in mn+ 12J k, V of 0 
in L, and W of the identity in T for which Uc~.~k(f)= ~b(V x {0} x W). This will 
show that ~k(f) is a manifold in the neighborhood o f f l  k) and also that its tangent 
space is Ak(f). The following lemma is used to construct U. 

Lemma 3.6. There exists a neighborhood U' of the origin in L x M for which 
(f(k) + U,)~.~k(f) = (f(k) + U,)c~(f(k) + L). 

Proof. Let 8 k be the vector space of k-jets of holomorphic mappings 
(C" + 1, 0) ~ (C" + 1, 0). The gradient map V:m, + 12jk _~ ~vk- 1 given by h~--~ Vh is linear 
and one-one. We are going to use this embedding of ~k(f) in ek-1 to study its 
the local structure. 

The theory developed by Mather [4], [5] is more general than has been 
presented here, and in particular it applies to the elements of ~k. Proposition 2.5 
also generalizes, as found in Mather [5], Theorem 2.1. In this formulation it implies 
that if f and g are ~k-equivalent, then Vf  and V q are ~ k - 1  equivalent. 

Thus the image of ~k(f) under the gradient map is contained in J~rk-l(Vf). 
Let ~k-1 be the tangent space to ~ k - l ( V f )  at Vf. The computation carried out 
in Theorem 3.4c generalizes to this case as well, see Mather [4], Theorem 7.4a. 
Each tangent vector in ,~k- t can be written in the form H f . v  + B Vf modulo m,+ 1 k 
where H f  is the Hessian matrix, v is any n + 1-tuple of elements of m,+ I, and B 
is any (n + 1) x (n + 1) matrix of elements of (~,+r By using the product rule to 
rewrite this expression, it can be seen that any tangent vector is of the form 
V(dvf) + B' Vf modulo m. + 1 k, where dvf is the directional derivative of f along v. 

2 k k 1 k k 1 k 1 .':k 1 It follows that V(m,+l J)c~A - = V(A (f)) and also that A - = ~ -  + ~ -  , 
where ~k- 1 = {(B Vf) ~k- I~IB and n x n matrix) and ik- 1 = V(m, + 1A(f))J k- i. 

Because V(L) ~ ~k- 1 and V(L)c~ k- 1 = 0, we can find a subspace L,c ~k- 1 
which contains V(L) and which is complementary to t~k-1 C~'k-~. And because 
IT(M) n .~k- 1 = 0, there is a subspace ]~t c d ~k which contains V(M) and which is 
complementary to .~k-1. 

Let N be the submanifold Vf  t~ + L x M. Because J / k -  l(Vf) is algebraic, there 
exists a neighborhood U of the origin in gk - 1 such that ( Vf  tk~ + U) c~ N ~ oge "k- ~(Vf) 
is a manifold of dimension dimc L. On the other hand, from the definition of ~ -  1, 
there are sufficiently small neighborhoods ~" of the origin in L such that 
(.Vftk~+ ~,')~Nc~a~r~-l(Vf). Choosing /~ small enough, we will have Vftk~+ 
V = ( V f  tk~ + []) c~ N c~ ~r 1(Vf). Choosing U' = 17 - ~ U completes the proof of this 
lemma. []  

Choose a product neighborhood U = V x V' x tV small enough so that tk is 
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biholomorphic and so that Lemma 3.6 is satisfied by U ' =  V x V'. Suppose 
(I, m,t)eL x M x T. If ~b(l, m, t) = (ftk) + l + m)ote.~k(f), then flk) + l + m6.~k(f), 
because ~tk(f) c--.~k(f). According to Lemma3.6, m = 0 .  We have "shown 
Un.~k( f )  = ~b(V x {0} x W), completing the proof of the theorem. [] 

4. Weighted homogeneity and ~-orbit equivalence 

In this section we investigate the conditions when the A-orbit of a holomorphic 
function with an isolated critical point at the origin is the same as the ~,~- ,  ~ - ,  and 
.~-orbits. It turns out that these orbits coincide precisely when the function is 
analytically equivalent to a weighted homogeneous polynomial. 

The following lemma will be very useful for the results to come. We want to 
emphasize that this lemma is very general and does not require that the singularity 
be isolated. A similar result appears in Shoshitaishvili [8, Lemma 2]. That result 
is somewhat stronger, but is restricted to the case of an isolated singularity. Our 
lemma is powerful enough for our applications. Moreover the proof is extremely 
elementary. 

Lemma 4.1. Suppose f ,  ge•,+ 1, f is weighted homogeneous, and A( f )  = d(g). Then 
gem.+ ld(g). 

Proof. Suppose t ha t f i s  weighted homogeneous of degree d with weights ao . . . .  , a,. 
By definition f(t"~ = tdf(zo . . . . .  Z,) for all t. It is easy to check that 

t2f-f either vanishes or is weighted homogeneous of degree d - a  t. And, since 
Oz~ 
A(f) = A(g) there exist elements ~ij, fl~jE~,+ 1 for which 

Oz~ j= o Ozj 

~z~ j = o ~zj 

We are going to use these facts in the computation below 

~t g( t~~176 . . . . .  t ' z , )  = ~ a / ' -  'z, Og (t"~ . . . . .  t""z,) 
i=O ~Zi 

1 .o  . 3 f  .o  

" [ "  ] 
= E E E aizitd-a'+a'-tflo(ta~ . . . .  'ta"Z")O~J' (zO . . . . .  Z.) 

k=O L_i=O j--'O 

�9 O#(z o . . . . .  z.) 
~Zk 
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Then integrate back to find that 

l d  
g(Zo . . . . .  z.) = ~ Tg(t"~ . . . . .  t""z,)dt 

b at 
tgg 

= k=0 ~ bk(z~ . . . . .  Z")~kzk(ZO . . . . .  Z.) 

where 

bk(ZO,...,Zn)_~_ ~. ~ aizi~jk(Zo,. ,Zn)itt-aj+a,-1 ao ta~z 1 �9 . flij(t zo . . . . . .  )dt~m,+ 
i = 0 j = 0  0 

This proves that g~m.+ lA(g ). [] 

We can now begin examining the conditions for when the ~-orbits coincide 
with other orbits. The first result is originally due to Shoshitaishvili [81. 

Theorem 4.2. Suppose f :(C" + 1, 0 ) ~  (C, 0) is a holomorphic function with an isolated 
critical point at the origin. The following statements are equivalent. 

a) .~(f) = ~ ( f )  
b) m.+ ~A(f) = a(f)  + m.+ 1A(f) 
c) a(f)  ~_ m.+ tA( f )  
d) f is right equivalent to a weighted homogeneous polynomial. 

Proof. We start by showing that a)=*-b). Because f defines an isolated singularity, 
m,+lk c A(f) for all large k. This means that .~[f)  is precisely .~(f)jk It follows 
that .~k(f)= ~tk(f) for all k large enough. Therefore their tangent spaces must 
coincide. Using the results of Theorems 3.4 and 3.5 we see that (a(f) + m,+ lzl(f))Jk= 
m, + i A{ f )J  ~ for all large k. This means that a(f)  + m n + 1A( f )=  m. + l d ( f ) .  

