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GORENSTEIN SINGULARITIES 
WITH GEOMETRIC GENUS EQUAL TO TWO 

By STEPHEN SHING-TOUNG YAU*. 

Introduction. Let p be a singularity of a normal two-dimensional analytic 
space V. In [1], M. Artin introduced a definition for p to be rational. Rational 
singularities have also been studied by, for instance, DuVal [5], Tyurina [31], 
Laufer [17], and Lipman [22]. In [33], Wagreich introduced a definition for p to 
be weakly elliptic. Weakly elliptic singularities have occurred naturally in 
papers by Grauert [6], Hirzebruch [10], Laufer [19], Orlik and Wagreich [24], 
[25], and Wagreich [34]. Karras [12, 13] and Saito [27] have studied some of 
these particular elliptic singularities. Recently, Laufer [20] developed a theory 
for a general class of weakly elliptic singularities which satisfy a minimality 
condition. These are so-called the minimally elliptic singularities. In [36], we 
develop a theory for a general class of weakly elliptic singularities which satisfy 
a maximality condition. Maximally elliptic singularities include minimally 
elliptic singularities in the sense of Laufer as a particular case. 

Let 1r:M--*V be a resolution of V. It is known that h=dimH'(M, e ) is 
independent of resolution. One might classify singularities by h. Rational 
singularity is equivalent to h= 0. Minimally elliptic singularity is equivalent to 
saying that h= 1 and v?p is Gorenstein. Maximally elliptic singularities may 
have h = dim H '(M, 0) arbitrarily large. It is a natural question to ask for a 
theory for h =2 and v?Op Gorenstein. Our main interest is to build up a theory 
for those singularities which has h = 2 and v?p is Gorenstein, although we 
sometimes refer to almost minimally elliptic singularities. 

All undefined terms and notation are standard and are described in [20] 
and [36]. Throughout this paper, E will denote the minimally elliptic cycle and 
Z will denote the fundamental cycle. 

Our main results are the following. Recall that h=2 and v(p Gorenstein 
implies that p is weakly elliptic, i.e., that X(Z) =0. 
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THEOREM A. Suppose p is an almost minimally elliptic singularity (see 
Definition 1.1) and v?p is Gorenstein. 7hen H'(M, 0) = 02. 

THEOREM B. Let : M-* V be the minimal good resolution of a normal 
two-dimensional Stein space V with p as its only singularity. Suppose H 1(M, 6) 
= ?2 and v?p is Gorenstein. Then p is an almost minimally elliptic singularity 
if and only if H0(M, 6(-Z)/ )(-Z-E))=C. 

Definition 0.1. Let D=li2AdjAi be a positive cycle. Let B = U ieA,A? C 

IDI where A1CA. Then D/B=2ieAfAi is a positive cycle such that fi=di if 
A.CB andhj=0 if AiZB. 

Definition 0.2. Let A be the exceptional set of the minimal good resolu- 
tion 7T M-* V where V is a normal two-dimensional Stein space with p as its 
only weakly elliptic singularity. If E Z <0, we say that this elliptic sequence is 
{ Z } and the length of the elliptic sequence is equal to one. Suppose E Z = 0. 
Let B1 be the maximal connected subvariety of A such that B1, suppE and 
Ai'Z=0 VAi CB,. Since A is an exceptional set, Z Z <0. So B1 is properly 
contained in A. Suppose ZB, E =0. Let B2 be the maximal connected subvariety 
of B1 such that B2:IEI and Ai ZB,=0 VAi25B2. By the same argument as 
above, B2 is properly contained in B1. Continuing this process, we finally obtain 

Bm with ZB *E < 0. We call { ZBO = Z, ZB . . . ZBm } the elliptic sequence, and the 
length of the elliptic sequence is m + 1. 

THEOREM C. Let r: M-* V be the minimal good resolution of normal 
two-dimensional Stein space V with p as its only weakly elliptic singularity. 
Suppose H1(M, 0) = 02, H'(IEI, 1) = O, and vop is Gorenstein. Let 
ZB(,)ZB ....., ZZE be the elliptic sequence. Let D be the subvariety of B, 
consisting of those irreducible components Ai C B, such that Ai n El 10. If 
Z/D = ZB1/D, then 1=0, i.e., p is an almost minimally elliptic singularity. 

THEOREM D. Let g: M-* V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only singularity. Suppose H '(M, 6 ) = 
02 and v?p is Gorenstein. Let ZBO= Z, ZB,,..., Z4, ZE be the elliptic sequence. 
Then m0 CO (->EOZB). If ZE ZE < -2, then m0 = 6 (-YEOZB). If ZE.ZE 
(-3, then mn -H0(A,6(-n(2l=OZB))) and the Hilbert function H?PAIY(n)= 
dimmn/mn+ l= - n(2l . Z72i) for n >1. 

THEOREM E. Let g :M-*V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only almost minimally elliptic 
singularity. If ZE ZE < -3 and v?Op is Gorenstein, then p is absolutely isolated. 
Moreover, the blowup p at its maximal ideal yields exactly those curves Ai such 
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that A2Z >0. The singularities remaining after the blowp are the rational 
double points and a minimally elliptic singularity corresponding to deleting the 

Ai with Ai-Z < 0 from the exceptional set. The self-intersection number of the 
fundamental cycle of the minimally elliptic singularity is less than or equal to 
-3. 

Theorem A explains why almost minimally elliptic singularities are interest- 
ing. The converse of Theorem A is false. (See [36], Chapter III, ?2, Example 3.) 
However, partial converses are shown for hypersurface singularities. Theorem B 
gives a necessary and sufficient condition for p to be an almost minimally 
elliptic singularity. Theorem C provides us a comprehensible condition for p to 
be an almost minimally elliptic singularity. This condition is readable from the 
intersection matrix. In Theorem D, we are able to identify the maximal ideal. 
Therefore the important invariants of the singularities (such as the multiplicity, 
the Hilbert fenction) are extracted from the topological information. Using 
Theorem D, we can list all possible hypersurface weighted dual graphs with 
h=2. (There are 250 types of them.) Since the topology of the singularity is 
determined by the weighted dual graph, this will give a topological classifica- 
tion of hypersurface singularities with h = 2. By virtue of this classification and 
Theorem C, we have the following theorem, which is a partial converse of 
Theorem A. 

THEOREM. Let g: M-* V be a resolution of nornal two-dimensional Stein 
space with p as its only singular point. Suppose H'(M, 6) 02 and p is a 
hypersurface singularity. Let A be the exceptional set. If H'(A, Z) = 0, then p is 
an almost minimally elliptic singularity. 

Since room does not allow a proof of the theorem or of the topological 
classification, these will be included in the accompanying paper "Hypersurface 
weighted dual graphs of normal singularities of surfaces." It is not true that 
every two-dimensional isolated singularity can be resolved by means of a 
sequence of a-processes with centers at points. Theorem E tells us, however, 
that under a certain condition almost minimally elliptic singularities do have 
this property. This is one of the many reasons that the almost minimally elliptic 
singularities are very interesting. Our presentation goes as follows: 

0. Introduction. 
1. General theory for almost minimally elliptic singularities. 
2. Calculation of multiplicities. 
3. Calculation of Hilbert functions. 
4. Absolutely isolatedness of almost minimally elliptic singularities. 
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The necessarily basic knowledge to read this paper can be found in [20] 
and [36]. 

I gratefully acknowledge the encouragement and help of Professor Henry 
B. Laufer during the investigation of these results. I also wish to thank Professor 
Bennett, Professor Kuga, Professor Siu, and Professor Wagreich for their 
encouragement and discussion of the mathematics. Finally, I want to thank the 
National Science Foundation for the support it is giving me. 

1. General Theory for Almost Minimally Elliptic Singularities. 

Definition 1.1. Let g: M- V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singular point. 

Suppose p is not a minimally elliptic singularity, i.e., IEJ 1 '(p). If for all 
Ai Z IJE I and Ai n JEE 0, then AiZ < 0. We call p an almost minimally elliptic 
singularity. 

