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GORENSTEIN SINGULARITIES
WITH GEOMETRIC GENUS EQUAL TO TWO

By StePHEN SHING-TOUNG Yau*.

Introduction. Let p be a singularity of a normal two-dimensional analytic
space V. In [1], M. Artin introduced a definition for p to be rational. Rational
singularities have also been studied by, for instance, DuVal [5], Tyurina [31],
Laufer [17], and Lipman [22]. In [33], Wagreich introduced a definition for p to
be weakly elliptic. Weakly elliptic singularities have occurred naturally in
papers by Grauert [6], Hirzebruch [10], Laufer [19], Orlik and Wagreich [24],
[25], and Wagreich [34]. Karras [12, 13] and Saito [27] have studied some of
these particular elliptic singularities. Recently, Laufer [20] developed a theory
for a general class of weakly elliptic singularities which satisfy a minimality
condition. These are so-called the minimally elliptic singularities. In [36], we
develop a theory for a general class of weakly elliptic singularities which satisfy
a maximality condition. Maximally elliptic singularities include minimally
elliptic singularities in the sense of Laufer as a particular case.

Let 7:M—V be a resolution of V. It is known that h=dimH'(M, 0) is
independent of resolution. One might classify singularities by h. Rational
singularity is equivalent to A =0. Minimally elliptic singularity is equivalent to
saying that h=1 and 0, is Gorenstein. Maximally elliptic singularities may
have h=dimH'(M,0) arbitrarily large. It is a natural question to ask for a
theory for h=2 and 0, Gorenstein. Our main interest is to build up a theory
for those singularities which has h=2 and 0, is Gorenstein, although we
sometimes refer to almost minimally elliptic singularities.

All undefined terms and notation are standard and are described in [20]
and [36]. Throughout this paper, E will denote the minimally elliptic cycle and
Z will denote the fundamental cycle.

Our main results are the following. Recall that h=2 and 0, Gorenstein
implies that p is weakly elliptic, i.e., that x(Z)=0.
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814 STEPHEN SHING-TOUNG YAU.

THEOREM A. Suppose p is an almost minimally elliptic singularity (see
Definition 1.1) and 0, is Gorenstein. Then H'(M,0)=C>

TueEOREM B. Let 7:M—V be the minimal good resolution of a normal
two-dimensional Stein space V with p as its only singularity. Suppose H'(M, 0)
=C? and v, is Gorenstein. Then p is an almost minimally elliptic singularity
if and only if HAM,0(—Z)/0(— Z—E))=C.

Definition 0.1. Let D= E,EAdAi be a positive cycle. Let B= U ,eAA C
|D| where A; CA. Then D/B=3,, f,A; is a positive cycle such that f,=
A,CBand f,=0if A,ZB.

Definition 0.2. Let A be the exceptional set of the minimal good resolu-
tion 7: M—V where V is a normal two-dimensional Stein space with p as its
only weakly elliptic singularity. If E-Z <0, we say that this elliptic sequence is
{Z} and the length of the elliptic sequence is equal to one. Suppose E-Z=0.
Let B; be the maximal connected subvariety of A such that B, DsuppE and
A;Z=0 VA;CB,. Since A is an exceptional set, Z-Z<0. So B, is properly
contained in A. Suppose Zg -E=0. Let B, be the maximal connected subvariety
of By such that B,D|E| and A;-Zz =0 VA, CB,. By the same argument as
above, B, is properly contained in B,. Continuing this process, we finally obtain
B,, with Z -E<0. We call {(Zp,=2,Z,... Zg ) the elliptic sequence, and the
length of the elliptic sequence is m+ 1.

TueEOREM C. Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space V with p as its only weakly elliptic singularity.
Suppose H' (M, 0)=C? HYE|,Z)=0, and 0, is Gorenstein. Let
Zp,Zp,...,2ZpZ5 be the elliptic sequence. Let D be the subvariety of B,
consisting of those irreducible components A,C B, such that A,N|E|#Q. If
Z/D=1Zy/D, then 1=0, i.e., p is an almost minimally elliptic singularity.

THEOREM D. Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only singularity. Suppose H'(M,0)=
C? and v0O, is Gorenstein. Let Zy =Z, Zp , ..., Zg, Zy, be the elhptw sequence.
Then m(‘) C(9( S 0Zp) If ZpZp < =2, then m0 =0 (=34 _Zp). If Zp-Z,
< =3, then m"=H%A,0(—n(Z}_ 0ZB))) and the Hilbert functwn H‘(,?;,( n)=
dimm"/m"*'= —n(Z\_(Z2) for n>

THEOREM E. Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only almost minimally elliptic
singularity. If Zg-Zy < —3 and 0, is Gorenstein, then p is absolutely isolated.
Moreover, the blowup p at its maximal ideal yields exactly those curves A, such
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that A;-Z >0. The singularities remaining after the blowup are the rational
double points and a minimally elliptic singularity corresponding to deleting the
A, with A;Z <0 from the exceptional set. The self-intersection number of the
fundamental cycle of the minimally elliptic singularity is less than or equal to
-3.

Theorem A explains why almost minimally elliptic singularities are interest-
ing. The converse of Theorem A is false. (See [36], Chapter III, §2, Example 3.)
However, partial converses are shown for hypersurface singularities. Theorem B
gives a necessary and sufficient condition for p to be an almost minimally
elliptic singularity. Theorem C provides us a comprehensible condition for p to
be an almost minimally elliptic singularity. This condition is readable from the
intersection matrix. In Theorem D, we are able to identify the maximal ideal.
Therefore the important invariants of the singularities (such as the multiplicity,
the Hilbert fenction) are extracted from the topological information. Using
Theorem D, we can list all possible hypersurface weighted dual graphs with
h=2. (There are 250 types of them.) Since the topology of the singularity is
determined by the weighted dual graph, this will give a topological classifica-
tion of hypersurface singularities with & =2. By virtue of this classification and
Theorem C, we have the following theorem, which is a partial converse of
Theorem A.

TuEOREM. Let m:M—V be a resolution of normal two-dimensional Stein
space with p as its only singular point. Suppose H'(M,0)=C? and p is a
hypersurface singularity. Let A be the exceptional set. If H'(A,Z)=0, then p is
an almost minimally elliptic singularity.

Since room does not allow a proof of the theorem or of the topological
classification, these will be included in the accompanying paper “Hypersurface
weighted dual graphs of normal singularities of surfaces.” It is not true that
every two-dimensional isolated singularity can be resolved by means of a
sequence of o-processes with centers at points. Theorem E tells us, however,
that under a certain condition almost minimally elliptic singularities do have
this property. This is one of the many reasons that the almost minimally elliptic
singularities are very interesting. Our presentation goes as follows:

0. Introduction.

General theory for almost minimally elliptic singularities.
Calculation of multiplicities.

Calculation of Hilbert functions.

Absolutely isolatedness of almost minimally elliptic singularities.

Lol S
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The necessarily basic knowledge to read this paper can be found in [20]
and [36].

I gratefully acknowledge the encouragement and help of Professor Henry
B. Laufer during the investigation of these results. I also wish to thank Professor
Bennett, Professor Kuga, Professor Siu, and Professor Wagreich for their
encouragement and discussion of the mathematics. Finally, I want to thank the
National Science Foundation for the support it is giving me.

1. General Theory for Almost Minimally Elliptic Singularities.

Definition 1.1. Let 7:M—V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singular point.
Suppose p is not a minimally elliptic singularity, i.e., |[E| # =~ (p). If for all
A;Z|E| and A;N|E|#, then A;Z <0. We call p an almost minimally elliptic
singularity.

THEOREM 1.2. Let m:M—V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only almost minimally elliptic
singularity. Suppose 0, is Gorenstein. Then H'(M,0)=C=.

Proof. If dimH'(M,0)=0, then p is a rational singularity, which implies
x(Z)=1. This is a contradiction. If dimH'(M,0)=1, then p is a minimally
elliptic singularity by Theorem 3.10 of [20]. This contradicts our definition of
almost minimal elliptic singularity. Therefore dimH'(M,0)>2. On the other
hand dim H'(M, ©) <2 by Theorem 3.9 of [36]. We conclude that dim H (M, 0)
=2, QED.

Example 3 in Chapter III, §2 of [36] shows that H'(M,0)=C? and 0,
Gorenstein do not imply that p is an almost minimal elliptic singularity.
However, a partial converse of Theorem 1.2 will be shown later.

Lemma 1.3. Let m:M—V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity. If
dim H (M, ©)#1, then one of the following cases holds:

(1) HM,0(—2)/0(—Z—E))=C=H'M,0(-2)/9(-Z—E)),
@ HM,0(—Z2)/0(—Z—E))=0=HM,0(—Z)/0(~Z~E))

Proof. Since H'(M,0)#1, we have E-Z=0 by Theorem 4.1 of [20].
Choose a computation sequence for Z as follows: Z,=0,...,Z,=E,...,. Con-
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sider the following sheaf exact sequences:

0-0(-2-2,)/9(-Z-E)—>0(-2)/9(—Z—-E)
- 0(-2)/0(-Z-27)) -0,
O—>(9(— -Z,)/9(—Z—-E)->0(-2-2Z,)/0(—Z—E)
—-0(-2-2)/9(—2-2Z,) -0,

0— @(—Z—Zk_l)/(‘)(—Z—E‘)—)@(—Z—Zk_z)/(‘)(—Z—E)
->0(-Z-2Z_,)/0(-2Z2-2Z,_,)—0.

By the Riemann-Roch theorem, the usual long-cohomology-sequence argument
will show that either (1) or (2) holds. Q.E.D.

TueOREM 14. Let m:M—YV be the minimal good resolution of normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose H' (M, 0)=C? and ,,0,, is Gorenstein. Then p is an almost minimally
elliptic singularity if and only if HY(M,0(—Z)/0(—Z—-E))=C.

Proof. =>: By (1.1) and (1.6) of [36], H'(M,0,)=C=H'(M,0,). The
long exact cohomology sequence

0— H°(M,0(—2Z)) - HM,0) - H°(M, 0,)
- HY(M,0(~Z)) > H'(M,0) > H'(M, 0,) >0

will show that H'(M,0(—Z))=C. Since p is an almost minimally elliptic
singularity, —K’'=Z+E. By (1.2), H'(M,0(—Z—E))=0. Now the exact
sequence

HY(M,0(—Z—E)) - H(M,0(— Z)) - H\(M,0(— Z)/0(— Z— E)) >0

will show that HY(M,0(—Z)/0(—-Z—-E))=C.