The implication b)=~c)is obvious, As for c)=,d), l e a ( f )  implies fern.+ 1A(f). 
By Saito's theorem [7], f is right equivalent to a weighted homogeneous 
polynomial. 

The final implication, d ) ~  a), takes more proof. Assume that f i s  right equivalent 
to a weighted homogeneous polynomial f '  and ge,~(f). Then we only need to 
show that #~@(f). 

Since ~t(f) = @(f'), we can assume without loss of generality tha t f  is a weighted 
homogeneous polynomial. The following lemma allows us to also assume that 
A(f)  = Atg). 

Lemma 4.3. Suppose f ,  g:(C" + 1, 0)--* (C, 0) are holomorphic functions with isolated 
critical points at the origin and 6.+ 1/d(f) ~- (9+ 1/A(g). Then there exists a g' ~ ( 9 )  
such that d ( f ) =  d(g'). 

Proof. Suppose ~b: O,+ 1/d(f)  ~ ~.  + x/3(g) is a C-algebra isomorphism. We are 
going to construct a local system zo,-.. ,z, of holomorphic coordinates on C "+ 1, 
centered at the origin. Let k = d i m c  (A(f)c~m.+ 1 + m.+ 12)/ran + 12. Choose elements 
Zo . . . . .  z~_ j ~ A(f) c~ m. + 1 which are linearly independent modulo m, + 12. Then pick 
n - k more functions zk . . . . .  z, em.+ 1 to form a basis modulo ran+ 12. By the inverse 
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function theorem, Zo . . . . .  z, form a holomorphic  local system of coordinates.  We 
can now define a lifting ~b:C.+l ~(9.+,` of  4~ by specifying its image on each of 
the coordinate  functions. For  each i =  k . . . . .  n pick w i = q~(z~)e(9.+ t so that its 
projection in (9',+ 1/A(g) is ~b(~i). Since q5 is an i somorphism of the quotient  rings, 
the w k . . . . .  w. must  be linearly independent  modulo  m e t  2. Then choose 
w o . . . . .  w k _ ,̀  E A(g )n  m. + ,̀  so that the w o . . . . .  w. complete a basis modulo  m, + t 2. By 
its construct ion this map  makes  the d iagram 

(9+ t '~ C,+,` 

I 
O.+ ,IA(f) +' e.+ d/t(+) 

commute.  Fur thermore,  the wi form a local system of coordinates so that ~ must 
be b iholomorphic  at the origin. According to L e m m a  2.10, d ( f )  = 4~*A(g)= A(goqS). 
Let g '= go ck~+(g) and the proof  of our lemma is complete. [ ]  

We will assume from now on that  

(4.4) A(f )  = A(g) 

where f is a weighted homogeneous  polynomial  defining an isolated critical point 
at the origin. It follows from L e m m a  4.1 that  

(4.5) gEmn+ I A(g) 

(4.6) f ~m,.+ 1A(f) 

We will also assume t h a t f  + g, because otherwise there i~ nothing more to prove. 
Let L be the complex line in 6'.+ 1 joining f to g. Every element of L is of the 

form h = (1 - w) f  + wg for some we C. Because of (4.4), m. + t A(h) _ m. + ,`A(f). Let 
L o be the set of  h e L  for which 

(4.7) m,+ ~d(h) = m,+ ~A(f) 

L e m m a  4.8. Lo is a connected complex manifold. 

Proof. Since fde f ines  an isolated critical point  at the origin, there exists an integer 
k such that m.+ , k ~  m.+ 1A(f). For  any such k 

(4.9) m.+ ,`d(h)J k = m,+ i d ( f ) J  k 

holds if and only if (4.7) holds. 
I Oh \(~) 

The  C-vector  space m.+ 1A(h)J ~ is generated by the elements v,(h)= t zp~z_) ' 

i = (p, q), where p runs through the non-negative multi-indices with degree between 
1 and  k and q = 0, 1 . . . . .  k. Let d be the dimension of  the C-vector  space m. + ~A(f)J  k. 
By choosing a basis of  this space, we m a y  represent each v~(h) as a row vector  of 
length d. 

Together  the vi(h) form a matr ix  with d columns. Because vi(h) = (1 - w)vi(f) + 
wv~o), each coefficient of the matr ix  is a linear function of  w. Equat ion  (4.9) will 
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hold if and only if at least one of the d x d minors has a nonzero determinant. 
Since it holds for w = 0, at least one of the minors must have a determinant which 
does not vanish identically. Therefore it is a polynomial in w of degree ~ d. Hence 
there are at most d values at which (4.9) fails to hold. 

Therefore we have shown that L o is equal to L with at most a finite number 
of points deleted. Since L is a complex line, this implies that L o must be 
connected. [ ]  

Since f has an isolated critical point at the origin, f is finitely determined with 
respect to ~ .  Therefore it is enough to show that 9 ~ e ~ k ( f )  for every positive 
integer k. We are going to show Lo Jk c ~lk(f) by using the following result proved 
by Mather I-5, Lemma 3.1, pp. 234-236-1. This lemma will be used repeatedly, so 
for convenience, we will give the proof here. 

Lemma 4.10. Let ~:G • U ~ U be a C ~ action of a Lie group G on a Coo-manifold 
U, and let V be a connected Coo-submanifold of U. Then necessary and sufficient 
conditions for V to be contained in a single orbit of  ~ are that 
a) T~(Gv)~ TvV, if v e V  
b) dim To(Gv) is independent of the choice of ve V 

Proof. Necessity is trivial. Now we prove sufficiency. For each veU, let ~v:G ~ U 
be the mapping defined by g~--~ct(g, v). Then To(Gv) = ~o,(TidG ). Provide TidG with 
a Hilbert norm and for each ve V, let L~ be the orthogonal complement of ker ct~, 
in TjdG. Define L = U (v x Lv)c  V x TidG. Condition b) implies that L is a 

V~:V 

subvector bundle over V of V x TidG. Let L o = U (~,I(T~V)c~Lv) �9 Condition a) 
VEI/ 

shows that L o is a subvector bundle of L and the mapping U ~tv, :Lo~ TVis  an 
vEV 

isomorphism of Coo-vector bundles. Let fl: T V ~  L 0 be the inverse of this mapping, 
and let n: V x TidG--, TidG denote the projection map. Then rcofl: TV-- ,  TidG is a 
C~-mapping, and cto,(nofl(r/))= q for any qeToV. 

To prove that V is contained in a single orbit of ct, it is enough to show that 
any two points v~, v 2 of V are contained in the same orbit. Since V is connected, 
there is a smooth curve 7:[0, 1 ] ~  V joining v~ to 02. We only need to show that 
for any toe[0, 1], there is an e > 0 such that if to - e < t < to + e, then ~,(t) is 
contained in the same orbit as y(to). 