THEOREM 1.2. Let 'i: M-> V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only almost minimally elliptic 
singularity. Suppose v Op is Gorenstein. Then H'(M, ( ) = 02. 

Proof. If dimH'(M,9)=0, then p is a rational singularity, which implies 
X(Z) =1. This is a contradiction. If dim H1(M, () =1, then p is a minimally 
elliptic singularity by Theorem 3.10 of [20]. This contradicts our definition of 
almost minimal elliptic singularity. Therefore dimH'(M, ()> 2. On the other 
hand dimH'(M, () ) 2 by Theorem 3.9 of [36]. We conclude that dimH'(M,(9) 
=2. Q.E.D. 

Example 3 in Chapter III, ?2 of [36] shows that H 1(M, )()=02 and v(p 
Gorenstein do not imply that p is an almost minimal elliptic singularity. 
However, a partial converse of Theorem 1.2 will be shown later. 

LEMMA 1.3. Let g: M-> V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. If 
dim H1(M, (9 )# 1, then one of the following cases holds: 

(1) H?(M,(9(-Z)/(9(-Z-E))-?C H'(M,(9(-Z)/(9(-Z-E))) 
(2) H?(M,C(-Z)/C(-Z-E)) 0O-H'(M,)9(-Z)/(9(-Z-E)). 

Proof. Since H1(M,(9)=#1, we have EZ=O by Theorem 4.1 of [20]. 
Choose a computation sequence for Z as follows: Zo = 0,..., Zk=E ..... Con- 
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sider the following sheaf exact sequences: 

0o9(- Z-Z1)/9(- Z-E) -> ?(- Z)/9(- Z-E) 
? (-Z)/ (- z- Z1) ->0, 

? (Z - Z2)/C -Z -E) 0(- Z- Zj)/6(- Z -E) 
0 (- z-Z1)/6( Z - Z2) 0, 

0 (9 Z -Z Zk-1)/9 (-Z-Zk) 9-2 (-Z-E) 

C9 Z Z 4-2096 Z Zk- 1) ?@ O 

By the Riemann-Roch theorem, the usual long-cohomology-sequence argument 
will show that either (1) or (2) holds. Q.E.D. 

THEOREM 1.4. Let : M-> V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose H 1(M, 0) = 02 and v/p is Gorenstein. Then p is an almost minimally 
elliptic singularity if and only if H?(M, 0 (- Z)/O0 (- Z - E))= 0. 

Proof. =: By (1.1) and (1.6) of [36], H0(M, z)_C_H(M, 09z). The 
long exact cohomology sequence 

O H?(M, /E (Z)) H?(M, /E)) H?(M, 6Ez) 

H'(M, (-Z)) H1(M, O) H'(M, Oz) ->0 

will show that H 1(M, 0 (- Z)) =0. Since p is an almost minimally elliptic 
singularity, -K'=Z+E. By (1.2), H1(M,(9(-Z-E))=0. Now the exact 
sequence 

H 1(M, 
/E 
(- Z_- E)) ,-- H 1(M, 

/E 
(-_ Z)) ->H 1(M, 

/E 
(-_ Z)//)( Z - E)) O-> 

will show that H1(M, / (-Z)/( O(-Z-E))-?. 
?=: Conversely, suppose H1(M, 0 (- Z)/(0 (- Z - E)) = 0. Let 

ZB,,ZB,... , ZBI,ZE be the elliptic sequence. Then - K'= B + E, where B = 

E=OZB. Choose a computation sequence for Z as folows: ZO=O, Z1j ..., Zk = 

E,**X Zrl = ZBI,*X Zr= ZB,..., Zr =ZBO= Z. Suppose p is not an almost 
minimal elliptic singularity; then 1 > 1. Look at the following exact cohomology 
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sequence 

O H0(M, Z(-Z)/( (-Z-E)) >H?(M,(9Z+E) H0(M, Cz) 

> H'(M, (-Z)/( (-Z-E)) H H1(M,?Z+E) H1(M, (z) -*0. 

It is easy to see that H0(M, Cz+E)->H0(M, Cz) is surective. Therefore 

H'(M,CZ+E)?C2 _H0(M,Cz+E)* Since the two sequences 

H'(M, CB) -> H1(M, CZ+E) ->0, 

H1(M, 9) -> H1(M,CB) ->0 

are exact, H 1(M, 6)->H l(M,CB) is an isomorphism by dimensional considera- 
tions. It follows that H1(M, (9(-B))->H(M, (9) is a zero map. As v?p is 
Gorenstein, there exists c E H?(M -A, 0) having no zeros near A. Let (w) be 
the divisor of w. Then (w) =-B - E. Let w1 be the order of the pole of o on 
A1CJEJ. 

Consider a cover as in Lemma 3.8 of [20]. On P1, 

w1(x1, Yi) wt = y, WI dxl /\ dyl, 
y1 

where wl(xl, yi) is a holomorphic function, wl(xl, 0) 0. There is a holomorphic 
function f(xl), r < x1 < R, such that 

WiX,Y)dx A dy, #40. 
lxll = R 

I 

Jyjj=R 

Let X -= yiu)1-f(xl) and X = 0 for j#3L1. Then by Lemma 3.8 of [20], cls[X] #0 
in H (M, (9). However, w1-1 > 2t=oz,,B, where ZBR = zjBAj. Hence X may be 
thought of as also a cocycle in H '(N(u), (9(- B)). Consequently, cls[X] = 0 in 
H'(M, (9) because H1(M,(9(-B))->H1(M,(9) is a zero map. This leads to a 
contradiction. Q.E.D. 

THEOREM 1.5. Let g :M->V be the minimal good resolution of normal 
two-dimensional Stein space V with p as its only weakly elliptic singularity. If 
C((-Z)/(9(-Z-E) corresponds to a trivial line bundle L over (IEI, CE), then 
H?(M, C( (- Z)/(9 (- Z-E))-?. Conversely, suppose H1(M, (9) _C2 and vCp 
is Gorenstein. If H0(M,(C(-Z)/(9(-Z-E))=C, then (9(-Z)/(9(-Z-E) 
corresponds to a trivial line bundle L over (IE I, CE)* 
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Proof. Suppose 0 (-Z)/ 0 (- Z - E) corresponds to a trivial line bundle 
L over (IE 1, 9E). Let U be an holomorphically convex neighborhood of IE l such 
that P: U-> V1 represents I E I as an exceptional set where V1 is a normal 
two-dimensional Stein space with P(J El) as its only minimally elliptic singular- 
ity. The group of sections of L is isomorphic to H?(M, 0 (- Z)/0 (- Z - E)). 
However, L is a trivial bundle over (IE ,(9E). So the group of sections of L is 
isomorphic to H?(U, ?E)-C. Therefore H?(M, 0 (- Z)/ 0 (- Z-E)) = C. 

Conversely, suppose H'(M, 0) = 02 and v9p is Gorenstein. Then 
H?(M, 0 (-Z)// 0(-Z-E)) _ C implies that p is an almost minimally elliptic 
singularity by Theorem 1.4. There exists f E H?(M, 0 (- Z)) such that the image 
of f in H?(M, 0 (-Z)// 0(-Z-E)) viewed as section of the line bundle L is 
nowhere zero, by Proposition 3.13 of [36]. Hence L is a trivial bundle over 

(I E, /9OE) Q.E.D. 

With notation as above, let O: 6>E = 0 /0 (- E) be the quotient map. 
Define OE*=((O*) CE. Let a: Z->E be e oi, where i: Z->0 is the obvious 
inclusion map. ,B: ?E -> E* is defined as folows. For a germ f in a stalk of 9EI 

let F be a germ in 0 such that p(F) =f. Then we set 83(f) = p(exp2,giF). We 
claim that /3 is well defined. Let F1 be another germ in 0 such that ((F) =f. 
Then F1 = F+ g, where g can be considered as germ in 0 (-E). Hence 

O(exp(2,giF,)) = O(exp(27TiF+27Tig)) 

=(+ 2277iF+277rig + (2 7TiF+227Tig)2 (2 7TiF+2 7Tig)n 

= 4((1+ I Ti + ..F + +...)+gin ) g] 

= O(exp2'HiF). 