«<: Conversely, suppose H (M 0(-2)/0(— E))=C. Let
Zg,Zg,...,25,Z5 be the elliptic sequence. Then —K’ B +E, where B=
S oZp- Choose a computation sequence for Z as follows: Z,=0, Z,,...,Z,=
E,... 27 =2....,2,=Zp,..,7, =Zy=7Z. Suppose p is not an almost

M+1

minimal elliptic singularity; ,then 1 > 1. Look at the following exact cohomology
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sequence
O—)HO(M (‘)( )é@(—Z—E))—>H°(M,®Z+E)—>H°(M,®Z)
= =C
I(M’(()( )é(‘)(—Z—-E))—>H1(M,(92+E)—aHl(M,(‘)Z)——)O
= =C

It is easy to see that H(M,0,,;)—H%M,0,) is surjective. Therefore
HY(M,0,, p)=C?*=HM, 0, ;). Since the two sequences

Hl(M, @B) - HI(M, ®Z+E) -0,
HY(M,0) - H'(M,05) >0

are exact, H'(M,0)—H'(M,0p) is an isomorphism by dimensional considera-
tions. It follows that H'(M,0(—B))—H(M,0) is a zero map. As vO, is
Gorenstein, there exists w € H(M — A, ) having no zeros near A. Let (w) be
the divisor of w. Then (w)= —B—E. Let w, be the order of the pole of w on
A, CIE|.

Consider a cover as in Lemma 3.8 of [20]. On P,,

wy(x1, ;)
=—— —daAdy,
Yo 1N ay;

where w,(x;,y;) is a holomorphic function, w,(x,,0)Z0. There is a holomorphic
function f(x,), r<x; <R, such that

w (%,
f yl“’l_]f(xl)-iy—li)—l@ dx; A dy, # 0.
|lx;|=R
|yil=F

Let Ag; = 1~ f(x;) and Ao; =0 for j#1. Then by Lemma 3.8 of [20], cls[]A]#0
in H(M, ). However, w,—1>3!_oz, B, Where Zy =2z 5 A;. Hence A may be
thought of as also a cocycle in H(N(u),0(— B)) Consequently, cls[A]=0 in
H'(M,0) because H'(M,0(—B))—H'(M,0) is a zero map. This leads to a
contradiction. Q.ED.

THEOREM 1.5. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space V with p as its only weakly elliptic singularity. If
Z)/9(—Z—-E) corresponds to a trivial line bundle L over (|E|,Of), then
H ° (M,0(—2)/0(— =C. Conversely, suppose HY(M,0)=C? and vO,
is Gorenstem If HOM(9 Z)/0(— =C, then 0(—Z)/0(-Z- E)
corresponds to a trivial lme bundle L over (|E l,Og).
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Proof. Suppose O(—Z)/0(—Z— E) corresponds to a trivial line bundle
L over (|E|,0). Let U be an holomorphically convex neighborhood of |E| such
that ®: U— Vl represents |E| as an exceptional set where V; is a normal
two-dimensional Stein space with ®(| E|) as its only minimally elliptic singular-
ity. The group of sections of L is isomorphic to H'(M,0(—Z)/0(—Z—E)).
However, L is a trivial bundle over (|[E|,Of). So the group of sections of L is
isomorphic to H(U, O5)=C. Therefore HO(M, 0(-2)/9(—Z—-E))=C.

Conversely, suppose H'YM,0)= and 0, is Gorenstein. Then
H°M,0(—Z)/0(—Z—E))=C implies that p is an almost minimally elliptic
smgulanty by Theorem 1.4. There exists f € HY(M, O (— Z)) such that the image
of fin HAM,0(—2)/0(—Z—E)) viewed as section of the line bundle L is
nowhere zero, by Proposition 3.13 of [36]. Hence L is a trivial bundle over
(|E], Og). Q.ED.

With notation as above, let ¢:0 >0y =0/0(—E) be the quotient map.
Define 0 =¢(0*)C0Op. Let a:Z—0g be ¢oi, where i:Z—0 is the obvious
inclusion map. 8:0;—0p is defined as follows. For a germ f in a stalk of O,
let F be a germ in O such that ¢(F)=f. Then we set B(f)=d(exp27iF). We
claim that B3 is well defined. Let F; be another germ in O such that ¢(F))=f.
Then F,=F+ g, where g can be considered as germ in O (— E). Hence

¢(exp(2miF,)) = ¢(exp(2miF +2mig))

_ ¢( 14 2miF+2mig (2miF +27ng) + (2miF+2mig)" ‘. )
1! 2! n!
omiF | (2miF)? (2miF)"
¢[( T e kT 4 gh
= ¢(exp2miF).

Lemma 16, 05Z 50, 4 O —0 is an exact sheaf sequence.

ProrposrTioN 1.7.  Let m: M—V be the minimal good resolution of normal
two-dimensional Stein space V with p as its only weakly elliptic singularity.
Let O(—Z)/0(— Z—E) correspond to a line bundle L over (|E|,Og). Suppose
HYM,0 =C? and 0, is Gorenstein. Let Zy =Z,...,Zy,Zy, =Zy be the
elliptic sequence. Let D be the subvariety of B, consisting of those irreducible
components A; C B, such that A;N |E|#J. Suppose Z / D, the restriction of Z to
D, is equal to Zy /D, the restriction of Zg to D. Then L'*' is a trivial line
bundle over (|E|,OF)

Note. Let A=U;_ ,ADD=U;_A. If Z=37_zA, then Z/D=
Si_1ZA,.
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Proof. Let Zy=0,..., Z,=E,... be a computation sequence for Z. Look
at the following sheaf exact sequences (recall that B =2’,.=0ZB', ):

0—>0(—-B—2)/0( —B—E)—0(—B)/0(-B—E)
—0(—B)/O(—B—Z,)—0,

0->0(—~B—2)/0( —B—E)—0(—B—2)/9(—B—E)
—0(=B—Z,))/0(—B— Zy) —0,

0-0(-B—-2,_,)/9(—B—-E)->0(-B~-2,_,)/O(—B—E)
—0(=B—Z_3)/O(—B—2Z;_,)—0.

By the Riemann-Roch theorem, the usual long exact cohomology sequence will
show that either H(M(‘)( B/(9 E)=C=HY( /(9

E)) or HM,0(—B)/O(—B—E))= O HY(M,0(— /(‘) E)). We
claim that the latter case cannot occur. Otherw15e HM, (‘)( B—E))—
H%M, O (— B)) will be an isomorphism. However, by Theorem 2.1, which will
be proved later, we have mO =0 (— B). It follows that the maximal ideal cycle
Y >B+ E=— K’. This is absurd, and our claim is proved. Hence we have the
following exact sequence:

0— H°(M,0(—B—E))— H°(M,0(—B))
— H(M,0(—-B)/9(—B—E)) =C—0.
Let f € HYM, O (— B)) be such that the image of f in H(M,0(—B)/0(—
E)) is not zero. Then f&H%M,O(—B—E)). We are going to prove that
actually f& HYM,0(—B—A,)) for any A,;C|E|. Choose a computation
sequence of the following form: Z,=0, Z,=A,,..., Z,=E,.... Consider the
following sheaf exact sequences:

0—0(—B—2,) - 0(—B—2Z,) - 0(= B~ Z,) /(= B—Z,) —0,
0->0(=B—-2Z;) > 0(—B—Z,) »0(—B—-2,)/0(—B—-Z,) >0,

0—0(—B—E)—>0(—B—7_,)—>0(~B—7,_,)/9(~B—E) -0,

By the Riemann-Roch theorem, the usual long cohomology exact sequence will
show that HYM,0(—B—Z))—»HM,0(—B~Z_,)), 2<j<k, are isomor-
phisms. By composing the maps, we get that HM,O(—B—E))—
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H°M,0(—B—A)) is an isomorphism Hence f&HM,0(—B—A))). The
image of f in H'(M,0 (- B)/9(— B—E)) viewed as section of the line bundle
N over (|E|,0) corresponding to the sheaf O(—B)/0(— ) is nowhere
zero. Hence N is a trivial bundle over (|E|,0;)

Let us prove that for any A;Z B, A;N IEI =®. First observe that Z/D=
Zy,/D implies Zy /D= Zy /D for all 0<i<I. Suppose first that A,CB,_, and
A $ZBl If A ﬂ]El#Q then there exists A;C|E| such that A;n A, #J. Since
Zs_/D=7y/D and A:Zy=0, we have A-Z, >A:(Z, /D+A)=A:
(Zg/ D+A) A(Zg +A) 1 >0. This is a contradiction. Suppose that if A,C
B, and A;Z B, then A;N|E|=@. We want to prove that this is also true for
B, _;. Then the decreasing induction argument will complete the proof. Let
A;CB,_, and A,ZB,. If A,N|E|#OJ, then there exists A;C|E| such that
A;NA;#J. By the 1nduct10n hypothesis, 0=A;-Zy = A;-Z / D Hence A;Zy
>Ar( ZB /D+A)=A:(Zg /D+A;)=1>0. ThlS is absurd. Our cla.im is
proved

Hence

L'"'=0(~Z)/0(~Z—E)®,, - ®, 0(~Z)/0(-~Z—E)
1+1
=0(—-(I+1)Z)/09(-(1+1)Z—E)
= O0(-B)/0(-B—E).
It follows that L'*!=N is a trivial bundle over (|E|, ;). Q.ED.

Tueorem 1.8. Let 7:M—V be the minimal good resolution of normal
two-dimensional Stein space \% wzth p as its only weakly elliptic singu-
larity. Suppose H'(M,0)=C? HY(|E|,Z)=0, and v0, is Gorenstein. Let
ZpyZg,....25,25="75 be the elliptic sequence. Let D be the subvariety of B
consisting of those irreducible components A, C B, such that A,N|E|#@. If
Z/D=Zy/D, then 1=0, i.e., p is an almost minimally elliptic singularity.

Proof Let L be a line bundle over (|E|,O;) corresponding to
Z)/9(—Z—E). Consider the following commutative diagram:

HYELO%) S  HYEL2)

Lo 1
H1(|E|,®1§1) - H2(|E|,Z)
Jo2 R

1 N : £ ~ 2(A.
H(A,00)>HYE\Z)= & H%A,2)
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Since A;'Z=0, c(¢pyo¢y(L))=0. Therefore c*(L)=0. Look at the following
exact sequence:

0 =HY(E|,Z) > H(|E|, ;) - HY(E|,02) S H¥(|E|, ).

From HY(|E|,0;)=C, c*(L)=0, and the fact that L'*! is a trivial bundle by
Proposition 1.7, it follows that L is a trivial bundle itself. By Theorem 1.4 and
Theorem 1.5, p is an almost minimally elliptic singularity, i.e., I =0. Q.ED.

2. Calculation of Multiplicities. Suppose H'(M,0)=C? and vO, is
Gorenstein. In this section we identify the maximal ideal, and in particular, we
get a formula for the multiplicity of a singularity.