Let r denote the derivative of ~(t) with respect to t, and define 
X( t )=  7tofl(r X(t) is  a Coo function of t and 

(4.11) ot~(,).(X(t)) = r 

From the existence theory for ordinary differential equations, it follows that there 
exists a curve t ~ # ( t )  in G defined for to - e < t < to + e for a suitable e > 0 such that 
#(to) = I and 

(4.12) d#(t) = Xt(#(t)) 
dt 

where .~, is the unique right invariant vector field on G which extends X(t). 
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We now show that p(t)- 17(0 = "~(to) for to - ~ < t < t o + e. This will imply that 
~,(t) is in the same orbit as y(to) for all t within this range and finish the proof the 
iemma. The derivative with respect to t is 

dlt(t)- d~t) -  l ~ d~,(t) 
l"~l( t ) d--7- ~(t) + l,(t)- dt 

= #(t)- l ( -- ~ t  )It(t)- ly(t) + ~ t  ) ) 

By (4.12) and the fact that )~t is right invariant, the quantity inside the brackets 
becomes - X(t)~(t) + ~,'(t). According to (4.11), this is zero. Since #(to) = I, this 
shows that #(t)- l~,(t) = y(to) for to - e < t < to + ~. This completes the proof of the 
lemma. [ ]  

We will now apply this lemma. Take the action of ~ to be the action of G = ~k 
on U =jk .  We can deduce from Lemma 4.8 that V =Lo Jk is a connected 
submanifold of U = a rk. By Theorem 3.4a, Th(~tkh) = m,,+ 1A(h)J k, for any h~(9+ 1- If 
h~k)ELo Jk, then (4.7) holds, and we obtain 

(4.13) Th(~h) = m, + a A(f)J  k 

which verifies condition b) of Lemma 4.10. The tangent space T,(Lo Jk) is the one 
dimensional complex subspace of jk spanned by g -  f.  By (4.5) and (4.6), 
9 - f ~ m  n + 1A(f)J k. HenceTh(Lo Jk) c Th(~kh), which shows that condition a) holds 
as well. 

Therefore we may apply Lemma 4.10 to conclude that Lo Jk is contained in a 
single orbit of the action of ~k of jk. This proves our result. []  

Theorem 4.14. Let f:(C"+l,0)~(C,O) be a holomorphic function with an isolated 
critical point at the origin. Then the foUowina statements are equivalent 
a) ~ ( f )  = o f ( f )  
b) m n + tA(f)  = (f, m~ + IA(f)) 
c) f is right equivalent to a weighted homogeneous polynomial. 

Proof. To prove a) ~ b), we use the computation of the tangent spaces performed 
in Theorem 3.4a, c. Since ~ ( f )  = eye(f), ~k(f)  = of~(f) for all k. We can equate their 
tangent spaces, getting m,+lA( f )Jk=( f ,m,+lA( f ) )d  k for all k. But then 
m.+ iA(f)  = (f, m,+ 1A(f)). 

Condition b)is equivalent to saying that (f)__q m,+ 1A(f). According to Saito's 
theorem [7], f is right equivalent to a weighted homogeneous polynomial. 
Therefore b) =~,c). 

Finally, for c)=*a), it suffices to prove that 0 f ( f ) _  ~( f ) .  We may assume 
without loss of generality that f is actually weighted homogeneous. Therefore 

" Of  
f = ~ a~-- ,  where aiem. + 1. Suppose g = of ( f ) .  Then there exist u~d~, + 1, u(0)+ 0 

i=0 OZi 
and q~m,+ 1 such that g = u(fo~). Making use of Lemma 2.11 and the fact that 
f ~ A ( f ) ,  we find that dp*A(f)= A(g). This means that ~b* induces a C-algebra 
isomorphism O,,+I/A(g)".,~),+a/A(f). Therefore g is right equivalent to f by 
Theorem 4.2. [] 
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Theorem 4.15. Let f :(C" + 1, 0)--~ {C, 0) be a holomorphic function with an isolated 
critical point at the origin. Then the following statements are equivalent 
a} ~ ( f )  = ~s  
b) m.+ 1A(f) = f -  lml + m.+ 1A(f) 
c) f is right equivalent to a weighted homogeneous polynomial. 

Proof. To prove a)=> b), we use the computation of the tangent spaces performed 
in Theorem 3,4a, b. Since ~ ( f )  = ~Se(f) ,  ~l'k(f) = ~sek(f)  for all k. We can equate 
their tangent spaces, getting m. + i A(f)Jk = ( f - l m l  + m.+ 1A(f))J k for all k. But 
then m.+lA(f)  = f - l m  1 + m.+ld(f) .  

Condition b) implies that f - i m ~ ~_ m. + 1A(f), so f em. + ~ A(f). Then, as before, 
Saito's theorem [7] implies that c) holds. 

The implication c)=>a) can be proved by using Theorem 4.14 and the fact that 
~ t ( f )_  ~ s  of(f) .  [] 

5. ~&P-orbit equivalence 

In this section we investigate the conditions when the ~L#-orbit of a holomorphic 
function with an isolated critical point at the origin is the same as the of-  and 
Z-orbits. 

Theorem 5.1. Suppose f : (C" + 1, 0) --, (C, 0) is a holomorphicfunction with an isolated 
critical point at the origin. Then the following statements are equivalent. 
a) ~L#(f) = o f ( f )  
b) f - l m  1 + m.+lA( f  ) = (f ,m.+tA(f))  
c) m.+l(f)  ~ m.+ld( f  ) 

Proof. a )~b)  is proved by using the computation of the tangent spaces performed 
in Theorem 3.4b, c. Since ~L,e(f) = of( f ) ,  ~LPk(f) = ofk(f)  for all k. We can equate 
their tangent spaces, getting ( f -  I ml + m. + 1A(f))fl = (f, m. + 1A(f))J k for all k. But 
then f -  tm 1 + m.§ 1A(f) = (f, m.+ 1A(f)). 

Assume that b) holds. Then z f f e f - l m l + m , + i d ( f ) ,  so there exists a 

convergent power series a(t)= a f ,  aieC such that z f f  = ~ aifi + b~ 
i = I  i=1 i ~Z/ 

where b~em.+ x for 0 < i < n. There are two cases to consider, depending on whether 

or not a~ is nonzero. If at ~ 0, then u = a~ - zj + ~ ai f f -  1 is a unit element in 
i=2 

( ~ 
0.§ 1 and f =  u - '  - ~ b ~ .  In particular m.+,(f)  c m .§  ) 

when a l + O. 

On the other hand, if a1=0,  then we have z j =  ( ~ a , f  ' - x ) f +  ~, bi Of. 
i=2  i=0  OZ I 

Sincefhas a critical point at the origin, f era. + 12. Therefore m.+ l(f)  ~- m.+ 12(f) + 
m.+ ~A(f). Using Nakayama's Lemma, it follows that m.+ l(f) c m.+ ~A(f). 
Therefore we have proved in either case that b)=~c). 