LEMMA 1.6. 0- -(9E -* ->O is an exact sheaf sequence. 

PROPOSITION 1.7. Let : M-- V be the minimal good resolution of normal 
two-dimensional Stein space V with p as its only weakly elliptic singularity. 
Let 0 (-Z)/ 0 (-Z-E) correspond to a line bundle L over (IEI, O9E). Suppose 
H'(M, 0 02 and V0ep is Gorenstein. Let ZB.=Z, . ZBjZB,,=ZE be the 
elliptic sequence. Let D be the subvariety of B1 consisting of those irreducible 
components A, c B1 such that Ai n IE #0. Suppose Z/D, the restriction of Z to 
D, is equal to ZB/D, the restriction of ZBi to D. Then L1+1 is a trivial line 
bundle over (IE 1, 9E). 

Note. Let A= Un AiDD=U'=1Ai. If Z=Y%jzjAi, then Z/D= 

2ti= 1ziAi. 
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Proof. Let Zo = o.. ., Zk = E,... be a computation sequence for Z. Look 
at the following sheaf exact sequences (recall that B=1 =OZB,): 

0--->(-B-Zj1)/0( -B-E)-->6/(-B)/19(-B-E) 

---0(- B)16 (- B- Z,) -- , 

0 0 (B - Z2)/C( -B-E)--> 6(-B-Zj)10(-B-E) 

-*?(-B-Z1)/?(-B-Z2) --O 

0 0 (B - Zk-1)10(-B-E)--> @(-B-Zk-2)10(-B-E) 

--- >(-B-Zk-2)/ 6( B-Zk-1) ?>0 

By the Riemann-Roch theorem, the usual long exact cohomology sequence will 
show that either H0(M,? (-B)/1(-B-E))=C=H'(M,?(-B)/1(-B- 
E)) or H0(M, ?(-B)/1(-B-E))=O=H'(M, ?(-B)/1(-B-E)). We 
claim that the latter case cannot occur. Otherwise H0(M,60(-B-E))-> 
H0(M, 0 (- B)) will be an isomorphism. However, by Theorem 2.1, which will 
be proved later, we have mO (-0 (- B). It follows that the maximal ideal cycle 
Y > B + E = - K'. This is absurd, and our claim is proved. Hence we have the 
following exact sequence: 

0 -->H?(M (B - E)) --> H?(M, 0 (- B)) 

> H?(M,/ B) /0(- BH-ME)) -( -B . 

Let f E H?(M, 0 (-B)) be such that the image of f in H?(M, C (-B)/ 0 (-B- 
E)) is not zero. Then f 5 H0(M, 0 (-B-E)). We are going to prove that 
actually f (H 0(M,(-B-A1)) for any A15CEj. Choose a computation 
sequence of the following form: Z0 =0, Z, = Al,..., Zk= E.... Consider the 
following sheaf exact sequences: 

o-- 0(-B- Z2) -- 0(-B- Z1) -> 0(-B- Z1)/O(-B- Z2) ->0, 

0 /) 0(-B- Z3) -- 0(-B- Z2) --> (-B- Z2)/O (-B-Z3) -0o, 

0 (9(- B-E) -) O(-B- Zk-l) -- ((-B- Zk-l)/6(-B-E) -o0. 

By the Riemann-Roch theorem, the usual long cohomology exact sequence will 
show that H?(M,/(-B-Z,))--H0(M,C(-B-Z>-1)), 2< j<k, are isomor- 
phisms. By composing the maps, we get that H?(M, C0(-B-E))-- 
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H "(M,?(-B-A1)) is an isomorphism. Hence f H0(M,?(-B-A1)). The 
image of f in H?(M, 0 (- B)/? (- B - E)) viewed as section of the line bundle 
N over (IEj, ?E) corresponding to the sheaf 9(-B)/O(-B-E) is nowhere 
zero. Hence N is a trivial bundle over (IEj, ?)E). 

Let us prove that for any Ai ZB1, Ai n IEI =0. First observe that Z/D= 
ZB,/D implies ZB /D=ZB1/D for all 0 <i <1. Suppose first that AiC B-1 and 
AiZBl. If Ai n IEI#0, then there exists A,C IE I such that Ai n A, 0. Since 
ZB,-I/D= ZBi/D and ApiZBj=O, we have Ai-Z4-,>Aj1(ZBj_1/D+Ai)=Ai1 
(ZB,/D + Ai) = Aj(ZBj + Ai) =1>0. This is a contradiction. Suppose that if AiC 
Bh and Aig B1, then Ai n IE = 0. We want to prove that this is also true for 
Bh-1. Then the decreasing induction argument will complete the proof. Let 
AiCBh-l and Ai ZB1. If AinIEI#0, then there exists AjC|E such that 
Ai n A 0. By the induction hypothesis, 0 = Ai * ZBh =Aj ZBJD. Hence Aj ZBh 
>Ai (ZB,/D+Ai)=Ai.(ZBh/D+Ai)=I>0. This is absurd. Our claim is 
proved. 

Hence 

L1+ 1 = 0(-Z)/6 (-Z-E)0( XE.. * * *9EO (- Z)/6 (-Z-E 
1+1 

It follows that L1+1_N is a trivial bundle over (IE1, ?9E). Q.E.D. 

THEOREM 1.8. Let : M-- V be the minimal good resolution of normal 
two-dimensional Stein space V with p as its only weakly elliptic singu- 
larity. Suppose H'(M,O9)= 02, H'(jEj,Z)=0, and v?p is Gorenstein. Let 
ZB() ZBI... Z*, ZE= ZBi,1 be the elliptic sequence. Let D be the subvariety of B1 
consisting of those irreducible components Ai C B1 such that Ai nl EI #0. If 
Z/D= ZB1/D, then 1 = 0, i.e., p is an almost minimawlly elliptic singularity. 

Proof. Let L be a line bundle over (IE , CE) corresponding to 
0 (-Z)/( (- Z-E). Consider the following commutative diagram: 

H1(1E I, (9E*) -> H 2(1 E 1, E) 

Hl(JE l, 0 l l H 2(1E 1, Z) 

P2 ii 

AZCIEI H '(Ai, c)H2(1EE,J) 
( 

HE2(Ai,J) 
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Since A, Z =0, c (2 o p1(L)) =0. Therefore c*(L) =0. Look at the following 
exact sequence: 

0 H'(jE 1, E,) - H'(jEj, HE) H'(IE 1, ?9) ) H2(1Ej, E). 

From H' (I EI,E)=C, c*(L)=O, and the fact that L +1 is a trivial bundle by 
Proposition 1.7, it follows that L is a trivial bundle itself. By Theorem 1.4 and 
Theorem 1.5, p is an almost minimally elliptic singularity, i.e., 1=0. Q.E.D. 

2. Calculation of Multiplicities. Suppose H'(M, 0) ) C2 and V(p is 
Gorenstein. In this section we identify the maximal ideal, and in particular, we 
get a formula for the multiplicity of a singularity. 

THEOREM 2.1. Let v: M-- V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose H'(M, 0)=C=2 and v)p is Gorenstein. Let ZBO= Z,..., ZB ... Z, 

ZB +,=ZE be the elliptic sequence. Let B= ZB4. Then m O CO(-B). If 
i=O 

ZE ZE< -2, then mO =0(-B). 