TreOREM 2.1.  Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose H'(M,0)=C? and 0, is Corenstein.l Let Zp =2,..., Zg,..., Zg,

Zy, =Zyg be the elliptic sequence. Let B= D, Zp. Then mO CO(—B). If
i=0

Proof. Since x(B)=0 by (1.4) of [36], dim H%(M, O5)=dim H'(M, O).The

two exact sequences
HY(M,0,) - HY(M, 0;) =C—0,
HY(M,0) - H(M,05) -0

say that dim H'(M, Op) is either two or one. If H(M,0,)=C? then H(M,0)
—H'(M, Op) is an isomorphism by dimensional considerations. It follows that
H'(M,0(—B))—H(M,0)is a zero map. As v, is Gorenstein, by the proof of

Theorem 1.4, we will get a contradiction. We conclude that H'(M, 0,)=C.
Consider the following commutative diagram with exact rows:

0—HO(M, O (— B))—H(M, 0)—>HM,0,)=C —0
\ X t
0—>HM,0(—Z))-H"M,0)->HM,0,)=C -0
By the five lemma, H(M,(— B))—H®M,0 (— Z)) is an isomorphism.
Since mO C O (— Z), it follows easily that mO CO(— B).

Suppose Zg:Z; < —2. We want to prove mO = 0 (— B). It suffices to prove
0(—B)CmO. Let us first show that

p:H(M,0(—B))— H(M,0(-B)/9(-B—A,)) (2.1)
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is surjective for all A C|E|. If E=A, is a nonsingular elliptic curve, then
—K’'=B+A,. Since H(M,0(—B—A,))=0 by Theorem 3.2 of [17], p is
surjective by the usual long—cohomology—exact sequence argument If |E| has at
least two irreducible components, then H'(M, 0 (— / O(— ) 0 by the
Riemann-Roch theorem. We are going to show HY(M, (9( A))=C=
HY(M, O (— B)). The exact sequence

=C2
0— H(M,0(—B)) — HY(M,0) - H'(M,0,) = C -0

shows that we indeed have H'(M,9(—B))=C. Choose a computation
sequence for Z of the following form: Z,=0, Z,=A; =A,,..., Z;_,, Z;=
E,- - -. The long exact cohomology sequence

0— HY(M,0(—B)/0(—B—A,)=C—H(M,0p, , )
—H°(M,05)=C—H'M,0(—B)/0(—A))=
—H'(M, 05,4 )>H'(M,05)—0

will show that H(M, O, 4 )=C? and H'(M, 0p)=
Consider the following long exact cohomology sequence:

0— H°(M,0(—B—A,)) » H'(M,0) > H/(M,0p, , ) = C*
HYM,0(—B—A,)) - H'(M,0) > H'(M,05,, ) = C—0.
We claim that H(M,0)—>H%M,0g, , ) is surjective. Otherwise the image R

of HY(M,0)—>H"(M, g, , ) will be isomorphic to C. The five lemma together
with the following commutative diagram with exact rows

0->H°M,0(—B—A)—»HM,0)» R =C-0
) Al R
0> H°M,0(-2Z)) —-H°M,0)-H°M,0,)=C—0

will show that HY(M,O(—B—A,)—H%M,0(—Z)) is an isomorphism. The
following exact sequences of sheaves

0-09(-B-2Z,) »09(-B-2,)>0(—B—-27,)/9(=B-2Z,) >0,
0->0(-B—2Z,) >0(—B-Z,) »0(—B—2,)/0(—B~Z;) >0,

0—0(~B—E)—0(—B=27_,)—O(=B—7_,)/0(~B~2Z)—0
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will show that HY(M, O (— B— Z;))—>H"(M, O (— B~ Z,_,)) are isomorphisms for
<j<k. By composing the maps, we get that HM,O(—B—E))—
H°M, 0 (—Z)) is an isomorphism. Since mO C O (— Z), the maximal ideal cycle
Y >B+ E=—K’. This contradicts Theorem 2.20 of [36]. We conclude that
HM,0)—>HM, 0y, , is surjective. It follows that H'(M,0(—B—A,))=C.
Look at the following exact cohomology sequence:

0—>H°(M,(‘)(—B—A))—>H°(M(‘)(— )
— H°(M,0(—B)/0(—B—A,)) > H(M,0(—B—A,))
— H'Y(M,0(-B)) - H'(M,0(—B)/0(-B—A4,)) >0.

Since HY(M,0(—B)/O(—B—A,)=0, H(M,0(—B—A,)—>H(M,0 (- B)) is
an isomorphism by dimensional considerations. Therefore p in (2.1) is surjective.
Given a point a, EA}, let FEHY(M,0(—B)/0(—B—A,)) be nonzero near a,
as a section of the line bundle assomated to (9 B)/O(—B—A,). Then
fEHM,0(—B)) projecting onto F will generate O(— B) near a,, since it
must vanish to the prescribed orders on the A, near a, and will have no other
zeros near a,.

In order to prove O(—B)Cm0, it remains to prove O(—B)Cm0O near
A-suppE. There are two subcases.

Case (1). There exists A; C|E| such that E-Zy +1<A;Z; < —lor E=A; is
a nonsingular elliptic curve. For any A, Z|E|, choose a computation sequence
for Z of the following form: Z,=0, Z,=A; =A,..., Z, Z ;1. Z, sy =2, +
E,..., Z, =Z, where suppZ,CA — A—E| and Ze1—Zpeo.s Z,oy—Z,=E is
part of a computation sequence for Z. Our hypothesis guarantees that the
computation sequence can be so chosen such that A,;  -Zz <0 by Corollary 2.3
of [36]. Consider the following exact sheaf sequence for n > 0:

(-B—Zz—nZ—2Z,) > 0O(—B—Zy—nZ)
(-B—Zz—nZ)/O(—B—Zy—nZ—Z,;) -0,
0->0(—B-2Z;—nZ—Z)—>0(-B-Zz—nZ-Z,_,)
—~0(-B=2;—nZ—7_))/0(~B=Z;—nZ—Z) -0,  (22)
(-B )2 O(=B=Z;—nZ~7, _)
(-B—2y,—nZ~2, _,)/9(—B—Zg—nZ—2Z).

We recall that (B+Zg)-A;<0 for all A,CA. Then O(—B—Z;—nZ-

Z,_,)/0(—B—Zy—nZ—1Z) is the sheaf of germs of sections of a line bundle
over A, with the Chern class — A, (B+Zg+nZ+ Z,_,). If |E| has at least two
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irreducible components, then from Proposition 2.5 of [36], A, -Z,,;_,=2 and
Ay Z;_y=1for j#r+k. So A,-(B+Zg+nZ+Z_,)<1 for all j and all n. Thus
H M,0(—B—2;—nZ~Z7_,)/9(~B—2;—nZ~Z))=0, and the maps
HY(M,0(—B- Zy—nZ—Z))— H'(M,0(—B— Zg—nZ—1Z;,_;)) in (2.2) are
surjective. Composing the maps, we see that

¢:H'(M,0(—B—Zy—nZ—-Z)) - H'(M,0(— B—Z;— Z))

is surjective for all n > 0. For sufficiently large n, ¢ is the 0 map by [6, §4, Satz
1, p. 355]. Hence H'(M,0(—B—Z;—Z))=0. If |[E|=A, is a nonsingular
elliptic curve, then A;-A;< —2. By Corollary 2.6 of [36], we know that
¢=2%=1 Since A;-Z, =1 for all j by Proposition 2.5 of [36], A,-?‘(B+ Zg+nZ
+7_,)<1 for all j#r+1 and A, (B+Zy+nZ+Z)< -1 Thus
HYM,0(=B~Zy—nZ~Z,_,)/O(—B~Zz;—nZ~Z))=0 for all j and n. A
similar argument to the one above will show that H'(M, 0 (— B—Z; — Z,))=0.
In particular H'(M,0(—B—Z;—A,))=0. Therefore, HYM,O(—B— Z;))—
HYM,0(—B—Z3)/0(—B—Zz—A,)) is surjective. We remark that the above
argument is also applicable to the following situation: With notation as above,
there exists A; Csupp E such that A;#A;  and A;Zp<0.

Case (2). |E| has at least two irreducible components and there exists
A,C|E| such that ,=1, A;Z; <0, and A;Z; =0 for all A;C|E| where A;#A,.
The proof of case (1) fails only because A, A #A,, ie., A,  -Zg <0. Suppose first
that A\NA, =A;NA#J,A Z|E|. Choose a computation sequence for Z
with E=Z,, A, =A,, and A, =A,. By Proposition 2.7 of [36], HY(M,0(—B—
Zy— Z;))=0 for all j. Therefore,

HO(M’(()(_B_ZE))_)HO(M’G(_B_ZE)/G(_B_ZE_Zk+1))

is surjective. It follows that HM,O(—B—Zg) and HYM,O(—B-—
Zy)/9(—B—Z; — Z,,,) have the same image R in H°(M,0(—B-
Zg)/O(~B—Zg—A,)).

00— HO(M:G(‘B‘ZE‘Zk)/o(‘B‘ZE‘ZkH))

— H(M,0(=B—2;)/0(=B=Zy = Z.,))
— H(M,0(—B—2Z;)/0(—B—Zz— 7)) >0

is an exact sequence. Thus the image of HY(M,0(—B—Z;—Z,)/0(—B—Zg
—Z, 1)) which is injected into H'(M, 0 (—B—Z;)/0(—B—Z;—A,)) via the
natural map is contained in R. If HY(M,0(—=B—Z;—Z,)/O(—B—Zg—Z;.,))
#0, then the elements of R have no common zeros on A; — A; N A, as section of
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the line bundle L on A, associated to O(—B—2Z;)/0(—B—2Z,—A)). If
HOM, O (=B - Zy — Z)/O(— B~ Zy — Z,,)) =0, then A,-(B+ Z)=0.
Hence H(M,0(—B—Z;)/0(—B—Zz—A,)=C. It suffices to prove that
H(M,0(-B~Zg)— HM,0(—B—2;)/0(—B—Z;—A,)) is not a zero
map. Since A, Z|E|, A;Z;=1 and AN A,;#, the coefficient of A, in Z, is
equal to 1. Hence A, Z =ZpZy< — 2 It follows that A, (B+Z;)< —2 and
dimH%(M, 0 (- B—Z;) /(‘) —B—Z;—A,) >3. The image of p: HO(M,0 (-
—Zg))— H(M,0(— B~ Z;)/9(— B— Zz— A,)) is a subspace of codimension 1
in HYM,0(—=B—2Z;)/0(—B—Zz—A,), and the elements of S have no
common zeros as sections of the line bundle L, on A, associated to O(—B—
Zx)/O(— B— Zz — A;) by Proposition 2.8 of [36]. It follows that H(M, O (—
Zg))— H(M,0(~B—Zg)/0(—B—Zy—A,)) is not a zero map.