Finally, to prove c)=~a), it is sufficient to prove that of(f)_~ ~ .~( f ) .  Suppose 
ge..~f(f). Then there exists ue~.+t,u(0)~=0, such that g=u( foh)  where 
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h:{C "+ 1,0}---,(C "+ ~,0) is a germ at the origin of a b iholomorphic  mapping.  Now 
f ' =  u(0)-~(foh)  is holomorphic  function with the proper ty  that : , ~ ( f ) =  ~ f ( f ' )  
and , ~ ( f )  = ,~ '~ ( f ' ) .  Thus  by replacing f by f ' ,  we may  assume without  loss of 
generality that  g = u f  where u(0) = 1. 

Using L e m m a  2.11 

(5.2) ( f  , m , +, A( f ) )  = (g, m, + a A(g)) 

We will also assume t h a t f  45 g, because otherwise there is nothing more  to prove. 
Let L be the complex line in C +  1 j o i n i n g f  to g. Since every h~L can be written 

in the form h - (1 - w ) f  + wg for some w �9 C, we have (h, m. + 1A(h)) ~ ( f ,  rn + 1 d(f)) .  
Let Lo be the set of h e L  for which the two ideals are equal. Using an argument  
similar to the one used to prove L e m m a  4.8, we find that  L 0 is a connected manifold. 

The hypothesis that  f : (C"+ l ,O) -o (C ,0 )  has an isolated critical point  at the 
origin implies that  f is finitely determined with respect to ~$ t  v. Hence it is enough 
to prove that  g t k ) ~ k ( f )  for every positive integer k. In what  follows let k be a 
fixed positive integer. 

We want  to apply L e m m a  4.10. In this case G = ~L~ 'k, U = J~, and V = Lo. We 
have to check that  conditions a) and b) of the l emma are applicable. 

Suppose heLo. Then h = (1 - w ) f  + wg = (1 - w + w u ) f  for some weC. Since 
u(O) = 1, 1 - w  + wu is a unit in (9 .+r  the following lemma can be applied to h. 

L e m m a  5.3. Suppose f ,  h:(C ~+ 1 , 0 ) ~  (C, 0) are holomorphic functions with isolated 
critical points at the origin and h = u f where ue(9,+ 1 is a unit. I f  
rn,+ t ( f )  -~ m,+ 1A(f), then rn + l (h) ~ m.+ i A(h). 

Proof. Using the hypothesis  that  m.+~(f)~_ m,+ tA( f )  and (2.12), it is easy to see 
that  

(5.4) m.+ id(h) ~_ m.+ i d { f )  

O u r  first step is to show that  these ideals are actually equal. We can do this by 
proving that  d im e (9, + ~/m. + ~ A ( f )  = dim c (9. + ~ fin. + 1A(h). 

The exact sequence 

0 ---, A ( f ) / m ,  +~ A(T) ---, (9. + t/m, +~ A(T) ~ (9, +~/d( f )  --, 0 

shows that  

dim c O. + ~/ra, + I a(f) = dim e (9. + 1/A( f )  + dime a ( f ) / m .  + ~ A ( f )  

We are going to show that  the right hand side of  this equat ion depends only on 
the analytic type of the singularity, and not  on the defining equat ion f = 0. The 
first term on the right hand side is the Mi lnor  number ,  which is a topological  
invariant  of  the singularity. We will now prove that  the second term is equal  to 
n + l .  

Consider  the map r  defined by (ao, a 1 . . . . .  a.)~--~ 

a~t~J+rn.+ld( f ) .  This m a p  is obviously surjective. Suppose that  4} is not  
i=o cqzi 
injoctive, then there exists a nonzero  vector  {ao, al . . . . .  a.) in C "+1 such that  
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,~, c3f 
alc3z~m.+ ,d(f) .  Without loss of generality, we shall assume a o :~ 0. Then there /__2-* o 

~ f  
exist b o . . . . .  b.em.+, such that ~.~ aic3z~=j~___~ bj~z..~_j Rearranging terms we find 

- ,  ,-o, + = a n s  , at  enora,e  les  
CZo j = I 0 2 j  

than n + 1 elements, so the critical point o f f  at the origin cannot be isolated. We 
have shown that 4~ is an isomorphism, and d i m c a ( f ) / m , + , a ( f ) =  n + 1. 

This proves that dim c (9+ jm .+ ,e l ( f )  depends only on the singularity and not 
on f.  Since f = 0  and h = 0  define the same singularity, d ime(9 .+ , /m .+la ( f )=  
dime (9+ jm.+ 1A(h). Combined with (5.4), we see that m,+ 1A(h) = m.+ 1A(f). 

Since m.+l ( f ) c_m .+ lA( f  ) and h = u f ,  we have m.+l(h)~_m.+ld(h ). This 
completes the proof of the lemma. 

We can now use Lemma 5.3 and (5.2) to show that 

f - 1in 1 + m. +, d ( f )  = (f, m. +, a ( f ) )  

= (h, m. + t d(h)) 

= h - ' m ,  + m.+,d(h) 

In particular we can see that 

(5.5) ( f  - x m, + m. + 1A(f)) Jk = (h - i m l + m, + 1A(h)) Jk 

for any h~Lo. Combining this with the computation of the tangent space in 
Theorem 3.4b, Th(YLs = ( f -  lm, + m.+ 1A(f))J  k for any h~L o. This shows that 
condition b) holds. 

The tangent space of Lo at any h is the one dimensional complex subspace of 
jk spanned by (g_f)tk).  According to (5.5), ( g - f ) ( k ~ ( f - ' m ,  + mn+ld(f))J k, 
proving that Th(Lo)c Th(gt~kh). Thus condition a) holds as well. 

We can now apply Lemma 4.10. We deduce that Lo is contained in a single 
orbit of the action of ~Lek on J~, and so in particular g(k)~,~k(f). [] 

In [7], Saito proved for any f with an isolated critical point at the origin, 
f em .+ , ,4 ( f )  if and only if up to a biholomorphic change of coordinates f is a 
weighted homogeneous polynomial. Any f satisfying f ~ m . + , d ( f )  is called a 
quasi-homogeneous function. Theorems 4.2, 4.15, and 4.14 show that the following 
conditions are equivalent: f is quasi-homogeneous, ~ ( f )  = ~ f f ( f ) ,  ~ ( f )  = &e(f), 
and ~ ( f ) =  .~(f). Theorem 5.1 suggests the following definition. 

Definition 5.6. Suppose f : (C  "§ 1 ,0)~(C,0) is  a function with an isolated critical 
point at the origin, f is said to be an almost quasi-homogeneous function if 
m.+,( f )~_m.+aA(f) .  

The previous theorem leads us to expect that the singularities defined by almost 
quasi-homogeneous functions may form a distinguished class of singularities which 
have some special properties. 