Proof. Since x(B) = Oby (1.4) of [36], dimH?(M, OB) = dim Hl(M, 9B).The 
two exact sequences 

H1M 'A B) -->H 1(M, 0 z) _- a: O,- 

H 1(M, /9) -->H l(M,C/B) --> 
? 

say that dimH'(M, OB) is either two or one. If H1(M, CB) = 02, then H1(M, 0) 
--H 1(M, ?B) is an isomorphism by dimensional considerations. It follows that 
H'(M, 0 (- B))--H'(M, 0 )is a zero map. As v(p is Gorenstein, by the proof of 
Theorem 1.4, we will get a contradiction. We conclude that H1(M, CB) = 0 

Consider the following commutative diagram with exact rows: 

0 --H?(M, 0(- B))--HO(M, 09)--HO(M,9B) 0 -a 0 

1 1 1 I 

0 --H?(M, (- Z))--H?(M, 0/ )->H?(M, Cz) --a C> 0 

By the five lemma, H?(M,(- B))--H?(M,/ (- Z)) is an isomorphism. 
Since m0 C (0 (- Z), it follows easily that m0 C O (- B). 
Suppose ZE*ZE ?-2. We want to prove m0 =((-B). It suffices to prove 

(9(-B)Cz m(. Let us first show that 
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is surjective for all A1C JEj. If E=A1 is a nonsingular elliptic curve, then 
-K'=B+A1. Since H'(M,?(-B-Al))=O by Theorem 3.2 of [17], p is 
surective by the usual long-cohomology-exact-sequence argument. If IE has at 
least two irreducible components, then H1(M, 0 (-B)/ (- B - A))= 0 by the 
Riemann-Roch theorem. We are going to show H'(M,0(-B-A1)) C- 
H 1(M, 0 (- B)). The exact sequence 

02 

O -- H'(M, 0 (- B)) -->H'(M, 6 ) -->H'(M, CB) - C ?- 

shows that we indeed have H'(M, 0 (-B))= C. Choose a computation 
sequence for Z of the following form: ZO=O, Z1=Aj,=A1,..., Zk-l, Zk= 

E,*.. The long exact cohomology sequence 

O -> HO(M, 0(-B)/0(-B-A ) ? C-HO(M,0 B+Al) 

--H?(M, ?B) C-?H'(M, 0 (- B)/0 (-A1) =0 

-H '(M, ?B+A1) >H (M, ?B) -? 0 

will show that H?(M,CB+A1) = ?2 and H'(M,CB) = C. 

Consider the following long exact cohomology sequence: 

O -- H?(M, 0 (B -Al)) -,H?(M, )H?(M, CB+Al) 
C 

,-- H 1(M, 0 (B -Al)) H 1 
H(M, 6)H1(M, CB+Al) C -4 > 0 

We claim that H0(M, 0 )-H0(M,?B+A1) is surjective. Otherwise the image R 
of H?(M, 0 )--H?(M, CB+A1) will be isomorphic to C. The five lemma together 
with the following commutative diagram with exact rows 

0 -H?(M, -B - Al))->H?(M, C)-- R C -?>0 

0- H?(M,C(-Z)) ->H?(M,6)->H?(M6z)-C?-0 

will show that H0(M, 0 (- B - A1))--H0(M,0(-Z)) is an isomorphism. The 
following exact sequences of sheaves 

0o-- ((-B- Z2) -->6 (-B- Zj) -, ((-B- Zj)/6(-B- Z2) -0 

0 -- ((-B- Z3) -- (D(-B- Z2) --> ((-B-Z2)/O(-B-Z3) 0, 

0 ?(-B-E) -- (D(-B- Zkl) -> (D(-B- Zk-l)/(-B-Zk) ->O 
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will show that H?(M, 0 (- B - Z))-4H0(M, 0 (- B - Z- 1)) are isomorphisms for 

2< /<k. By composing the maps, we get that HO(M,0 (-B-E)) 
H?(M, 0 (- Z)) is an isomorphism. Since mO 5 0 (- Z), the maximal ideal cycle 
Y > B + E = - K'. This contradicts Theorem 2.20 of [36]. We conclude that 
H?(M, 0) -)H0(M, CB+A is surjective. It follows that H1(M, O (-B-A1)) =C. 

Look at the following exact cohomology sequence: 

0 -> H?(M, 0 (-B-A1)) ->H?(M, 0 (-B)) 

-3 H?(M,D(-B)/O)(-B-A1)) -> H'(M, (D(-B-A1)) 

-> H1(M, 0 (-B)) -> H'(M, 0 (-B)/0 (-B-A1)) -O0. 

Since H'(M, 0 (-B)/0 (-B-A1))=0, H'(M, 0 (-B-Al))-4H'(M, 0 (- B)) is 
an isomorphism by dimensional considerations. Therefore p in (2.1) is surjective. 
Given a point a,EAl, let FEH?(M,0(-B)/0)(-B-A1)) be nonzero near a, 
as a section of the line bundle associated to 0 (-B)/ C(-B-A1). Then 
f E H?(M, 0 (- B)) projecting onto F will generate 0 (- B) near a,, since it 
must vanish to the prescribed orders on the A1 near a1 and will have no other 
zeros near a,. 

In order to prove 0(-B)CmO), it remains to prove ((-B)Cm 0 near 
A-suppE. There are two subcases. 

Case (1). There exists Ai C IE I such that E-ZE + 1 Ai ZE <-1 or E = Ai is 
a nonsingular elliptic curve. For any A1 g IE 1, choose a computation sequence 
for Z of the following form: ZO=0, Z1 =A =A1, A Z* , Zr + 1,. Zr +k = Zr + 

E,..., Z 1 =Z, where suppZrCA-IEI and Zr+,-Zr Zr+k-Zr=E is 
part of a computation sequence for Z. Our hypothesis guarantees that the 
computation sequence can be so chosen such that Ai+;kZE < 0 by Corollary 2.3 
of [36]. Consider the following exact sheaf sequence for n > 0: 

O -0 (- B - ZE - nZ - Z1) -- (- B- ZE - nZ) 

-?(- B - ZE - nZ)/ (- B- ZE- nZ - Z1) --->O, 

0-> B --ZE -nZ - Zj) -- 6 (- B - ZE - nZ - Zj-1) 

36-B - ZE - nZ - Z - 1) /C B -ZE -nZ -Zi) -4 09? (2.2) 

? 36( B ZE nZ Zr+1) - + (- B -ZE -nZ -Zr+ -1 

- 0(-B- ZE-nZ -Zr -1)/(-B- ZEnZ -Z). 

We recall that (B+ZE)>Ai<O for all AiCA. Then 0(-B-ZE-nZ- 
Z -l)/ 0(-B-ZE-nZ-Z,) is the sheaf of germs of sections of a line bundle 
over A2i with the Chern class - Ai (B + ZE + nZ + Z>- 1). If IE I has at least two 
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irreducible components, then from Proposition 2.5 of [36], Ai :kZr+kl1=2 and 
A Z -1 = 1 for j=i=r+ k. So Aij *(B+ ZE+ nZ + Z _ 1) < I for all and all n. Thus 

H'(M,(- B - ZE - nZ - Zi-l)/O9 (- B - ZE- nZ - Zj))= O, and the maps 
H'(M,(- B- ZE-nZ-Zi))--> H1(M,?(-B-ZE-nZ-Z>lI)) in (2.2) are 
surective. Composing the maps, we see that 

: H'(M,?(- B - ZE- nZ - Z4)) -- H'(M, (- B - ZE- Z4)) 

is surjective for all n > 0. For sufficiently large n, 4 is the 0 map by [6, ?4, Satz 
1, p. 355]. Hence H1(M,O(- B - ZE- Z,))= O. If IEI=Ai is a nonsingular 
elliptic curve, then A-Ai < -2. By Corollary 2.6 of [36], we know that 
ei = zi = 1. Since A, Zj = 1 for all j by Proposition 2.5 of [36], Ai * (B + ZE + nZ 

+Z,-,)<l for all ji#r+1 and A4+1(B+ZE +nZ+Zr) <-1. Thus 

H'(M,O(- B - ZE- nZ - Zi-l)/6(- B - ZE- nZ - Zj))=O for al j and n. A 
similar argument to the one above wil show that H 1(M, 0 (- B - ZE - Z))= 0. 