In order to finish the proof of case (2), it remains to consider those A, Z|E|
such that A;NA;=@ and the computation sequence for Z starting from A,
must first reach A; in order to reach |E|. Choose a computation sequence for Z
of the following form E=2Z, A, =A, (A, ,NAF#D), A, =A,, where A,
(k+1<j<k+1t) are distinct from each other and not contamed in |E|. Smce

H'(M,0 (=B~ Zz— Z))=0 for all j by Proposition 2.7 of [36], HY(M, O (—
Zg)— HOM,0O(— B— Zg)/9(—B—Zy—Z,,)) is surjective. It follows that
HM,0(—B—Z,)) and H (M (9( B—2,)/9(-~B—Zy—7,.,,) have the
same image R in H'(M,0(—B—Z,)/0(— B—Z;—A))).

0—)HO(M’®(_B_ZE_Zk+t—1)/®(_B_ZE_Zk+t))
- HO(M7®(—B—ZE)/Q(_B_ZE—ZkH))
- HO(M,(‘)(—B—ZE)/(C)(—B—ZE—Z,C_H—I)) -0
is an exact sequence. Thus the image of H(M,0(—B—Z;~Z7,,,_,)/0 ( -
Zy—Z,,,) which is injected into HO(M,(‘)( B—Z;)/0(—B—Zz—A))) via
the natural map is contained in R. If H(M, O (— B— Zg—Zyyy )/9(—B—2Z,

—Z;,,))70, then the elements of R have no common zeros on A 1— (AN
A,.,.) as sections of the line bundle L, on A, associated to O(—B—
2;)/6(~ B~ 2y —A). 1 HM,0(~B~Z,— 7,,,_)/O (- B Z,~ 7, ))=

0, then A;+(B + Z)=0. Hence H(M, 0 (— B~ Z,)/9(— B— Z;— A,))=C. But
by mductlon we know that the elements of image of

HO(M,0(—B—Z)) > H(M,0(— B—Z;)/9(~ B— 2, -A,. )

have no common zeros on A, —(A,, NA 2) as sections of the line
bundle L, on A, _ associated to (9 —B—1Z)/0(-B-Zz—A,,, ) It
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follows that HO(M,0(—B—Zg))— H°(M,0(—B—Z;)/0(—B—Zz—A))) is
surjective. Q.E.D.

COROLLARY 2.2. Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose H'(M, 0)=C? and ,0,, is Gorenstein. Let Zy =7, Zg ,..., Zg, Zy, =
Z; be the elliptic sequence. Suppose ZpZp=—1. Let A, CIE | be such that
AyZg=—1. Let S be the image of p:H(M,0(—B— ZE))—->H°(M 0(—
Zg)/O(—B—Zg—A;)). Then mO =0 (— B) provided that the following condi—
tion holds: Let A, Z|E| and A,NA;#O; then either A-(B+Zg)<O0 or the
elements of S have no common zeros at A, N A, as sections of the line bundle L,
on A, associated to O (—B—Zg)0(—B—Zz—A)).

Proof. By the proof of Theorem 2.1.

CoroLLARY 2.3. Let m: M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose H'(M0)=C? and 0, is Gorenstein. Let Z =Z, ZB seees Zp, Zy be
the elliptic sequence. Then the multiplicity (,,0,) > E’, oZp- If ZE Zp< =2,
then multiplicity(,,0,)= —2_(Z;.

Proof. Theorem 2.1 says that mO CO(—S}_(Z,). Hence the maximal
ideal cycle Y relative to  is greater than or equal to B=3} i=0Zp- By Theorem
2.17 of [36] multiplicity (,0,) > — Y-Y. But — Y-Y > —(B)-(B)= —Z{_¢Z; by
Lemma 2.15 of [36]. Hence multiplicity (,0,) > —2’i=0Z32‘. The rest of the
corollary is easy.

3. Calculation of Hilbert Functions. Suppose H'(M,0)=C? and 0, is
Gorenstein. In this section we calculate the Hilbert function of ,0,. In
particular, the dimension of the Zariski tangent space is computed. Hence we
know the lowest possible embedding dimension of the singularity.

TueoreM 3.1.  Let V be a normal two-dimensionsal Stein space with p as
its only weakly elliptic singularity. Let m:M—V be the minimal good resolu-
tion. Suppose 1,0, is Gorenstein and H'(M,0)=C? Let Zy =Z, Zy,,..., Zg,
Z;, be the elhptw sequence. If Zy-Z; < —3, then m"=H O(A (‘)( n(B))), n>0,
where B=3'_,Zy.

Proof. 1t is true that H%(A,0(—B))= l_iz)n H°U,0(—B)),U a neighbor-
hood of A. Since mO =0 (— B) by Theorem 2.1, H(A, O (—B))=m.
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Step 1. We are going to show

HOM,0(—B—Z;)) ®H(M,0(—nB—Zj))

- H(M,0(—(n+1)B—2Z))
is surjective. It suffices to show

m:H'(M,0(—B—2;)/9(—2B—Z;))
®cHM,0(—nB—Z;)/0(—(n+1)B—Z;))
— HY(M,0(—(n+1)B—2Z,)/0(— (n+2)B—2Z;)) (3.1)

is surjective.

Let us first demonstrate this fact. We first show that the image of
H(M,0(—B—Z;)®:H'M,O(—nB—Z;)) contains H'M,O(—mB—2Z))
for some m. Let f,,...,f, € HY(M, O (—nB— Zy)) generate O(—nB— Z;) as an
O -module. The proof of Theorem 2.1 and Proposition 2.8 of [36] show that such
f;’s do exist. The O-module map

p:®,0(—B—Zg) > O(—(n+1)B—2Z;)
given by (g,,...,g,)—>2fg; is then surjective. Let K=kerp.

0>K—®,0(-B-2Z)
% 0(—(n+1)B—2Z;) >0

is exact. Multiplying by O (—kB), we get

0>KO(—kB)—>®,0(—(k+ 1)B — Z)—>0(—(n+ k + 1)B — 2Z,)—0

Lo 2 2
0- K - ©,0(-B-2Z;) - 0(-(n+1)B-2Z;) -0

with the vertical maps the inclusion maps, is commutative. The verification that
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the first line is exact is the same as the verification that (5.5) of [16] was exact.

HYM, ®,0(—(k + 1)B— Zg)—>HM,0 (—(n + k + 1)B — 2Z;))—~H(M,K O (— kB))
) A lo.
HOM,®,0(-B—2Z;)) — HOYM,0(—(n+1)B—2Z;) —HYMK)

is commutative with exact rows. By Theorem 5.4 of [16], o« is the zero map for
sufficiently large k. Then given h€ H(M, O (—(n+k+1)B—2Z,)), we have
Ax(h)=px(g) for some g, by exactness. Letting m=n+ 1+ k, we have that the
image of H(M, O (~ B~ Z,))®cHM, O (—nB— Zy)) contains H(M, O (— mB
—27Z;)) as required.

If m>n+1>2, we shall show that the image of H(M,0(—B— Z,))
®cHM,0(—nB—Z,)) contains HY(M,O(—(m—1)B—2Z,)). By induction
argument, we will be done. Look at the following diagram:

0
y
HOM,0(—mB — 2Z))
!
HO(M,0(—(m — 1)B — 2Z))

!
(- B-2Z) 0(—(m—2)B-Z;) O(=(m—1)B—2Z5)
”O(M’ ‘——m—zB—ZEE))@C”o(M’ 0(—(m—1>B—ZZ>) "HO(M’ o(-B-2,) )

.
0

with the vertical sequence exact because H'(M,0(—mB—2Z,))=0 and the
horizontal map surjective. Since H'(M,0(—2B— Z,))=0=HM,0(—(m—
1)B—Z)), it follows that the image of HY(M,0(—B—Z,))®-H"M,0(—nB
— Zg)) contains HY(M, 0 (—(m—1)B—2Z,)).

It remains to prove (3.1) is surjective for all n > 1. The proof breaks up into
three subcases:

(i) There is an A, (call it A,) such that Z,-Z, +1<A-Z, < —2.
(i) There is an A, (call it A,) such that A,-Z,=Z,Z,.
(i) A;Zp=—1or0,all A,C|E| Take A} Zy=—1.

In case (i), all irreducible components are nonsingular rational curves.
Choose a computation sequence for Z as follows: Zy,=0, Z,,..., L=E=7, _,
‘A Z,=7y,..., Z,=Zg,..., Z,=Zg ,..., Z,=Zg,..., Z =Zp =2,

M+1
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where A, =A,;. Consider

-B— zE )®CH°( —nB—Zg— c,,—z,_l))
’ )

T(BO,...,Bh,j):HO(M i e
E G

S5

ol O(—(n+1)B-2Z,~G,— Z_,)
M, 0(—(n+1)B~2Z,-G,-Z)
h
V -1<h<I-1 1<j<n_, where G, =3 Z,.
i=0

(3.2)

To show that (3.1) is surjective, it will suffice to show that 7(B,,...,B,,j) is
surjective V. —1<h<I—1, 1<j<r_,. Indeed, since(G,)-A; <O for all A;CA,
all of the first cohomology groups

HY(M,0(-nB—G,—%)) =0 and H'(M,0(—(n+1)B—2Z;—G,—Z)) =0

by Proposition 2.7 of [36]. Hence H(M, 0 (—nB—Z;)/0(—(n+1)B—Z;) can
be written via successive quotients:
0 H(M,0(—nB—Z;~ G,—Z)/0(—(n+1)B~Z))
— H(M,0(—nB—~Z;~G,—Z,_,)/0(—(n+1)B— Zy))
- HOM,0(=nB—2Z,~G,—Z;_,)/O(—nB—Zy— G,— Z;)) >0
—1<h<l_l, 1<i<fl_h,
where we denote 3;_}\Z, =0, Z,=0, B=3!_,Z; and G,=2}_,Z;.

of «, O(=(n+1)B—2Z;)
H (M’ (9(—(n+2)B—2ZE))

also can be written via similar successive quotients. Moreover, by Proposition
2.7 of [36] and the proof of Theorem 2.1, we have H(M, O (— B— Z —4;))=0.
Hence

R O(-B—Zg) R O(=B—Zg)
" (M’ G(—2B—ZE))_)H (M’ @(—B—ZE—A,}))
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Thus, if (3.2) is surjective for all 1<j<r_,, —1<h<Il-—1, then (3.1) is also
surjective.