We can also give a criterion for when the ~.ga and .~ orbits coincide. This 
result is originally due to Shoshitaishviti i-8]. 
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TheoremS.7. Suppose f:(C"+I,0)--*(C,0) is a holomorphic function with an 
isolated critical point at the origin. Then the followinff statements are equivalent. 
a) ~ ( f )  = .~(f) 
b) f - l m  I +m,+l f l ( f )=a( f )+  m . + l d ( f  ) 

Proof. a ) ~  b) is proved by using the computation of the tangent spaces performed 
in Theorems 3.4b and 3.5. Since ~L,e(f) = .~(f), ~ k ( f )  = ~k(f) for all k. We can 
equate their tangent spaces, getting ( f - l m  1 + m.+ lA(f))Jk = (a(f) + m,+ 1A(f))Jk 
for all k. But then f -  lm I + m. + xA(f) = a(f) + m.+ iA(f). 

For b)=~a), there are two cases. I f f ~ f l ( f ) ,  then we can use Theorem 4.2 to 
handle this case. We will assume that fq~A(f) from now on. We need to prove 
that if gE.~(f), then g e ~ ( f ) .  Using Lemma 4.3, we may also assume without 
loss of generality that A(f) = A(g). A final assumption is that f ~ g. 

Let Lbe the complex line in ~.+ 1 joining f to g. Since every heLcan  be written 
in the form h = (1 - w)f + w# for some w~C, we have A(h) ~_ A(f). Let Lo be the 
set of heLfor  which the two ideals are equal. Using an argument similar to the 
one used to prove Lemma 4.8, we find that Lo is a connected manifold. The 
following lemma applies to all elements of L o. 

Lemma 5.8. Let f : ( C " + l , 0 ) ~ ( C , 0 ) b e  a holomorphic function with an isolated 
critical point at the origin. Suppone f -  lm 1 + m.+ 1A(f) = a(f) + m.+ 1A(f) and 
f q~A(f). Then for any hem. + 1 such that d( f )  = A(h), we have f -  lm 1 + m, + 1 d( f )  = 
h- lm I + m.+ 1d(h). 

Proof. Since d(f )  = d(h), we have hea(f). It follows that 

h-  lm 1 + m. + ld(h) ~ a(f) + m. + l d( f )  

= f -  lm 1 + m.~+ 1A(f) 

and there exists a power series p(t)= ~ ak tk in CIFt~ and r/Era.+ l d ( f )  such that 
k = l  

(5.9) h = ~, akf k + ~l 
k = t  

We claim that a~ # 0. Suppose not. Then differentiating (5.9) we get 

a 
O_h_h = (  ~,, kakf ,_,  l a_f_f . d~t (5.10) 
dz~ \k=2 / az~ Ozi 

Since ~ kakfk-lem.+l,  it follows that d( f )=d(h)~m.+lA( f )+A(r l  ). By 
k = 2  

Nakayama's Lemma, we have A ( f ) ~  d(r/). On the other hand, since 

(5.11) 0r/ tgh f ~ ,  ~k_l'~tgf 
dz,:dz--~-~,~2 ra~J ;~z~ 

we have d(~/)~_fl(f). This implies that d(r/)= d(f) .  But rlem.+tA(rl), and so 
Lemma 4.1 implies that faro,  + ~d(f). This is a contradiction, so it must have been 
true that a~ ~ 0. 

Hence there exists a series r(t) belonging to the maximal ideal in C{t} such 
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that r(p(t)) = t. According to (5.9), r(h - tl) = f . Therefore we h a v e f  = r(h) + ~ where 
r 1d ( f )  = m,+ ld(h}. It follows that f e h -  lm I + m,+ 1d(h), and in particular 
f -  I ml + m, § 1d ( f )  ~ h -  ~ml + m, + i d(h). This completes the proof of the lemma. 

[] 
This lemma implies that for any h~L  o, 

(5.12) f - l m  1 + m, + i d ( f )  = h-  lm 1 + m,+ td(h) 

Since f is finitely determined with respect to ~ ,  it is enough to prove that 
9tkJe~l~k(f)  for every positive integer k. In what follows let k be a fixed positive 
integer. 

As before we must verify that Lemma 4.10 can be applied to our situation. In 
this case G = .~L,e ~, U = jk, and V = Lo Jk. We have to check that conditions a) 
and b) of the lemma are applicable. 

Using Theorem 3.4b and (5.12) we find that 

Ts(~,.~kh) = (h- lm I + m,+ 1A(h))J k 

= ( f -  lm I + m,+ 1A(f))J k 

for any h~(g,+ r This verifies condition b). We also know that Th(Lo Jk) is the one 
dimensional complex subspace of jk spanned by g - f .  Applying Lemma 5.8 with 
h replaced by g, we get ( g - f ) ( ~ ) r  This shows that 
Th(Lo) ~ Th(~tLf~h)) which verifies condition a). 

Therefore we can apply Lemma 4.10 to conclude that Lo Jk is contained in 
~ e k ( f ) .  Since g(k}r this is all we need to prove. [ ]  

We will finish this section by giving an example of a function which is almost 
quasi-homogeneous, but not quasi-homogeneous and also an example of a function 
which is not almost quasi-homogeneous. 

Example 5.13. Let f ( x ,  y) = x s + yS + x3y3. Then 
a) f is not quasi-homogeneous. 
b) f is almost quasi-homogeneous. 
e) (f, m, + 1A(f)) = f -  ' m i + m, + 1A(f)  = a(f)  + m~ + 1A(f)  
In particular, we have 

~(f)  ~ ~Sa(f) = X'(f) 

II 
.,~(f) 

Proof. Assume that f e m . + l d ( f ) .  Then there exist power series a(x ,y )= 

a~x~y ~ and b(x, r) = ~, b~jx~fl f or which f - a ~ f  - b ~ f = O. If we multiply 
i+j~ 1 i+j~ I ~Z ~y 
this equation out and equate each of the coefficients to zero we get a system of 
linear equations involving the a~j and b o. This system includes the equations a lo = ~, 
b01 = ~, and 3alo + 3aol = 1, obtained by equating the coefficients of x s, yS, a n d  
x3y 3 respectively. However these equations are inconsistent with each other. This 
is a contradiction, and therefore f is not quasi-homogeneous. 
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To prove that f is almost quasi-homogeneous, we make the following 
calculation 

Now it is easy to see that m v ~ mA(f)  + ms. According to Nakayama's  t emma,  

(5.14) m 7 ~_ rod(f) 

This shows that x f~ mA( f ) .  We can prove in a similar manner that y f e m A ( f ) ,  
which verifies that f is almost quasi-homogeneous. 

Since f is almost quasi-homogeneous, we can use Theorem 4.15 to see that 

( f  , mA(f)) = f -  lm 1 + mA(f)  

~_ a(f)  + mA(f) 

All we need to prove is a(f)~_ (f, mA(f)). Let g~a(f). Then t a x '  0yJ  - \ ~ x x  dyy/. 