In particular H 1(M, 0 (- B - ZE - A1))= O. Therefore, H0(M,0(- B -ZE)) ) 

H0(M, 0 (- B - ZE)/O(- B - ZE - A1)) is surJective. We remark that the above 
argument is also applicable to the following situation: With notation as above, 
there exists A, C supp E such that Ai #Ai,+ 1 and A, ZE < O 

Case (2). | E| has at least two irreducible components and there exists 

Ai C jE I such that ei = 1, AiZE <0, and ApZE= O for all A,C I E I where Ai =#Ai. 
The proof of case (1) fails only because Ai,+k #Ai, i.e., Ai,+iZE <0. Suppose first 
that A1 n Ai,+I = A1 n Ai =#0,A1 Z E 1. Choose a computation sequence for Z 
with E = Zk, Aik = Ai, and Aik+l = Al. By Proposition 2.7 of [36], H1(M,/0(- B - 

ZE- Zj)) = 0 for all j. Therefore, 

H0(M, 0(- B - ZE)) -3 H0(M, 0(- B - ZE)/O(- B - ZE - Zk+l)) 

is surjective. It follows that H0(M, 6 (- B - ZE)) and H0(M, (- B - 

ZE)/O(-B- ZE- Zk+l)) have the same image R in H0(M,(- B - 

ZE)/C(-B-ZE- A1)). 

O-0 H0(M, (- B - ZE - Zk)/?(-B- ZE- Zk+1)) 

' H0(M, (- B - ZE)/?(-B- ZE - Zk+l)) 

'H?(M, (- B - ZE)/O (- B - ZE - Zk)) --+? 

is an exact sequence. Thus the image of H0(M, 6 (- B - ZE - Zk)/O (- B - ZE 
- Zk+ 1)) which is injected into H0(M,6(- B - ZE)/0(-B-ZE- AI)) via the 
natural map is contained in R. If H0(M, 0 (- B - ZE - Zk)/O (- B - ZE - Zk+l)) 

0, then the elements of R have no common zeros on A1 - A1 n Ai as section of 
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the line bundle L on A1 associated to ?(-B-ZE)/?(-B-ZE-A1). If 
H0(M,C(-B-ZE-Zk)/1D(-B-ZE-Zk+1))=o, then Al*(B+ZE)=O. 
Hence H0(M,?(-B-ZE)/?(-B-ZE-A1))=C. It suffices to prove that 
H0(M,?(-B-ZE))--> H0(M,?(-B-ZE)/?(-B-ZE-AI)) is not a zero 
map. Since A1 Z jE 1, A1-ZE = 1 and A1nAi 7 0, the coefficient of Ai in ZE is 
equal to 1. Hence Ai ZE = ZE ZE < -2. It follows that Ai(B + ZE) < -2 and 
dimH0(M,?(-B-ZE)/?(-B-ZE-Ai))>3. The image of p:H0(M,?(-B 
- ZE))-- H0(M, 6 (- B - ZE)/O (- B - ZE - AJ)) is a subspace of codinension 1 
in H0(M,O(-B-ZE)/0(-B-ZE-Ai)), and the elements of S have no 
common zeros as sections of the line bundle Li on Ai associated to 0 (-B- 
ZE)/O (- B - ZE - Ai) by Proposition 2.8 of [36]. It folows that H0(M, 6(- B - 
ZE))-- H0(M,6(- B - ZE)/0(- B - ZE - A,)) is not a zero map. 

In order to finish the proof of case (2), it remains to consider those A1 Z E 
such that A1nAi=0 and the computation sequence for Z starting from A1 
must first reach Ai in order to reach j E 1. Choose a computation sequence for Z 
of the following form E = Zk, A ik= Ai (A ik+n Ai 70), Aik+ t=Al, where A 
(k +1 < k + t) are distinct from each other and not contained in j Ej. Since 
H'(M, (- B - ZE - Z,))= 0 for al j by Proposition 2.7 of [36], H0(M,0(- B - 
ZE))-- H0(M, 0 (- B- ZE)/O(- B- ZE - Zk+t)) is surJective. It follows that 
H0(M,?(-B-ZE)) and H0(M,O(-B-ZE)/0(-B-ZE-Zk+t)) have the 
same image R in H0(M,O(- B - ZE)/0(- B - ZE - Al)). 

0 -> H0(M,0(- B- ZE - Zk+t-1)/6(- B- ZE -Zk+t)) 

--H0(M,0(-B-ZE)/1(-B-ZE-Zk+t)) 

--+ H?(M,C( -B -ZE)16(- B -ZE -Zk+t- 1)) --+0 
is an exact sequence. Thus the image of H?(M, 0 (-B-ZE-Zk+t-l)/ (-B- 

ZE-Zk+t)) which is injected into 
H?(M,O(-B-ZE)/0(-B-ZE-AI)) via 

the natural map is contained in R. If H0(M,0(- B- ZE - Zk+t-l)/O (- B- ZE 
-Zkj+ ))#70, then the elements of R have no common zeros on A1-(Anl 

Ai,+ ,) as sections of the line bundle L1 on Al associated to 0 (-B- 

ZE)/O(-B-ZE-A1). If 
H0(M,0(-B-ZE-Zk+t-l)/6(-B-ZE-Zk+t))= 

O, thenA,.(B+ZE)=O. HenceH?(M,cM(-B-ZE)/(-B-ZE-Al))=C. But 
by induction, we know that the elements of image of 

H0(M,0(- B- ZE))-- H0(M,0( - B- ZE)/1(- B- ZE -Aik -)) 

have no common zeros on Ak+_ 
- (Aik+t_ln A.k+t2) as sections of the line 

bundle Lik+,_I on Ak+t_l associated to O(-B-ZE)/0(-B-ZE-A ). It 
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follows that H?(M, ( (-B-ZE))-- H?(M, 6 (-B-ZE)/(-B-ZE-Al)) is 
surjective. Q.E.D. 

COROLLARY 2.2. Let T: M-> V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose H 1(M, ( ) = C2 and v(p is Gorenstein. Let ZBO=Z, ZB1, * * ., ZB, ZBI= 
ZE be the elliptic sequence. Suppose ZE-ZE= -1. Let Ai I EI be such that 
A ZE=-1. Let S be the image of p:H?(M,(9(-B-ZE))->H0(M,?9(-B- 

ZE)/(9(-B-ZE- Ai)). Then m(9 = ( (- B) provided that the following condi- 
tion holds: Let A1IIEI and A1nAi 0; then either AIg(B+ZE)<O or the 
elements of S have no common zeros at A1 n Ai as sections of the line bundle Li 
on Ai associated to C (-B-ZE)?(-B-ZE- A). 

Proof. By the proof of Theorem 2.1. 

COROLLARY 2.3. Let T: M-> V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose H 1(MC )=C2 and p is Gorenstein. Let ZBO= Z, ZBI ZB ZE be 
the elliptic sequence. Then the multiplicity (v?p)> O - 0ZBi If ZEZE S-2, 
then multiplicity(v9 ) = - Z2' 

Proof. Theorem 2.1 says that m? C0(-EX=OZB). Hence the maximal 
ideal cycle Y relative to 1T is greater than or equal to B = El =OZB. By Theorem 
2.17 of [36] multiplicity (v?p) - Y Y. But- YY -(B) * (B) =-X Zs by 
Lemma 2.15 of [36]. Hence multiplicity (vCp) - =OZB2I. The rest of the 
corollary is easy. 

3. Calculation of Hilbert Functions. Suppose H'(M, 0) =C2 and V?p is 
Gorenstein. In this section we calculate the Hilbert function of vepP In 
particular, the dimension of the Zariski tangent space is computed. Hence we 

know the lowest possible embedding dimension of the singularity. 

THEOREM 3.1. Let V be a normal two-dimensionsal Stein space with p as 
its only weakly elliptic singularity. Let ?T: M-- V be the minimal good resolu- 
tion. Suppose v?p is Gorenstein and H'(M, 0) = C22. Let ZBO=Z, ZB,..., ZB1, 

ZE be the elliptic sequence. If ZE ZE < -3, then mn _ H?(A, 0 (- n(B))), n > 0, 
where B=E=OZB. 