Suppose that the target space in (3.2) is nonzero, i.e., —A;-((n+1)B+2Z;
+G,+Z,_,)>0. We need —A,-(B+Z,)>0 and “Ai,.‘("B"'ZE"' G, t+7Z_y)
>0. For j#k, ApZ_=1.1f —A,(B+Zg)>0, then — A, (nB+ Zg)>0. Hence
—A;-(nB+Zg+ G+ Z;_) > 0. If — A, (B+Z;)=0, then —A,-(nB+Z;+G,
+Z,_ )= —A;((n+1)B+2Z;+ G, +Z;_)>0. For j= k, A,:Z,_,=2. But by
construction A, -Z; < —2, and so (3.2) is surjective for all 0<j<7_,—1<h<I
-1

Let us do case (ii). Suppose |E| has more than one irreducible component.
The proof of case (i) fails only because the maps

O0(—B—Zg)
O(-B-2Z,~A,)

H(M,0(-B—Z)) —>H°(M,

and

O(-B—2Zg)
O(-B—Zg—A4A,,,)

need not be surjective where A, | Z|E| and the computation sequence starting
from A, in order to reach |E| must first reach A,. In (3.2)

O(-B—Zg)
' G(—B_ZE—AI))

HO(M,0(-B~Z;)) > HO(M,

H°(M

must be replaced by the subspace S of Proposition 2.8 of [36]. dimS= —A,(B+
ZE) = —AI'ZE = - ZE.ZE >2. A].SO

O(—nB—Zs— G~ %)
O(—nB—Z;— G,— %,

=—A; (nB+Z;+G,+Z,_,) +1
=-—nA;- Z;+1>2

dijo(M,

Under these conditions

O(=nB—Zy— Gy~ Z;_,)
O(-nB—Zy— Gy~ Z)

O(=(n+1)B-2Z; — G, — Z;_,)
O(—(n+1)B—-2Z;,— G, — Z,) )

7(By...,B,,k):S ®CH°(M,

— HO(M,
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is still surjective V. —1<h <I—1. Namely, consider the subspace T of S of
sections which vanish at some given point, say a €A,. T has codimension 1 in S,
If all the elements of T have a common zero at some point b#aEA, or if all
have a second order zero at a, then T, having codimension 2 in

O(-B—2Zg)
O(-B-Zz—A4,) )

HO(M,

represents all sections of a suitable line bundle over A,. Then 7(B,,...,B,;k) is
readily seen to be surjective as in proof of [16, Lemma 7.9, p- 144-146], but
more easily. If the elements of T have no common zeros, then think of T as a
codimension-1 subspace of the sections of a line bundle, and replace S by T in
the previous case. Eventually we see that (B,,...,B,;k) is surjective when dim
T=1.

Also in (3.2),

0(-B—-Z) )
O(-B-Z-4,,)

must be replaced by the subspace R, which is the image of

O(—=B—2Z)
O(-=B-Zz—A,,))

HO(M,

@it HY(M,0(— B—2Z;)) —> HO(M,

if @, is not surjective. By the proof of Theorem 2.1, case (ii), we know that
R, . has at most codimension one in

O(-B—Z)
0(-B-Zz—4,,) )

H 0( M,
Moreover the elements of R, have no common zeros as sections of the line

bundle on A, associated to O(—B—Z;)/0(—B—Zz—A4, ), and

(9(_nB—ZE_Zt+k_Gh)
im H° > 2.
dimH (M, 6("”B—ZE—Gh—Zt+k)

In fact, since we assume that

@k HO (M, 0(—B—2Z;)) —» HO(M,
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is not surjective, it follows from the proof of case (ii) of Theorem 2.1 that
—A,, (B+Zg)>1. We claim that — A, -(B+ Zg)#1. Otherwise

Yt o

G(_B_ZE) =C2
O(-B—Zz—A4,,) .

HO(M,

Inductive argument as in the proof of case (ii) of Theorem 2.1 will show that
there exists f € H(M, O (— B— Zg)) such that the image of f in

0 (9(_3'“213)
" (M 6('B—ZE“A1;+,))

as section of the line bundle associated to O (— B—Z;)/0(—B—Z;—A, , ) has
no zero on A; | NA, . Hence the image of f cannot be in the image of

G(—B_ZE_ZkH—l)) =C
O(-B-Zg—Z..,)

HO(M,

which is injected into

0 O(—B—ZE>
" (M @(_B“ZE‘AAH))

via the natural map and which is contained in R, ;. Hence g, is surjective.
This contradicts our assumption. We conclude that — A, -(B+Zg)>1 and
hence :

L)

diano(M, (")(_nB—ZE—Zt‘Fk—l_Gh)) > 2.

O(—nB— 2, Z,, ¢~ Gn)

Now repeating the argument above, we get that

G(_"B-ZE—'Gh—ZtHc—l))

- k). 0
7(Bg..., By k) : Ryy @ c H (M B 7,=C— 7.

(9(_(n+1)B—'22E_ Gh—zt+k—l) )

- HO(M’ O(—(n+1)B—2Z5— Gy~ Z,1y)
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is surjective. When |E|=A, is an elliptic curve, we know that

(o s Joer{n g )

0(—(n+1)B—2Z;—G,) )
O(—(n+1)B—2Zz—G,—A,)

- HO(M,

is surjective. This is shown in [27]. The result follows from the above and the

proof of case (i).
Let us now do case (iii). The proof of case (i) fails only because

O(—nB—Zy— G, —Zy)
0 =
H(M’ O(—nB—Zg—Cr-7) |
We can still get
O(=(n+1)B-2Z; = G,— Z,_,)
0
" (M 9(—(n+2)B—22,)

as an image as follows. There are two subcases. First, suppose that A, can be
chosen so that A,-Z; <0 and ¢, >1, where E=X¢,A,, 1<i<¢t. In this subcase
Zy=E. Then choose a computation sequence for Z; with A, -Z; <0, E=Z, =
Zg, Ay=A, and with a Z, g <k, such that A, =A,, A,Zsupp(E—A,—-Z,)
and A¢Z, <0, i#1, A C suppE. Such a computation sequence can be
formed by letting A, = A, only when A, C |E| cannot be chosen otherwise. Then
also 0,Z,—-Z, \,Z,,,—Z,_,...,Z—Z,_, is part of a computation sequence
for Z; = Z, which, by Corollary 2.3 of [36] can be continued to terminate a A
Recall that A,;-Z;<0 by construction. So by Proposition 2.7 of [36],
H'YM,0(—B—Z;—2,))=0 and also H(M,0(—nB—Z;~G,~(Z,~ Z,_,)))
=0. In place of (3.2) we use

AU S =y

of o O(=(n+1)B=2Z,~G,— 7, )
*”(M’ O(—(n+ 1)B—22,~ Gy~ zu)
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with the column on the right exact. Our result follows easily.

In the other subcase, there must be A}, A,, and A, all distinct, such that
A;Zp<0,1<i<3, and ¢;=1, 1<i<3. Choose a computation sequence for Z
with E=Z, such that A;-A,>0, A, =A,, and such that when Z, with q <k,
A, =A, is reached, A;Z, ;<0 for i#1,2. We may suppose A;CsuppZ,_,,
for otherwise we may reverse the roles of A, and A,, since A;*A; >0 and ¢,=1,
Z,_,+A,, is part of a computation sequence for Z;. 0, Z,~Zy vy~ 2y,
is also part of a computation sequence for Z;. Therefore

HY(M,0(~B-Z;—27, ,—A,) =0
and
HY(M,0(-nB—Z,~G,—(Z,—Z,_,)) =0

q

by Proposition 2.7 of [36]. In place of (3.2) we use

ol O(-B-2Zx—2,_,) )

O(-B=Zx—2Z,_,—A)

@(—nB—zE—Gh—(zk_l-Zq-l»)
O(—nB— 2y~ Gu— (Ze—Z,-1)

®H°(M,

S H M, O(—(n+1)B—2Z,— G, — %)
O(=(n+1)B=2Z,~ G, ~ %)
Look at the commutative diagram at the bottom of the opposite page:

with the column sequence on the right exact. The result follows easily.
Step 2. We are going to show
Y:HO(M __0(=B) 0(=nB) )

0
" O(—B-2%Z;) )®CH (M’ O(—nB-2%Z;)

0 O(—(n+1)B)
—H (M @(—(n+1)B—2zE)) (3.3)
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is surjective. The proof breaks up into two subcases.
(i) suppE has more than one irreducible component;
(i) suppE=A, is a nonsingular elliptic curve.

In case (i), all irreducible components are nonsingular rational curves.
Choose a computation sequence for Z as follows: Z,=0, Z,,..., =7, |+

ApoosZy=Zg,..., Z,=Zg,..., Z,=Zg,..., Z, =Zp =1, where A, Z;<0,
A, = A,. By Proposition 2.7 of [36],

HY(M,0(-nB-Z;~Z))=0 for n>1,j>0.

Consider
. 0 @( 0 ((-)( nB Z] 1)
v:H (M @(— ®cH M, ———— =L S (=nB=27)

O(—(n+1)B-2Z_,)

0
"*H(M’ 0(—(n+1)B-2Z) )

<j <ty (3.4)

O(-nB—Z,—Z,
y;:HO(M,G(O_( )®CH° M, (=n I~ ‘))

0

>

( O(-nB-Z;~7)
(9( (n+1)B—Zz—Z;_,)
—(n+1)B-2Z;-Z) |

<rO

To show that (3.3) is surjective, it will suffice to show that y;,y; are surjective
for all 1< j<r,. Consider the following exact sheaf sequence:

O(-nB-27) 0O(-nB-Z_,)

0= 9(CnB=3z,) ~ 0(-nB-22,)
O(-nB-2_,)
A S )
0(-nB-1Z)

O(-nB-2Z;~7) O(-nB-Z;~Z_,)
0(-nB-22;)  O(—nB—2Zy)
O(-nB—Z;-7Z,_,)

T T0(-nB-27,- 7, =0

-

1<j<r
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where B=3'!_,Z, and Z,=0.We claim that

o S g S

O(—nB-2Z; (—nB—Z,.H)

is surjective for all 0 <j<r,—1. The Chern class of the line bundle associated
to 0(=nB=2)/0(-nB—=Z,,) is —A, -(nB+Z)=—A, -Z, which is less
than 0 for j>1 and 0 for j=1. Therefore for 1>1 the claim is trivially true
because

o O(-nB-7) | _
H (M,m) = 0.

For j=0,

It suffices to produce a function f € H(M, O (— nB)) such that the image of f in

e aati)

is nonzero. By proof of Theorem 2.1 we know that

p:HO(M,(‘)(—B))—)HO(M,@—(@_—(;f—L—)) —¢

is surjective. There exists g € H%(M, O (— B)) such that the image of g in
O(-B)
H|M, ———
[ i)

is nonzero. Let f=g". Then f €H(M,0(—nB)) and f EH (M, O (—nB~Z))),
i.e., the image of f in

HO(M _f_ﬁB__)

O(-nB—-A4A,)
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is nonzero. We next prove that

O(—nB—27,-Z,) )

H{ M,
( ®(_nB_ZE—Zj+I)

=0, 0<j<r—-L

O(=nB—Zg—Z)/O(—nB—Zz—Z,,) is the sheaf of germs of sections of a
line bundle over A,;,, of Chern class —A,, (nB+Z+Z). Recall that by
construction A, Zp< —1. Hence — ALy (nB+Zg+Z)>—1. By the Serre
duality theorem and Riemann-Roch theorem, we have

=0.