This implies that the order of g is at least 5 and that 

0g 
- -  = ao x4 + aly* + terms of order > 5 
Dx 

Integrating back, we find that 

- -  1 0  x 5 g- -~  o + atxy 4 + azy 5 + t e r m s o f o r d e r > 6  

Now differentiating by y, we find that 

O0 = 4atxy 3 + 5a2y* + terms of order > 5 
0y 

Since 09~A(f),  it must be true that a 1 =0 .  Now expand g up to order 6. 
0y 

0 = �89 x5 + a2Y 5 + a3 x6 + a,*xSY + asx'*Y 2 + a6xay 3 + avx2Y '* + asxy 5 + a9y 6 

+ terms of order > 7 

By differentiating and expressing 0g in terms of the partials of f and solving the 
~x 

resulting system of linear equations we find that as = 0 and ! a  5 o = a6- Doing the 

same thing for ~ shows that a7 = 0 and a2 = a6. As a result we can write 
0y 

g = ~ao(x 5 + yS + x3y 3) + a3x 6 + a4x~y + asxy 5 + agy 6 + terms of order > 7 

=~ao f  + ~(a3x2 + a4xy)~-~ + ~(aaxy + agy2)O~-f + terms of order > 7 
vy 

Using (5.14) we can see that g ~ ( f ) +  mA(f).  Therefore we have shown that part 
c) holds. 
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The relationships in the diagram follow from Theorems 4.15, 5.1, and 5.7. [] 

Example 5.15. Let f (x ,  y) = (y + x4)(y z + x9). Then f is not almost quasi- 
homogeneous. In particular 

~ ( f )  ~ ~ ( f )  ~ ~ff(f) 

Proof. We are going to show that x femn+iA( f  ). Assume on the contrary that 
x f em~+lA( f  ). Then there exist power series a(x,y)= ~ aijxiy i and b(x,y)= 

i , j>  1 

blix'y j in m,+ 1, such that 
i , j> 1 

(5.16) x f  = a(x, y)~- + b(x, y)~- 
vx cy 

By comparing the coefficients of y3, xy3, x4y2 xSy2, x8y, x9y, and x ~4 on both 
sides respectively, we get the following equations. 

bol = 0 

3bll = 1 

4ato + 3b4o + 2bol = 0 

4a2o + 3b5o + 2bll = 1 

2b4o = 0 

9alo + 2bso + bol = 0 

13a2o + bso= 1 

This system of equations is inconsistent and leads to a contradiction. This means 
f is not an almost quasi-homogeneous polynomial. We will consider this example 
again in the next section. [] 

6. Relationship between ~ and J,f equivalence 

There are still two more natural questions. The first is whether off(f) _~ .~(f), that 
is, whether the Milnor algebra isomorphism type is an invariant of the 
corresponding singularity. The second is whether .~(f) _ ~ff(f), that is, whether the 
analytic type of an isolated singularity is determined by the Milnor algebras which 
are associated to it. The following proposition gives an answer to the first question. 

Proposition6.1. Suppose f : (C~+I,0)~(C,0)  is a hoiomorphic function with an 
isolated critical point at the origin with )if(f) c_ .~(f). Then f 6d ( f )  + mn+ 1d2(f), 
where d2(f) is the ideal in (9,+ 1 generated by all second partial derivatives 
off. 

Proof. Using the computation of the tangent spaces to the manifolds ,Xr(f) and 
-~(f) found in Theorems 3.4c and 3.5, ~(f)--q .~(f) implies that (f, m,+ tA(f))J~-- 
(aft) + m. + t A(f))J k for all k. Since both ideals contain some power of the maximal 
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ideal m n + t, we have 

(6.2) (f, mn+ ld ( f ) )  ~_ a(f)  + m,+ l d ( f )  

Then (1 + z o ) f e a ( f ) +  m~+ l d ( f )  and there exist gea( f )  and ~jem,+ x such that 

§  .af 
(1 + zo) f  = g + ~=o "'~zj 

Differentiating with respect to z o, 

f + (1 + Zo)~ ~ f  t3g t3~j t~f ?. 
oz o OZo j=o~Zo0Zj j=o~JOZo~Zj 

By definition of a(f), tg~oeA(f). Therefore f e d ( f )  + m~+ ld2(f). ["7 

The following remark, due to Mather, shows that it is not true in general that 
3fr(f) _~ .~(f). 

Remark 6.3. There exists a polynomial f (x ,y)  such that f S A ( f ) + d 2 ( f ) .  In 
particular YF(f) ~ .~(f). 

Proof. We are going to show that we can find polynomials of the form 

6 
(6.4) f (x ,  y) = ~. xa'y b' 

i=1 

for which f ~ d ( f )  + d2(f). We will restrict the exponents ai and bl so that they 
satisfy the condition 

(6.5) max (ai - a~, bi - bj) __> 3 

for each i 4:j. 
For the moment assume that f e d ( f )  + de( f )  and write f in terms of its first 

and second partial derivatives. Then if we equate the coefficients of the x~'y ~' terms 
on both sides we get six linear equations i = l . . . . .  6 

(6.6) a,xl + bix2 + ai(ai - 1)xa + aib~x4 + b,(b~ - ljx 5 = 1 

which must have a common solution xt . . . . .  xseC. Condition (6.5) assures that 
no cross terms arising from an x'Jy bJ term contribute to the final x~ bJ term 
o f i # j .  

Therefore it cannot be true that f e d ( f ) +  d2(f) if the matrix 

(6.~) 

-al bt a l (at - l )  albt bl(bl-1) l -  
a2 b2 az(a2-1) a,b2 b2(b,-1) 1 
a 3 b 3 aa (a3-1  ) aab a b3(b3-1) 1 

a4 b4 a4(a4-1)  a4b4 b4(b4-1) 1 

as bs a s ( a s - l )  asbs bs(bs-1)  1 

a e  be ae(a6-1)  a6be be(b6-1) 1 
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is nonsingular. Let A(~i,b') denote its determinant, where ~ = ( a  1 . . . . .  a6) and 
~" = (b 1 . . . . .  b6). 

Since the functions 1,a,b,a(a-1) ,ab,  b ( b - 1 )  are linearly independent, the 
determinant A(~, b') cannot vanish on any open subset of C 6 x C 6. Consequently 
there exist non-negative vectors ~,bEQ 6 such that A(t~,/~)#0 and such that 
condition (6.5) holds. But then A(2& 2b) is a polynomial in 2 which does not vanish 
identically. We can choose 2 > 1, so that )L~, 2b~77 6 and d(2& 2b)+ O. 

Let at and b~ be the i-th components of 2~ and 2b', respectively. Using these 
as the exponents in (6.4), we obtain an f ( x , y )  which is not contained in 
A(f)  + A2(f). [] 

Example 6.8. Let f (x ,  y) = x 15 + xl2y 3 + x9y 6 -'1- X6~ 10 -[- x3y 13 + y17. Then the 
following relationships hold 

~(I ') ~ ~ ( f )  ~ 3f~(f) 

qb3 

~(f)  

with ~(f)  ~ oU(f) and ~r ~ .~(f). 