Proof. It is true that H0(A,6(-B))= limH0(U,6(-B)),U a neighbor- 
hood of A. Since mO = e (-B) by Theorem 2.1, H?(A, (-B))=m. 
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Step 1. We are going to show 

H0(M, ( -B- ZE)) ?cH?(M, (- nB- ZE)) 

, 0(M, (- (n + 1)B -2ZE)) 

is surjective. It suffices to show 

: H?(M, 0 (- B- ZE)/C(-2B-ZE)) 

OcH?(M,O(-nB-ZE)/ (- (n +1)B- ZE)) 

H?(M, 0 (- (n + 1)B-2ZE)/C (- (n +2)B-2ZE)) (3.1) 

is surjective. 
Let us first demonstrate this fact. We first show that the image of 

H?(M, 0 (-B-ZE))0cHO(M,0(-nB-ZE)) contains H?(M,0(-mB-2ZE)) 
for some m. Let fi, .. ,fs E H?(M, 0 (- nB - ZE)) generate 0 (- nB - ZE) as an 
0-module. The proof of Theorem 2.1 and Proposition 2.8 of [36] show that such 

fi's do exist. The 0-module map 

p: EDsO (-B-ZE) - (-(n + 1)B -2ZE) 

given by (gj,. ..,g)->Efg is then surjective. Let K=kerp. 

O--K fESo (-B-ZE) 

A?(-(n+1)B-2ZE) --o 

is exact. Multiplying by 0 (-kB), we get 

0 --K0 (- kB)-fl ED(- (k + 1)B - ZE)--C (-(n + k + 1)B - 2ZE)->O 

l,a I J, 
0-> K l> EDSO(-B-ZE) -) 0(-(n+1)B-2ZE) ->0 

with the vertical maps the inclusion maps, is commutative. The verification that 
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the first line is exact is the same as the verification that (5.5) of [16] was exact. 

HO(M, ES? (-(k + 1)B- ZE))--HO(M, 0 (-(n + k + 1)B-2ZE))--H'(M,K? (- kB)) 

H((M, e ?(-B-ZE)) H- + 1)B-24)) --H'(M,K) 

is commutative with exact rows. By Theorem 5.4 of [16], a* is the zero map for 
sufficiently large k. Then given h E H?(M, 0 (-(n + k + 1)B-2ZE)), we have 

*(h) = p*( g) for some g, by exactness. Letting m = n + 1 + k, we have that the 
image of H?(M, 6 (- B - ZE)) %? H?(M, 0 (- nB - ZE)) contains H?(M, 0 (- mB 
-2ZE)) as required. 

If m>n+1>2, we shall show that the image of H0(M,0(-B-ZE)) 
0cH0(M, 0 (-nB-ZE)) contains H?(M, 0 (-(m-1)B-2ZE)). By induction 
argument, we will be done. Look at the following diagram: 

0 

HO(M,/9(-mB - 2ZE)) 

l HO(M, 0 (- (m - 1)B - 2ZE)) 

( 0(-2BZE)) H ( cEW-(m-1)B-ZE)) ( O(-mB-2ZE) ) 

0 

with the vertical sequence exact because H'(M,0(-mB-2ZE))=O and the 
horizontal map surjective. Since H1(M,0(-2B - ZE))= 0 = H1(M,0(-(m- 
1)B - ZE)), it folows that the image of H0(M, 6 (- B - ZE)) ?c H0(M, 0 (- nB 
- ZE)) contains H0(M, 6 (- (m - 1)B - 2ZE)). 

It remains to prove (3.1) is surective for all n> 1. The proof breaks up into 
three subcases: 

(i) There is an Ai (call it A1) such that ZE ZE + 1 A IZE S -2. 
(ii) There is an Ai (call it A1) such that A IZE = ZE ZE 

(iii) Ai,ZE =-1 or 0, all Ai 5IEj. Take A, ZE =-1. 

In case (i), all irreducible components are nonsingular rational curves. 
Choose a computation sequence for Z as follows: ZO =0, Zl,..., Zk = E = Zk-l 
+A,ik 

... 
Zro ZE, .. 

Zrl ZBI, ... I Zr2=ZBI- I Zrl =ZB,I ...' Zrl =ZBO Z, 
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where Aik = A1. Consider 

( (- B -ZE) ) ( ?(-B--ZE-Gh-Z ) 

HO(Ml A) (n + 1)B-H2ZE-MGh-Z- 1) 

\ )(- (n + 1)B -2ZE - 
, Z,) 

h 
V -1?< h?6l1-1, 1j< rlh where Gh= E ZB . 

i=O 

(3.2) 

To show that (3.1) is surjective, it will suffice to show that r(B0,...,Bh,j) is 
surjective V -1 h < 1-1, 1 S j 6 rl- h. Indeed, since(Gh) -Aj 0 for all A, C A, 
all of the first cohomology groups 

H'(M, ? (-nB-Gh-z,)) = 0 and H'(M, ? (-(n + 1)B-2ZE-Gh-Z,)) = 0 

by Proposition 2.7 of [36]. Hence H?(M, (-nB - ZE)/? (-(n + 1)B - ZE) can 
be written via successive quotients: 

0 HO(M, @(-nB- ZE - Gh-Z)/ (-(n + 1)B- ZE)) 

H?(M, (-nB- ZE - Gh- Z-1)/? (-(n+ 1)B- ZE)) 

H?(M, ( (-nB- ZE - - Z -)/?(-nB-ZE- Gh - Zj)) ->O, 

-l Ah - 1, l < < rl_h, 

where we denote t 
- 

?ZB = 0 ZO = 0, B = B1 =0ZB, and G = 
jh=?ZBi. 

HO(M, (S(-(n+1)B-2ZE)) 
0 )(-(n +2)B-2ZE)/ 

also can be written via similar successive quotients. Moreover, by Proposition 
2.7 of [36] and the proof of Theorem 2.1, we have H'(M, ? (- B - ZE - Ai,)) = 0. 
Hence 

HO M (- B- ZE) HO M ?(-B-ZE) 
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Thus, if (3.2) is surjective for all 1 ?;<rl_h, -1<h<l-1, then (3.1) is also 
surjective. 

Suppose that the target space in (3.2) is nonzero, i.e., - A< ((n + 1)B + 2ZE 
+ Gh+ Z.- 1) > O. We need -A< - (B + ZE)>O and -A(.(nB+ZE+Gh+ Zj-1) 
> 0. For j/=#k, Ai .Z_ =1. If -A B + ZE)> O, then -A (nB + ZE) O. Hence 
-A *(nB+ZE+ Gh+7Z?)> O. If -A<. (B+ZE)= O, then - A (nB + ZE + Gh 
+Zi_ )= -A4 *((n+1)B+2ZE+ Gh+ Z- 1)> O. For j=k, Aik*Zkl- =2. But by 
construction Aik *ZE < -2, and so (3.2) is surjective for all 0 j < rl - h-1 S h < 1 
-1. 

Let us do case (ii). Suppose IE I has more than one irreducible component. 
The proof of case (i) fails only because the maps 

H?(M, 0 (- B - ZE))-- H?( M (-B-ZE-Ai )) 

and 

H?(M,C(- B -ZE))- H?( M' 0(- B-ZE-A)) 0 (-B- ZE)) -~ ? ( B E-A4+1k) 

need not be surjective where Ai, k E IF I and the computation sequence starting 
from Ai kin order to reach I EI must first reach A1. In (3.2) 

HO(M, 0(B -ZE A) ( (- B - ZE) A) 

must be replaced by the subspace S of Proposition 2.8 of [36]. dim S =-A1(B + 

ZE)= -A1 ZE= -ZE-ZE> 2. Also 

dimHo (M 0(- nB-ZE - -Zkl) itmk0 0(- nB -ZE -Gh - Zk)J 

= -A1 *(nB+ZE+ Gh + Zk-1) + 1 

= -nAl ZE+ 1 >2. 