O(—-nB—-Z,—Z)
H| M, !
( G(_nB_ZE_Zj+1))

Now the long cohomology exact sequence argument will show that

O(—-nB—Z,—Z) O(-nB—2Zz—Z)
0 1 0 1
H( * T O0(—nB—22;) )_’H(M’e(—nB—zE—z,“)

is surjective for all 0< j<7,—2. So far we have proved

o a)

can be written via successive quotients:

O0(-nB-2) O0(-nB-2Z_))
0 i 0 1
0= HM, @(—nB—zzE))"H (M 9(—nB—37,)
— H° M,——-——-—(g(_nB_Zi_l) -0,
0(-nB-2Z)
O0(—-nB—2Z;-Z) O(-nB-2Zz—Z_,)
0 1 0 1
0= HAM, —g 5z, )_) (M’ 0(—nB—2Zy)

O(-nB-Z,~Z,_,
" O(-nB-2,-7)
<

))—)O,
1<j<r,

>

where B=2._(Z, and Z,=0.
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By the proof of Theorem 2.1, we know that

0 0 O(-B
HO(M, O (- B)) > H (M,m)

is surjective for all A; C|E|. Hence

0 0(-B) 0 0(=B)
" (M @(—B—zzE))_’H (M’ @(—B—A,.,))

is surjective for all A, C |E|. Look at the following commutative diagrams:

0(—B \ 0(-nB-2,) 0(—(n+1)B-2Z)
1M, 52 o (M,———@(_ng 2ZE)) —’H°(M"o‘<~<;m;‘>)’

: B(Blz))

—H M,

*O(—nB—-2%)

o(- (n+1)B 1)
"B(= (n+1)B 2Zs))

M,

M@(—nB—Z,_l)) Lol 8 (n+1)B 7 1))’

0(=(n+1)B-2)

Joer (
Jour| (
T B ) e L )}
Joer (v
Jour| [+

0(— (n+l)B 2Z)

E

(‘)(—nB—ZE Z,_, )—>H° (n+1)B Zz—~Z_,y) )

(n+1)B 2Z;)

. o(—nB—zE )—>H°

1<j<n,

M (n+l)B Zp~2;_,)
T O(=(n+1)B-2;-2) |

Thus if y; and v/ are surjective for all j, (3.3) is also surjective. By the
Riemann-Roch theorem, the target space of y; is nonzero only if j=1. In that
case, — A, -(B)=0and — A, -(nB)=0. Hence y; is surjective for all j. It remains
to prove y/ is surjective. Suppose that the target space v/ is nonzero, ie.,
—A;(n+1)B+Zg+Z_,)>0. We need —A,;-(B)>0 and —A,-(nB+Zg+
Z;_,)> 0. But this is obviously true because A,-(B)=0 for A, C|E|.

In case (ii), Zz=E=A, is an elhptlc curve. By Proposmon 2.7 of
[36], H'(M,O(—nB—E))=0 for n>1. Hence HY%M,O(—nB))—
H%M, 9 (—nB)/0(—nB— E)) is surjective for all n > 1. We have the following
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commutative diagram:

0 0
l \:
HO(M O(—B-E )®CH°(M 9(=nB—E) )—-)HO(M og—(n+1)B—E2)

> O(—nB—2E) >0(—(n+1)B—2E)

" B(—nB—2E) * §(=(n+1)B—2E)

y:Ho(M,—(i(_—B-L——)®cH°(M (‘)lg—nBQ )—-)HO(M Og—lgn+l!B! )

l l {
l A
0 0

with the column sequences on the right exact. Let N be the line bundle over
A,=E whose sheaf of germs of sections is O(—B)/0(—B—E). By the
proof of Proposition 1.7, N is a trivial line bundle over (A;,0,) and
H°(M,0(—B)/O(—B—E))=C. Since

O(—nB)/O(—nB—E)
= 0(—-B)/9(—~B-E)®,,...®,,0(—B)/0(-B-E),

s

n

O(—nB)/O(—nB—E) corresponds to a trivial line bundle N" over A, =|E|.
Therefore HM,O(—nB)/0(—nB—E))=C by the same argument as in the
proof of Theorem 1.5. It follows that the map ¢ is surjective. The map ¢ is also
surjective. This is shown in [27]. It follows that v is surjective. This completes
the proof of step 2.

Step 3. To show that m"=H%A,O(—nB)), we shall show that
H°M,0(—B)®:HM,0(—nB))-HM,O(—(n+1)B)) is surjective. Con-
sider the following commutative diagram:

0
d
HOM,0(—B - Zz)) ®c HOM,0(—nB— Zg)) — H(M,O(—(n+1)B—2Zg)) -0
{ l {
HYM,0(-B)) ®c HOYM,0(-nB) — HYM,O(~(n+1)B) —0
l d
GQ—B! 0(—nB! Og—(n+lzB!
(25 ek (Mg 2 ey )1 (M s e )
l
0

with the column sequence on the right exact. The first row and third row are
exact by step 1 and step 2 respectively. Since H'(M,0(—nB—2Z))=0 for
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n>1 by Proposition 2.7 of [36], it follows that HOM, O(—nB))—
H°(M,0(—nB)/0(—nB—2Z;)) is onto for n> 1. Consequently, the second
row is exact. Q.E.D.

Tueorem 3.2.  Let V be normal two-dimensional Stein space with p as its
only weakly elliptic singularity. Let m: M—V be the minimal good resolution.
Suppose 0, is Gorenstein and H'(M, 0)=C2 Let Zy,=Z,Zg,..., Zy, 7 be
the elliptic sequence. If Zy-Z; < —3, then dimm"/m"*'= — n(E',._OZ,%), n>1

Proof. The long cohomology exact sequence

O(—nB) )

0 1

- H'M,0,z) > H (M, (= (n+1)B)
—)HI(M,(‘)(,,H)B)—)HI(M,@"B)—)O

says that

dimH(M,0(—nB)/0(—(n+1)B)) — dimH'(M,0(—nB)/0(—(n+1)B))
=dimH(M, 0 ,.+1)5) — dim H'(M, O, 1,5)

—dimH(M, 0,,5) +dim H'(M, 0,;)

=x((n+1)B)—x(nB)

=x(B)+x(nB)—n(B)- (B) —x(nB)

1
e
i=0

Consider the following cohomology exact sequence:

0— HM,0(—(n+1)B)) -» H'(M,0(—nB))
O(—nB)

"HO(M’ 9(=(n+1B)

)—)H‘(M,(‘)(—(n+1)B))

 HY(M,0(-nB)) - HI(M, ﬁ-}%) 0.
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By Theorem 3.1,

dimm"/m"*1
= dimH°(M, O (- nB))/H(M, 0(~ (n+1)B))
= di 0 (9(_"3) . 1
= dimH (M,W)—dlmlf (M,(f)(—(n+1)B))

+dimH*(M, 0 (~ nB)) —dimH‘(M,

1
= —n( > ZI;"') +dimH'(M, 0(—nB)) —dimH'(M,0(—(n+1)B)).

i=0
We claim that HY(M,0(—nB))=C for all n>1. Choose a computation
sequence for Z of the following form: Z,=0,..., ZL=E,..., Z, =Z,...,
2, =Zg,..., Z,=2Zy,..., Z,M=ZBO=Z. Consider the following sheaf exact
sequence:

0 A=nB-2) 9(=nB) L, _O(=nB)

O0(-nB—E) ~ O(-nB—E) _ O(-nB—2,)
0 0(—nB—-2Z,) 0(-nB-127,) O(—=nB-127,) 0
T O(-nB-E) _ 0 T 9(—nB-27,)

O(-nB-%_,) O(-nB-2%_,) O(-nB-7%_,)

O(—nB—E) ~ O(-nB—E) O(-nB—27_,) >

0—

By the proof of Theorem 2.1, we know that there exists f € HYM, 0 (—nB))
such that the image of f in H(M, 0 (—B)/0(— B— Z,)) is nonzero. The usual
long-cohomology-exact-sequence argument will show that

HI(M,(‘)(—nB)/(‘)(—nB—E)) = C.
Since H (M,0(—nB— E))=0, the exact sequence
(M, 0 ))=0, th q

H'(M,0(—nB—E)) - H\(M,0(—nB))

‘)Hl(M’ @(G—(;;—B)E))"O

will show that H'(M,0(—nB))=C. Hence dimm"/m"“=—n2’i_ozl;f.
Q.ED.
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4. Absolute Isolatedness of Almost Minimally Elliptic Singularities. The
name absolutely isolated singularity is given in [3] and [14, 15] to a two-dimen-
sional normal singularity, realized in C®, which can be resolved by means of a
sequence of g-processes with centers at points. It is proved in [3] and [32] that
double rational points are always absolutely isolated and, conversely, an arbi-
trary double absolutely singularity in C? is rational. In this paper we shall say
that a two-dimensional isolated singularity is absolutely isolated if it can be
resolved by means of a sequence of o-processes with centers at points, without
requiring, in what follows, that it should be realized in C®. It is in this sense
that Laufer proved that minimally elliptic singularities which are not double
points are absolutely isolated. In this section, we will prove the following
theorem.

THEOREM 4.1. Let m:M—V be the minimal good resolution of normal
two-dimensional Stein space with p as its only almost minimally elliptic
singularity. If Zp-Zp < —3 and 0, is Gorenstein, then p is absolutely isolated.
Moreover, blowing up p at its maximal ideal yields exactly those curves A; such
that A;Z<0. The singularities remaining after the blowup are the rational
double points and a minimally elliptic singularity corresponding to deleting the
A; with A Z<0 from the exceptional set. The self-intersection number of the
fundamental cycle of the minimally elliptic singularity is less than or equal to
-3.

Proof. Since p is an almost minimally elliptic singularity, the elliptic
sequence is of the form Z,Z;. Let 0: V'—V be the blowup of V at the maximal
ideal m at p. Let 4, ,...,A,; be those irreducible components of A = 7 Y (p)=
UN_,A, for which Z-A, <0. We consider the curve Al|(A,-l u--- UA,.k). Gener-
ally speaking, this is a reducible curve. Let |E|,C,,...,C, be its connected
components. For any A;CC, 2<j<s, we have A,N|E|=, so —A;-A;+2g—
2=A;K'=—A;(Z+E)=—A;Z=0,1ie., A;A;= —2. Therefore, C,,...,C are
exceptional sets of rational double points. We shall contract to a point each of
the curves |E|,C,,...,C, on the surface M. We obtain a surface M’ with s—1
rational double points and one minimally elliptic singularity. We denote by A’
the image of the curve A on the surface M’. In order to prove the theorem, we
need the following proposition.