Proof. With Remark 6.3 in mind, we looked for positive integers at, b j, 1 < i, j < 6 
which satisfy (6.5) and for which the matrix (6.7) is nonsingular. A computer 
program that calculates ranks of matrices with exact rational entries aided our 
investigation. The polynomial f was the lowest degree example that we could find. 
Our selection procedure guarantees that 3 ( ( f )~ .~( f ) ,  and it follows that 
~ .~ ( f )  ~ ~F(f) as well. f is not quasi-homogeneous because feA( f )  + AZ(f). This 

means that ~ ( f )  ~ Ms 

We used computer programs described in the next section to check the 
remaining inclusions. It was found that a ( f )~ ( f im A( f ) ) .  This shows that 
~s ~ .~(f) and .~(f) ~ S(f). 

The computations in this example are complex. The Milnor number of the 
singularity is 209, and the smallest power of the maximal ideal contained within 
A(f)  is m ~~ a(f)  + mA(f )  modulo rn 31 has dimension 317, while (f, mA(f)) modulo 
m 31 has dimension 329. All of the generators we found for a(f) which were not 
contained in (f, mA(f)) were extremely complicated. Some of their coefficients were 
rational numbers with over 30 digits in both the numerator and denominator. [] 

We now turn to the second question and give a general method for constructing 
functions F for which .~(F) ~ 2U(F). 

Theorem 6.9. Suppose F(xl . . . . .  x,, Yl . . . .  , y,) = f ( x  t . . . . .  x,) + f ( y l  . . . . .  y.) where 
n > 1 and f ( x  1 . . . . .  x,) is a function with an isolated critical point at the origin 
which is not quasi-homogeneous. Then ~(F) ~ :,~f(F). 

Proof. Suppose .~(F) __ Jr(F). Then using the computation of the tangent spaces 
to the manifolds .~(F) and ~ ( F )  performed in Theorems 3.5 and 3.4c, .~(F) _ Jr(F) 
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implies that (a{F) + m2,A(F))J k c_ (F, m2,,(l(F))J k for all k. Since both ideals contain 
some power of the maximal ideal m2,, we have 

(6,10) a(F) + m2.A(F) ~_ (F, rnz,,A(F)) 

In the following, let x stand for xt . . . . .  x, and y for y~ . . . .  ,y,. According to the 
definition of a{F), f(x)~a(F). Using (6.10), f(x)~(F, mz.A(F)), so there exist b(x, y), 
cj(x, y), di(x, y)eC{x, y} with cj(0, 0) = d j(0, 0 ) =  0 such that 

(6.11) f (x)=b(x,y)( f (x)+ f(y))+ ~ cj(x,y) (x)+ ~. dj(x,y) (y) 
j = I j = 1 o y j  

Now b(x, y) must be a unit in C{x,y}. Otherwise we can rearrange the terms 
in (6.11) and set y = 0  to find that 

12) (1 -- b(x, O))f(x) = ~ cj(x, 0 ) ~ ( x )  (6. 
j = l  vxj 

Here we have used the fact that f ( y )  has a singularity at the origin, This equation 
implies that f(x)ern+ j,4(f). Since f = 0 defines an isolated singularity, Saito's 
theorem [7] implies that f is quasi-homogeneous. This is a contradiction to our 
hypothesis, so it must be true that b(x, y) is a unit. 

Next rearrange the terms in (6.11) and set x = 0. We get 

(6.13) - b(O, y)f(y) = ~ dr(O, y) O f (y)  
j = ~ cyj 

where we have again used the fact that f(x) has a singularity at the origin. Since 
b(0, y) is a unit in C( y}, it follows that f ( y ) e m . +  ~d(f). As before, this contradicts 
our hypothesis that f is not quasi-homogeneous. Therefore we conclude that 
.~(F) ~ ~ ( r ) .  []  

Corallary 6.14. Suppose F(xl . . . . .  x., Yl,.- ' ,  Y.) = f (x l  . . . . .  x) + f ( Y l  . . . . .  y,) where 
n > l andf(xl . . . . .  x.) is a function with an isolated critical point at the origin which 
is not quasi-homooeneous. Then there exists a GeC{x, y} such that d ( G ) =  A(F) 
but Gr 

Proof. According to Theorem 6.9, there exists HeC{x, y} such that 0.+ rid(H)~- 
~.§ but HCJt~(F). Using Lemma4.3,  we can find G ~ ( H )  such that 
A(F) = A(G). Since H is not in ~(F), it follows that G is not in Jl(F).  

These arguments can be modified to work in the C ~ category as well. The 
following remark summarizes this extension to the C ~ case. 

Remark 6.15. Suppose Fix1 . . . . .  x,, y 1 . . . .  , y,) = f (xx, . . . ,  x,) + f ( y  t . . . . .  y.) where 
n > 1 and f (x l , . . . , x . )  is a function with an isolated critical point at the origin 
which is not quasi-homogeneous. Then there exists G(xl,.. . ,x., Yl . . . . .  x,)e 
C{x l . . . . .  x., Yl . . . . .  y.} such that A(F)=  A(G) and the zero set V(F) defined by 
F = 0 is not C~-diffeomorphism equivalent to the zero set V(G) defined by G = 0 
although the two sets are homeomorphic.  

When F has real coefficients this is also a consequence of Ephraim's 
Theorem [3] and Corollary 6.14. 
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Corollary6,16. For any n >  1, there exists a one parameter family of 
non- quasi-homogeneous isolated singularities in which the Milnor algebras 
corresponding to each singularity are the same, but in which the diffeomorphism types 
are different. 

Example 6.17. Let F(x, y,z,w) = x 5 4- yS + z 5 + w 5 + x3y3 4- Z3W 3. Then the fol- 
lowing relationships hold 

~(~) ~ ~Ze(F) ~ ~(V) 

~(F) 
and .~(F) ~ J[(F). 

Proof. Observe that F(x, y, z, w) = f (x ,  y) + f(z,  w) where f (x,  y) = x 5 + yS + x3y3. 
We have already shown in Example 53 3 that f~x, y) is not a quasi-homogeneous 
function. By Theorem 6.9, we have ~(F) ~ ~(F) .  

We now claim that F is also not almost quasi-homogeneous, that is, 
mn+l(F)~mn+lA(F). We are going to show that xFemn+lA(F). Assume the 
opposite is true. Then there exist power series a(x, y, z, w), b(x, y, z, w), c(x, y, z, w) 
and d(x, y,z,w) in m,+ 1 such that 

8F ~3F z, w)8~ -F + d(x, y, 8F 
(6.18) xF=a(x ,  y,z,w)ff-x+b(x, y,z,w)ff-y+C(x, y, vz z'W)~w 

Comparing the coefficients ofxz ~, xw 5, XZ3W 3 on  both sides, we get the following 
equations respectively. 

5Clolo = 1 

5dolol = 1 

3CL010 + 3dolol = 1. 