Under these conditions 

( (- nB - ZE - Gh - Zk) 

H 0 m (-(n+l)B-2ZE-G -Zkj) 
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is still surjective V -1 < h <1 -1. Namely, consider the subspace T of S of 
sections which vanish at some given point, say a E A1. T has codimension 1 in S. 
If all the elements of T have a common zero at some point b =#a E A1 or if all 
have a second order zero at a, then T, having codimension 2 in 

Ho (M) 0(-B-ZE))' 

represents all sections of a suitable line bundle over A1. Then (BO, ...,Bh;k) is 
readily seen to be surjective as in proof of [16, Lemma 7.9, p. 144-146], but 
more easily. If the elements of T have no common zeros, then think of T as a 
codimension-1 subspace of the sections of a line bundle, and replace S by T in 
the previous case. Eventually we see that T(Bo,..., Bh; k) is surjective when dim 
T=1. 

Also in (3.2), 

HO(M, C(-B-ZE) ) 

must be replaced by the subspace RI+k which is the image of 

Pt+k :H?(M, )(- B- ZE))-- Ho (M 0(-B-ZEA)) 

if cpt+k is not surjective. By the proof of Theorem 2.1, case (ii), we know that 
Rt+k has at most codimension one in 

HO(M (-B-ZE)) 

Moreover the elements of R1+k have no common zeros as sections of the line 
bundle on Ait+k associated to e (-B-ZE)/C(-B-ZE-A it+k), and 

di rO( C) ((-nB- ZE -Zt+k -GC-h) >2 dimHI(M fatnBiZE wGh asm) t2. 

In fact, since we assume that 
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is not surjective, it follows from the proof of case (ii) of Theorem 2.1 that 
- Aik (B + ZE)> 1. We claim that -Aik t (B + ZE) #1. Otherwise 

Ho(M' (-B-ZE )) 2 

Inductive argument as in the proof of case (ii) of Theorem 2.1 will show that 
there exists f E H?(M, (- B - ZE)) such that the image of f in 

Ho (M' 6(-B-ZE- i)) H(,0(-B-ZE-A ik)) 

as section of the line bundle associated to 0 (- B - ZE)/C (-B-ZE- Aik+) has 
no zero on Ai n Aikl. Hence the image of f cannot be in the image of 

HOM 0(-B-ZE- Zk+t-.1))= 
( (-B-ZE-Zk+ t)) 

which is injected into 

HO(M, 60(-B-ZE) 0(-B-ZE-A ik))t 

via the natural map and which is contained in Rt+k. Hence q9t+k is suective. 
This contradicts our assumption. We conclude that -Aik+ *(B+ ZE)> 1 and 
hence 

dimHo(M, -@(-nB- ZE-Zt+k-G h) > 

Now repeating the argument above, we get that 

T(BO ..Bh;k):Rt+k0CH0 (M, 9nB ZE -Gh -Zt+k1)) H( 0 (- nB - ZE - Gh - Zt+k) 
r(Bo,...,BhHo;k) :R(n 1) -2E+kGhZtHM1 

~~ (9(-nB9 -ZE- G 1-Z -2Z) -I h-tk 
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is surjective. When IEl =A1 is an elliptic curve, we know that 

Ho M O(-B-ZE) \ H 0 ( - nB - ZE - Cxh) 

( ( B-ZE- A1)) ( (9(-nB-ZE- Gh- Al)) 

HO(M, 
0 (-(n + )B -2ZE- Gh) ) 

is surjective. This is shown in [27]. The result follows from the above and the 
proof of case (i). 

Let us now do case (iii). The proof of case (i) fails only because 

Ho M' /E)(-nB-ZE-C,%-Zk-) ) . 0(- nB -ZE-Gh -ZkL)) 0 

We can still get 

Ho(M, 0(- (n+1)B-2ZE-Gh-Zk-l) 
0(-(n+2)B-2ZE) ) 

as an image as follows. There are two subcases. First, suppose that A1 can be 
chosen so that A1 ZE <0 and el > 1, where E =E eiAi, 1 <i < t. In this subcase 
ZE = E. Then choose a computation sequence for ZE with Ai ZE < O, E = Zk = 

ZE, Al=Aik and with a Zq, q<k, such that Ai =A1, A 7ZJsupp(E-A1-Zq) 
and AiZq - O, i #1, Ai C suppE. Such a computation sequence can be 
formed by letting A i = A1 only when Ai S I E l cannot be chosen otherwise. Then 
also ?, Zq-Zq-' Zq+l-Zq-1X, Zk -Zq-l is part of a computation sequence 
for ZE = Zk which, by Corollary 2.3 of [36] can be continued to terminate a Ail. 
Recall that Ai,1ZE <0 by construction. So by Proposition 2.7 of [36], 
H1(M, e9(-B-ZE-Zq))=O and also H'(M, (9(-nB-ZE-Gh-(Zk-Zq-1))) 

=0. In place of (3.2) we use 

1?M 0m 0(-B ZE Zq ) )0OCH M(M' 6?( nB ZE h-(Zk-IZq)1)) 

HOM C) (-(n + 1)B-2ZE-Gh-Zk-) j 

C) (- (n + 1)B -2ZE -Gh -Zk) 
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with the column on the right exact. Our result follows easily. 
In the other subcase, there must be A1, A2, and A3 all distinct, such that 

AiZE < 0, 1 < i < 3, and ei = 1, 1 S i < 3. Choose a computation sequence for ZE 
with E=Zk such that Ai, Al >0, Aik =Al, and such that when Zq with q <k, 
Ai =A2 is reached, AiZq1 < 0 for i7# 1,2. We may suppose A3CSUppZq_l, 
for otherwise we may reverse the roles of A2 and A3, since Ai,-Al > 0 and el = 1, 
Zqi- 1 + A1, is part of a computation sequence for ZE. ?Zq Zqi1* Zk -Zq-1 
is also part of a computation sequence for ZE. Therefore 

Hl(M, ( (-B-ZE-Zq-l-Al)) = 0 

and 

Hl(M, ( (- nB-ZE-Gh-(Zk-Zq- = 0 

by Proposition 2.7 of [36]. In place of (3.2) we use 

Ho(M (-B-ZE-Z-1) 

O (9 nB-ZE-Gh-(Zk- l-Zq 1)) ' 

((- nB- ZE - Gh- (Zk Zq-)) 

HO M, (9(-(n +1)B-2ZE-Gh-Zk- 1) 

6 t9(-(n+l1)B-2ZE- G- Zk)J 

Look at the commutative diagram at the bottom of the opposite page: 

with the column sequence on the right exact. The result follows easily. 
Step 2. We are going to show 

H?(M O())(-B )2Z E(M (9(-nB-2ZE)) 

HO (M ( 
- n 

_ 1R9) (3(3) 
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is surjective. The proof breaks up into two subcases. 

(i) suppE has more than one irreducible component; 
(ii) suppE = Al is a nonsingular elliptic curve. 

In case (i), all irreducible components are nonsingular rational curves. 
Choose a computation sequence for Z as follows: ZO=O, Zl,..., Zk=Zk-l+ 

Ai ... Zro=ZE,..., Zrl ZB=E.., Zrl =ZBI... Zr+, =ZBO=Z, where A. ZE <0, 
Aik=Al. By Proposition 2.7 of [36], 

H1(M,O6 (-nB-ZE-Zj)) = O for n > 1,j > O. 

Consider 

y>:~ ~ ~ ~~ ~H H?M, 6F ( BA))$)H(X (n _ n )B- Zj 1) 

C9 (-(n + 1)B - Z1)) 

I < j < r , (3.4) 

-yil Ho(M, )(- B-A) )@HO M( 
C9 (- nB-ZE -Z1) - 

(9 '(-(n +l)B - ZE Zi)) 

1 < j r0. 