ProposiTiON 4.2. The surface M’ is biholomorphically equivalent to the
surface V.

Proof. Use the notation of Theorem 4.1. Let 7': M—V’ be the induced
map. 7’ is holomorphic, since mO =0 (— Z) by Theorem 2.1. Choose f,,...,f; €
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H(M, 0 (—Z)) project to a basis of m/m? Then o~ '(p) is the image of A in
P?! of the map given by the (well-defined) homogeneous coordinate
[£1(9)s---f1(q)], g EA. Suppose that f; generate O (— Z) near g. Then functions
near 7 (q)EV’ include quotients g/f where gEm" and r is a nonnegative
integer. 7'*(g/f") is holomorphic near g. More precisely, let a neighborhood U
of the singular point p €V be realized in the space C% and let z,,...,2; be
restrictions of coordinates in C" to U. We consider the functions f,=7*(z,) in a
neighborhood of the curve A on the surface M and define by means of them the
mapping 7": M— V’. Let a be a point on the curve A. It follows from the proof
of Theorem 2.1 that there exists a neighborhood U, of the point a and a number
1<i<d such that the divisor of the function f; in the neighborhood U, is
precisely the cycle Z and f, = g;f;, i7j, where g; are holomorphic functions in
U,. Then by definition the mapping 7 transfers U, into the neighborhood A, of
the set o(C?%), the blowup of C? at the maximal ideal at origin p, with
coordinates (t,,...,_ 1,2t 41,---» 1) in accordance with the formula

7(q) = (81(q)s--»8i-1(9):£(9):8i41(9)s---.£4(q))s (4.1)

where q € U,. Since the mapping ¢ on the neighborhood A, is given by the
formula o(ty,....% 1,2, b1 s ta) = (130 120 Z b1 -5 147), the map-
ping o o 7’ transfers the point g € U, to the point (f,(q),...,f;(q)), ie, =007
It is easily verified that the mapping defined in this way is concordant on the
intersection of the neighborhoods U, and U, a,b€A. If we put 7'=06""o7 on
M\A, the mapping will be concordant on the intersection of U, and M\A.
Thus we have defined a holomorphic mapping 7’ of surface M into V' which is
biholomorphic on M\A. As we know, the manifold o(C?) is a line bundle with
fiber C and base CP?"1, and 7~ !(A)=0"}(p)CCP? . The mapping 7'/A
can be given as whole by the formula

7'/A(q) = (fi(q).--.fulq), qEA

To prove the proposition, it is sufficient to show that the mapping 7’ contracts
the curves |E|,C,,...,C; to points, and is biholomorphic on M—(U{_,C,U|E|).
Also we must show that V' is normal.

If A,C|E|, by almost minimally e]lipticity, we have A;Z=0 and

H'M,0(=2)/0(—Z-A,))=C. If A,CC, 2<j<s, then A, is a nonsingular
rational curve and HO(M,0(—Z)/0(— Z A )= C Since mO =0(—Z) by
Theorem 2.1, H(M, 0 (— Z))—)HO(M 0( Z)/(‘) A,)) is surjective for all

A; CU;_,C,U|E|, and the mapping =’ transfers the component A, to a point. If
A;'Z<0, then A, Z|E|. We shall first show that 7’ is biholomorphic near the
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regular points R, of A within A;. There are two subcases. First suppose that
Ay (Z+ Zg) < —1. If there exists A; C|E| such that ZyE+1<A;-Z; < —1, then
as in the proof of Theorem 2.1, case (i), H'(M,0(—Z—Z;—A,))=0. Hence
HM,0(—Z—Zy))»H'M,0(—Z—Z; —A))) is surjective. Elements of
H(M, 0 (—Z— Z)) suffice to show that 7’ is biholomorphic on A,\(A,N |E|).
We claim that actually 7" isomorphically embeds A, in CP4~. For A,N|E|=
&, this is clear. Suppose A;N |E|5ﬁ@ Let A;C|E| such that A;-A,=1.
SinceH(M, O (— Z))—»H"M,0(—Z)/0(— Z—A,))=C is surjective by the
proof of Theorem 2.1, there is an fEHYM,0(—Z)) whose image in
H °(M 0(-2) / (9 Z A))) as a section of h‘ne bundle on A, associated to
/ O(- ) is nonzero at AjN A,=A, N |E|. Hence 7’ isomorphically
embeds A, in CP"’ !. Suppose that A, has the following property: Any
computation sequence for Z starting from A, must first reach A; in order to
reach |E|, where A;Zp=ZyZ; If HM,O0(—Z—Z;)—HM,0(—
Zg)/0(— Z—Zz— A))) is surjective, then the previous argument shows that 7’
isomorphically embeds A,. Suppose HM,O(—Z— Z;)—H"M, 0 (-
Zg)/O(—Z—Zg—A))) is not surjective. By the proof of Theorem 3.1, we have
— A (Z+ Zg) >2. So dimHM,O (= Z~ Zp—Z4,,_))/O(~ 2~ Zg— %, ) >
2, where {Z,} is the computation sequence chosen in Theorem 2.1, last part of
case (2). As proved there, the image of H'M,0(—Z—-Zz—Z,,,_,)/9(—Z—
Zy— Zy,,) which is injected into HM,0(—Z—Z;)/0(—Z—Z;—A,))) via
natural map is contained in R, the image of HM,O0(—Z—Z;)—
H%M,0(—Z—Zz)/O(— Z— Zz— A,)). Therefore elements of H/(M, O (—
Zy)) still suffice to show that 7’ is biholomorphic on A;—(A;N|E|). Conse-
quently 7’ isomorphically embeds A; in CP¢~, The other subcase is A" (Z +
Zz)=0. Then A,N|E|#J. Let A C|E|, ArA;=1. Choose a computation
sequence for Z as follows: Zy=0, Z,=A; =A,, Zy=Z7,+A,,..., Z, ,,=Z,+
E,.., Z ,y=Z,+Z,... . Consider the following sheaf exact sequence:

@(—Z—Zz) (9(—Z—A1) (9(—Z—A1)
0(—2—2,—A,)  O(-2-2,-4)  O(-2-2,)

0—

0(-2-2)  8(-2-%_) ©(-2-%.)
O0(—Z—Z,—A,) O(—Z—Zz—A,)  O(-Z-Z)

0—

0(-2-12,) @(—z:—z,o_l) 0(-z-2,,)

0.
0(-2-2,,) O(-2-2,-4)  O(-2-2,)

0>
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By Proposition 2.5 of [36], we know that A;-Z; ;=1 for j#k+1and A, -Z =
2. Hence the Riemann-Roch theorem and the usual long-cohomology-exact-
sequence argument will show that H(M,0(—Z—A,)/0(—Z—Z;—A,)=C.
Consider the following exact cohomology sequence:

H'M,0(-Z—-Z;—A))) - H'(M,0(—Z—-A)))
—>H'(M,0(—-Z—-A,)/0(-Z—-Zz—A,)) —>0.

If there exists A;#A; such that A;-Z; <0, then by the proof of case (i) of
Theorem 2.1, H'(M,0(—Z—E—A,))=0. Hence H'(M,0(—Z—A))=C. If
Aj-Zy=ZgZy, the elements of S which constitute the image of H(M, O (—
Zg)—>H(M,0(—Z—Z;)/0(—Z~Zz—A)) as section of the line bundle
associated to 0(—Z—Z)/0(—Z—Zy—A)) have no common zeros on A,
Since H°(M, 0(—Z — Zy)/0(—Z—Z; —A)))=C, we conclude that
HM,O0(=Z—Zg))>HM,0(—Z— Zy)/O(— Z—Zz — A))) is surjective. The
following cohomology exact sequence

0 HM,0(~Z~Zz—A,)) > H(M,0(— Z— Z))

—>H°(M,(9( Z-72,)/0(~Z~Zz—A) =C
HY(M,0(-Z~Zz—A,)) > H(M,0(—Z— 7)) =0

—>H1(M,(9 ~Z-2.)/0(~Z—Zz—A,)) -0

shows that H'(M, 0 (— Z— Z; — A,)) =0. Therefore we still have H(M, 0 (—
—Zy—A,))=C. Now consider the following exact cohomology sequence:

O—>H°(M,(9(—Z—A))—>H°(M(9(— )
—H(M,0(=Z)/0(-Z~-A,)) > H'(M,0(~Z~A,))
HI(M,G(—Z))_>H1(M,®(— )/0(—=Z—A4,)) —0.

By Theorem 1.2 and (1.6) of [20], H'(M,O(— Z))=C. The Riemann-Roch
theorem and Serre duality will show that H (M, 0(—Z)/0(—Z—A))=0.
Therefore H(M,0(—Z—A,;))—>H'(M,0(— Z)) is an isomorphism by dimen-
sional considerations. It follows that H(M, 0 (— Z))—-H%M, 0 (- Z)/0(—

A,)) is surjective. Hence 7’ isomorphically embeds A, into CP¢~!. Let g be a
point on the curve A,, A;-Z<0, which is not a point of intersection of
components. The mapping 7’ acts in accordance with the formula (4.1), and it
may be assumed that f; = 7%, where 7=0 is the local equation of the curve A,,
and z; is the coefficient of A, in the cycle Z. If 2, =1, then the formula (4.1)
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gives 7'(z) = (7(z), g5(), . ..,Z4(%)), where the point z lies in some neighborhood
of the point q. Clearly the rank of the differential dz’ is 2, since we know by
the previous proof that the mapping 7’ on the curve A, is a biholomorphic
embedding.