It turns out that these linear equations form a inconsistent system. This means 
that xFem,+ ~A(F) and so F is not almost quasi-homogeneous. It follows from 
Theorems 4.15 and 5.1 that ~(F)~L#(F)~3f '~(F) .  It is also clear that 

~ ( F )  ~ .~(F), because otherwise ~(F) = ~ ( F )  ~ ~ ( F )  which contradicts the 

fact that .~(F) ~ ~r [] 

We will give two more examples which we have computed. 

Example 6.19. Let f (x ,  y) = (y + x4)(y 2 + xg). Then the following relationships 
hold 

~ ( f )  ~ ~s ~ ,~ ( f )  

a(e) 

and .~(f) = ~r 
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Proof. This example was discussed in the previous section, but we did not consider 
the inclusions involving .~(f). 

We have used computer programs to check these inclusions and have found 
that a ( f ) $ f - l m l  +mA(f). One generator of a(f)  that is not contained in 
f - i r a  I +rod( f )  is x2y 3 + x6y2 + x l i y  91,15 + ~  +7-~8x 16. On the other hand the 
programs showed that a( f )  + rod(f)  = (f, mA(f)). 

Despite the simple form of the polynomial f, the computing problem was still 
fairly complex. The Milnor number of this singularity is 23, but the smallest power 
of the maximal ideal contained in d ( f )  is m 16. The dimension of the C-vector 
space a(f)  modulo m 17 is 113 and the dimension o f f - ~ m i  + mA(f) modulo m 17 
is 129. [] 

Example 6.20. Let f (x ,  y, z) = x s + yS + z s + x2y2z 2. Then the following relation- 
ships hold 

~( f )  ~ ~.Lf(f) ~ ~ ( f )  

-hm 

~(f) 

and .~(f) = .Xr(f). 

Proof. As in the preceding examples, this singularity was analyzed using computer 
programs discussed in the next section. It was found that a(f)  + mA( f )  = (f, mA(f)), 
but a ( f ) r  +mA( f ) .  One generator of a(f)  that is not contained in 
f -  lm~ + mA( f )  is x3y2z 2 + ~-x 9 + xy s + xz s. These inclusions are enough to verify 
the diagram given above. 

The Milnor number of this singularity is 215, with the smallest power of the 
maximal ideal contained in A( f )  being m~L The dimension of the C-vector space 
a(f)  modulo m is is 706. [] 

7. Computational methods 

In this section we will describe the computer programs that have been used to 
check the examples in Sect. 6. Earlier versions of some of the programs have 
already been discussed by Benson and Yau in [2], but many new programs have 
been added since that paper. 

The programs are written in the C language using the techniques described by 
Benson in [1]. These techniques and the associated libraries of subroutines have 
made it possible to develop programs rapidly. In most cases it was possible to 
implement the algorithms in a compact and readable form. 

Our approach has been to develop programs that work on objects of four 
different types: ideals in power series rings Q[xl . . . . .  x,]], prepared ideals in power 
series rings Q[x l . . . . .  x,]], submodules of jet spaces Q[x t . . . . .  Xn~/mkn+ 1' and finite 
dimensional O-algebras. We have developed a description file format for specifying 
each type of object and the programs are able to read and write description files 
for these objects. 

Each of the programs either creates a new description file based on input from 
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uli_ideal 

cont ai~...~..~ i c~ 

- ~ suPPed %le ~ m  

[ "P,a~j~. I Power ::;erles I , Ideal I 

Fig. 7.1. Organization of software 

the terminal, reads a description file and computes a new one, or reads a description 
file and does some analysis. 

Figure 7.1 gives a graphical description of how these programs relate to one 
another. The programs are shown as edges in a directed graph with the description 
formats as vertices. The starting vertex of each edge indicates the format of the 
program's input, while the terminating vertex shows the program's output format. 
When the endpoint is not on a vertex, the meaning is that the input or output is 
from or to the terminal in a format different from those used for the description files. 

We will give brief descriptions of each of the programs used for computing 
examples in this paper. 

Moduli-ideal. Creates a description file for the following types of ideals: k mn + 1' 
k m,+lza(f ), and (f,m,+lA(f)). It prompts the user for the number and names of 

the variables, the type of ideal, the value of k, and the polynomial, if necessary. 
Construct module. Creates a description file for a module. The user is prompted 
for the number and names of the variables and the generators. 
To-module (ideal-file) k. Creates a module description file corresponding to an 
ideal specified by (ideal-file). k is the power of the maximal ideal to be used. 
Contains (module-1)(module-2). Determines whether the module given by the file 
(module-1) contains the module given by the file (module-2). The algorithm used 
is to reduce each generator of (module-2) by the set of generators of (module-1). 
(module-I) contains (module-2) if and only if all of the reductions are zero. 
Sum (module-l)(module-2). Creates a description file for the module which is the 
sum of the modules specified by (module-l)  and (module-2). 

Standard-base. Finds a prepared ideal description corresponding to an ideal 
description file read from the standard input. The ideal must contain a power of 
the maximal ideal. A prepared ideal description consists of a standard base for 
the ideal along with a basis of monomials for the quotient algebra. 
af. Finds a description file for the module a(f) modulo m~,+ 1, where k is one more 
than the minimum power of the maximal ideal contained in d(f). The program 
reads a prepared description file for the ideal d(f) from the standard input. Then 
it finds all monomials of degree less than or equal to k - 1 which are in a(f). These 
form part of a basis for a (f)  modulo m,+k t. The remaining generators are found 
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by taking a generic linear combinat ion  of the other monomials  of  degree less than 
or equal to k - 1 and determining condit ions on the coefficients for the derivatives 
to be contained in A(f ) .  These condit ions form a homogeneous  system of linear 
equations involving the coefficients of this polynomial.  The program solves this 
system and resubstitutes the solutions back into the polynomial.  The remaining 
generators can then be read from this polynomial.  I t  is clear that  the 
lexicographically smallest monomial  in this linear combinat ion  cannot  have 
a derivative which is in the monomial  basis for quotient  algebra of  A(f ) .  The 
program takes this in account  when it forms the linear combinat ion in order to 
reduce the amount  of computat ion.  

To show how these programs work together, we give the U N I X  commands  that  
were used to determine whether a( f )  = f - t m  1 + m,, + 1A(f): 

moduli-ideall standard-base l af > af-module 
moduli-ideal > m-delta-ideal 
to-module m-delta-ideal k > m-delta-module 

~o construct  module > f-powers-module 
sum m-delta-module f-powers-module > f-powers-m-delta-module 
contains f-powers-m-delta-module af-module 

A SUN-3 computer  running the U N I X  operat ing system has been used for program 
development.  Most  computa t ions  have not taken more  than a few minutes of C P U  
time. However  a( f )  in Example 6.8 with its many  digit fractions was an exception. 
4 hours and 52 minutes of  computer  time was used. 

We will be happy to share these programs and  related ones with other 
researchers upon  request. 
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