Let z; > 2. To complete the proof that 7’ is biholomorphic near A, for each
g€ R,, we need a function g€ H(M, O ) vanishing on A, to exactly order z,+1
near q. Let Y be the least cycle such that Y >Z+Z,+ A, and A;-Y <0 for all
A,. With Y=3yA, 1<i<n, we claim that y, =z +1. Suppose first that
(Z+ Zg)-A;<0. Y is formed via a computation sequence as for fundamental
cycles: Yo=Z+Zg, Y,=Z+Zz+A,, Y,,..., Y,=Y. Then 0,4, Y,— Y,,.... Y,

=Y, is part of a computation sequence for Z. Then A, =A, 1<j<r, is
impossible, because if A;*(Y;_;— Yp)=1, then A;"Y;_, <0 and Y; was not part
of the computation sequence for Y. While if A (Y;_;—Yy) =2, the other
possibility, then Y;— Y, contains a minimally elliptic subgraph and A, =A,C
|E|. This contradicts our assumption that A, Z|E|. Notice that the above
reasoning also shows that A, Zsupp(Y —7Y,) if Ay, Y,<0. If A}-Y,=0, then
A, N|E|#, since A;+Z <0. In this case, Y is actually the least cycle such that
Y>Z+A, and Y-A; <0 for all A;CA, because E-Z=0 and |E| is connected. Y
can also be found via a computation sequence as for fundamenta] cycle as
follows: Xy=Z, X;=Z+A,,..., X,=Y. Then 0,A, X, — . X,— X, is part
of a computation sequence for Z. A=A, 1<j<ris 1mp0551ble because if
Ay (Xi_1— Xp)=1, then A1 _1<0 and X; was not part of the computation
sequence for Y. If A;- (X;_, — X;) =2, the other possibility, then X; — X, contains
a minimally elliptic subgraph and A, =A, C|E|. This contradxcts the fact that
A,Z|E|. To prove that there ex1sts g€ HOM,0) vanishing on A, to exactly
order z;+1 near g, we have to examine Y more closely. Suppose firstly that
AN|E|#9D. Y=2+Zy+D,+A,+ D, where D,,D, are positive cycles such
that |D,|C|E| and |D,|N|E|=C. Hence ZgY=ZpZp+Zy-D,+ Zp-A,=Zy-
Zg+Zg'D,+1< —2. Let A,C|E| such that A;;A,=1. If there exists A;C|E|
such that A;-Y<O0, A;#A;, then by the proof of Theorem 2.1, case (i),
HY(M,0(—Y—A,)=0. Hence H/(M, 0 (—Y))-»H*M,0(-Y)/0(-=Y—-A,)
is surjective. Suppose A;Y=0 for all A;C|E|, A;#A;. Choose a computatlon
sequence for Z with E=7,, A, =A;, A, =A, By Proposition 2.7 of [36]
H'(M,0(—=Y~Z))=0 for all j. So H'(M,0(~Y))->HM,0(— /(‘)
Zy+1)) is surjective. It follows that H/(M,O(—Y)) and H® M @ Y)/0(—
—Z,+1)) have the same image R in H(M,0(—Y)/0(—Y—A)), and 0—>
HM,0(=Y=2) /0(=Y=2,,) = HO(M 0(=7) /(9 —Y=Zy) &
H MO(-Y)/0(-Y—-2Z, )—>O is an exact sequence. Thus the image of
(M (‘) (-Y—-2,)/0(=Y = Z;,,)) which is injected into
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H°M,0(-Y)/O(—Y—A,) via the natural map is contained in R. If
HM,0(—Y-2,)/0(—Y—Z, )70, then the elements of R have no com-
mon zeros on A; —(A; N A,) as sections of the line bundle L on A, associated to
0(-Y)/0(-Y—-A). If HAM,O0(-Y—-2)/0(—Y—2Z,,)=0, then A;- Y=
0. So H'M,0(-Y)/0(—Y—A,)=C. We claim that H(M,0(-Y))—
HOM,0(=Y)/O(~Y—A)) is surjective. It suffices to prove that the map
is not zero. Since the coefficient of A, in Z; is one, A;Y< —2 and
dim HOM, 0(-Y)/O(—Y—A;)) >3. The image of p:H'M,0(-Y))—
HM,O0(-Y)/0(- Y A)) is a subspace S of codimension 1 in
HOM,0(—Y)/0(—Y—A,). Hence elements of S have no common zeros as
sections of the 11ne bundle L, on A, associated to O(—Y)/0(—Y—A,) by
Proposition 2.8 of [36]. Suppose secondly that A;N|E| =®. Let A, QIEI such
that the computation sequence starting from A, in order to reach |E| must first
reach A;. Let C be the union of A, and connected components C, of those A;
such that A;(Z+Zg)=0 and AN C,#Q. We claim that Y=Z+7Z;+Z,
where Z is the fundamental cycle on C. Obviously Y >Z+ Z; + Z.. For any
A;2C and AN C+#J, we have A;(Z+Z;)<0. By previous argument, we
know that A; Csupp(Y—Z—Zg). Hence Y<Z+Zy+Z. If A,2C and A;Z¢
=2, then A,C|E| and supp(E —A,)CC. If 7 is the minimal resolution, then
Z; = E and the coefficient yz, of A, in Z is equal to one. If 7 is not the minimal
resolution, we still get zz,=1 by Proposition 2.2 of [36] and case-by-case
checking. Hence A, Zy=Z;-Z; < —3 and A, Y < —1. The proof of case (i) of
Theorem 2.1 shows that H'(M,O(— Y—A,))=0. Therefore H'(M,0(—Y))—
H'YM,0(—Y)/0(—Y—A,)) is surjective. Suppose for all A,ZC, A, Z-<1. If
Z; =E, then the connected components C, of C — A, are exceptional sets of
rational double points. Z;-Z; < —3 will imply that either H'(M,0(—Y—A)))
=0or Z;'Y< —2.If Z, #E, Z,-Z, < —3 still implies that either H(M,0(—Y
—A,))=0 or Z;-Y< —2 by Proposition 2.2 of [36] and case-by-case checking.
If there exists A, C|E|, A, #A,, such that A.-Y <0, then the proof of case (i) of
Theorem 2.1 shows that H'(M,0(— Y—A,))=0. Therefore we may suppose
that A;-Y< —2. Choose a computation sequence for Z with E=7, A, =
ALA, NAFD, A=Ay A Z|Z,, 4|, and such that A, k+1<j<k+t,
are d15t1nct from each other and not contained in |E|. By Propos1t10n 2.7 of
[36], H'(M, O0(-Y—-2))=0 for all j, so H*M,O0(-Y)) -
H°M,0(-Y)/O0(—Y—Z.,) is surjective. It follows that H(M, O (— Y)) and
H°M,0(-Y)/O(—=Y— Z,,,) have the same image R in
HO(M, 8 (~ Y)/O (= Y—A,), and 0>HM, O (~ Y~Z,,,_)/O(~ Y~ %)
SHOM,0(=Y)/O(~ Y~ Z, ))—>H(M,0(~Y)/O(~Y~Z,,, ))-0 is an
exact sequence. Thus the image of HYM,0(—-Y—-2Z,,_)/0(-Y—-Z.))
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which is injected into HY(M,0(—Y)/0(—Y—A))) via the natural map is
contained in R. If H(M,0(—Y—-2Z,,,_,)/0(—Y—2Z,, )0, then the ele-
ments of R have no common zeros on A;—(A;N A, ) as sections of the line
bundle L; on A, associated to O(—Y)/0(—Y—A,)). If HY(M,0(—
Zrre-)/O(=Y—2Z,,))=0, then A;-Y=0. Hence H'(M,0(—Y)/0(—
A,))=C. But by induction, we know that the elements of the image of
HOM,0(=Y)—>HM,0(-Y)/0(=Y~-A, ) have no common zeros on
A, .~ (A, NA, ) as sections of the line bundle L, on A, |
associated to O(—7Y) / O0(=Y—-A4,,, ) It follows that HO(M 0(-Y)—
H°M,0(—-Y)/0(—Y—A,)) is surjective. So far we have proved that there
exists g€ H(M, O) vanishing on A, to exactly order z;+1 near q.

Let us now show that 7’ is as one-to-one as possible on A, i.e., 7’ should
map the connected components |E|,C,,...,C, to distinct points and otherwise
be one-to-one on A. We showed above that 7’ is one-to-one on each A; with
A;*Z<0. So suppose that A;*Z<0 and Ay Z<O0. Form Y, the least cycle
Y >Z+Zg+A such that A;-Y<O for all A;. If both A, and A, are disjoint
from |E|, then A-(Z+ Z;)<0, Ay (Z+Zz)<0. As shown in the previous
paragraph, A, Zsupp(Y —Z — Z). In the other case, interchange the role of A,
and A,. If necessary, we may assume that A, N|E|#J. Then Y is the least
cycle >Z+ A, such that A;-Y <O for all A;. As shown in the previous para-
graph, we still have A, & supp(Y — Z — Zj). Since mO =0 (— Z), by the proof of
the previous paragraph, we know that there are functions which separate A,
from any given point in A, — B;, where B;=|E| or C, 2<i<s, and BN A,#J.

Finally, we must examine V' at the singular points of 7'(A). Suppose that
gEANA,, A Z<0, and A, Z<0. Let f,€HY(M,0) generate O(— Z) at q.
The function f; has in a neighborhood of g the form f; =772 where 7,=0,
7,=0 are the local equations of the curves A, and A,. Since A, and A, intersect
at the point q transversely, the functions 7, and 7, may be taken as the local
coordinate system on the surface M. If both A; and A, are distinct from |E|,
then there exist f,, f;E€ H(M, 0) such that near g

fo=duri i, ¥s(q) # 0,
fa = dgrirset?, ¥s(q) # 0.

In this case the formula for the mapping 7’ looks like

‘77'/ = (wa;2,4/271’¢372’g4" "’gd)

and its differential is of rank 2 at q. Suppose A;N|E|#J. Then A,N|E|=2.
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The previous proof shows that there exists f,€ H/(M,0) such that near q,
fo=vori 152, where yy(q)#0. If A;-Z< —2, there is also a function f;€
H°(M,0) such that near g, f;= %7‘1“ %2. The same reasoning as before will
show that the differential of 7’ is of rank 2 at q. Suppose A;-Z= —1. Then
H°M,0(-2)/0 (— Z— A))=C2 We need H°(M 0(-2)—
H%M,0(—Z)/0(—Z—A,)) to be surjective. But this has been shown on pp.
847-848. Choose lnstead f:EHOM,O(—Z)) to have a first-order zero at g in
H°M,0(—2)/0(—Z—A,)). Then near g, f, looks like 7{r3%(at,+ ...), where
a50. In this case the formula for the mapping 7’ looks like

] ('rf’7'2‘2,¢2'rl,wr2+ ...,g4,...,gd), a # 0,

and its differential is of rank 2 at q. Lastly, let C be a connected component of
Ui-sC, U|E|. We need that V' is normal at #'(C). Take A, CA’. Let Y be the
least cycle such that Y >Z + A, and A;-Y <O for all A;. Then, arguing as before,
one sees that A, Zsupp(Y— Z) if A;-Z<O0. Since Y — Z is part of a computation
sequence for Z, supp(Y — Z) is connected. Then Y—Z=Z’ is the fundamental
cycle for C. There is an fEHYM,0(—Z)) which generates O(—Z) in a
neighborhood of C. Functions on V' near 7'(C) thus include g/f* for gE
H%(M,0(—2Z— Z")) c m> Division by 12 gives an isomorphism H(M, 0 (-2

—Z/0(-2Z-2Z")=H°M,0(—Z")/0(—2Z")). The proposition is proved

It follows from the above proposition that after applying a o-process at p,
we obtain a surface which has only rational double points and minimally elliptic
singular points. Moreover, the self-intersection number of the fundamental
cycle of the minimally elliptic singularity is less than or equal to —3. By
Theorem 3.15 of [20] and Theorem 1 of [31], our theorem follows. Q.E.D.

HARVARD UNIVERSITY.
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