To show that (3.3) is surjective, it will suffice to show that y1, are surjective 
for all 1 < < < ro. Consider the following exact sheaf sequence: 

0 C9 (- nB - Z) C9 (- nB - Z- 1) 
(- ((-nB-2ZE) _ _(_nB_ 2ZE) 

C9 (- nB -Z- 1) 

C- (-nB-4Z) 

O(-nB-ZE-4Z) O (- nB -ZE- Z?1) 

0-> O(-nB-2ZE) CO(-nB-2ZE) 

O (-nB-ZE-Z '- 1) 
c (-nB-ZE-Z,) ?O 

1 < j < ro 
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where B=2 i=OZBi and Zo = O.We claim that 

Ho D(-nB - Z) (o M (-nB -Z,) 
HOkMx O9((-nB-2ZE) )-H?M, B Z 1) 

is surjective for all 0 < j < ro -1. The Chern class of the line bundle associated 
to O(-nB-Z,)/O(-nB-Z,+1) is -Ai (nB+Z1)=-At;lZj which is less 
than 0 for j> 1 and 0 for j=1. Therefore for j> 1, the claim is trivially true 
because 

Ho(M, ? (- B Z) =0. ( ( (- nB - Z+ 1)) 

For j=0, 

HO M /9 (- B) C. 

It suffices to produce a function f E H?(M, C (- nB)) such that the image of f in 

HO(M, 
C (-B A)) 

(C) (- nB -Ail)) 

is nonzero. By proof of Theorem 2.1 we know that 

p: H?(M, 
6 
(- B)) >Ho (M -0 ( _ B-i) C 

is surjective. There exists g E H0(M, ( (- B)) such that the image of g in 

Ho(M e(-B) ) 

is nonzero. Let f=gnf. Then f EH0(M, ( (- nB)) and f EH0(M, ( (- nB -Z)), 
i.e., the image of f in 

Ho{M - C (- nB)) 



840 STEPHEN SHING-TOUNG YAU. 

is nonzero. We next prove that 

H1(M~ =)EZ 1 ) 
, 

?' < j < rO-1 

9(-nB-ZE-Zj)/9(-nB-ZE-Z,+l) is the sheaf of germs of sections of a 
line bundle over A, of Chern class -.Ai+I(nB + ZE +Z). Recall that by 
construction A,, ZE ?-1. Hence -A.i+I (nB+ZE+ Z) > -1. By the Serre 
duality theorem and Riemann-Roch theorem, we have 

Hi( M( 
0-n 

E-Z) = o 

Now the long cohomology exact sequence argument will show that 

-?M nB (_ 
B-ZE -i ) H ?M, (- nB -Z E Z))) 

is surjective for all 0 < j < ro -2. So far we have proved 

(' 
0)(-nB-2ZE)) 

can be written via successive quotients: 

0 Ho(M, ? (- nB - Zj) )HO , 0( B-Z-1 
H ?(-nB-2ZE) / H ?(-nB-2ZE) 

HO(M ? (-nB-ZZ-Z1) )0, 
OHo(M, ( (- nB_ 

- 
i Z-Z) --Ho(MA 0(-n(B-ZE- Z1) 1 

H?( M (- nB -ZE -Z_-1) ) 

1 ? < ro, 

where B=21 oZB and ZO = 0. 
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By the proof of Theorem 2.1, we know that 

H?(M, 0 (- B)) ->Ho(M, 
= -) 

is surjective for all Ai S I El. Hence 

Ho M- 
6 

->B) H(M ?m-())L 
H?M FE)(-B-2ZE) ) H('6 (- B - AO 

is surjective for all A2 c IE 1. Look at the following commutative diagrams: 

Ho(M, 0?(-B) ?OCHO(M, ?(-nB- ZE) -)Ho M, (-(n+1)B-Z1) 
0((-B-2ZE) ) ( ?(-nB-2ZE) ) O((-(n+1)B-2ZE) ' 

Ho M, 0 (- B) OC3HO M, (9( nB-ZE ) H (!3(-(n+l)B-ZE-1) '(-B-2ZE) Jc ? '(!-nB-2ZE) J(-(n+1)B-2ZE) J 

Ho _M _______B OCH( M, (-nB-4~--j) H __M ______n ___B_Z __j 

?(-B-AZE (9 (- nB -2Z) ) 00 ,((-(n+1)B-ZE) J 

HO(M, 9(-B) O( M9(- nB - ZE - ZdH1)\ O M (-(n+1)B-ZE-Z,l) 

( (-B-2ZE)) OM ((-nB -ZE) ) -H0M, ?(-(n+1)B-2ZE) ) 4oM 9(-B COM,4,9 4,n E-Z-1 M 9-n1BZ-jj 
_9___ 2Z___9 nB_ ZE___ _ __ _ ( (-(n+1)B- ZE- l) 

HO(M, 
( 
( BA) J?CH0 M, (9(7nBZE-j-1) H 0H M, 

0-n1BZ-jj 

1 < j <rO. 

Thus if y, and y; are surjective for all j, (3.3) is also surjective. By the 
Riemann-Roch theorem, the target space of y, is nonzero only if j=1. In that 
case, -Ai (B)=O and -Ai (nB)=O. Hence y, is surjective for all j. It remains 
to prove y< is surjective. Suppose that the target space 4y, is nonzero, i.e., 
-Ai ((n + 1)B + ZE + Z,- 1) > O. We need -Ay (B) > O and -Aiy (nB + ZE + 

Z- 1) > O. But this is obviously true because A, (B) =0 for A 5 IE 1. 
In case (ii), ZE = E = A1 is an elliptic curve. By Proposition 2.7 of 

[36], H1(M, 0 (- nB - E)) = 0 for n > 1. Hence H?(M, 0 (- nB))-- 
H?(M, 0 (- nB)/ 0 (- nB - E)) is surjective for all n > 1. We have the following 
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commutative diagram: 

o 0 

'H 4, 4(BE OH , 4,-n )-*O ,0-n1B? , ((-B-2)) (-nB-2E) )(-(n+B-2E) 
I aI JI 

y:?M0E(-(B-2E) 0Ec?M (-(nB-2E) )H (M -((n+l)B-2E)) 

0pH(M )B-E) 0 )@ ?M 9 nB -E) ) 0MC(-(n+l)B-E)) 

0 0 

with the column sequences on the right exact. Let N be the line bundle over 
A1 =E whose sheaf of germs of sections is (9(-B)10)(-B-E). By the 
proof of Proposition 1.7, N is a trivial line bundle over (A1, (AI) and 
H?(M, 0 (- B)l (- B- E)) _- . Since 

C -nB)/C (- nB -(E) 

4, 4 , 

A1=E whose sheaf of 16 gersEf scton is ?(-B)/(-B-). (By the 

n 

O(-nB)/ (-nB-E) corresponds to a trivial line bundle Nn over A1= JEJ. 
Therefore H?(M,O(-nB)/O)(-nB-E))=C by the same argument as in the 
proof of Theorem 1.5. It follows that the map p is surjective. The map 41 is also 
surjective. This is shown in [27]. It follows that y is surjective. This completes 
the proof of step 2. 

Step 3. To show that mn _ H0(A, 0 (-nB)), we shall show that 

H0(M, 0 (-B))?cH0(M, 0 (-nB))->H?(M, 0 (-(n+1)B)) is surjective. Con- 
sider the following commutative diagram: 

0 

H?(M 0 ( - 4ZE)) ?c HO(M, (-nB- ZE)) HO(M, ? (-(n + l)B-2ZE)) -*O 

HO(M, (-B)) ?C H(M, (-nB)) HO(M, (-(n + 1)B)) -*0 

HO(M 0B 
OcHo(M, ?(-nB) -*HO(M O(-(n +1)B) -* 

H ' ((-B-2Z) 0 (-nB-ZE)J2ZE ) (-(n+1)B-2ZE) ) 

0 

with the column sequence on the right exact. The first row and third row are 
exact by step 1 and step 2 respectively. Since H'(M, 0 (- nB - 2ZE)) = 0 for 
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n > 1 by Proposition 2.7 of [36], it follows that H?(M, 0 (- nB)) 
H?(M, C (-nB)/C (-nB-2ZE)) is onto for n > 1. Consequently, the second 
row is exact. Q.E.D. 

THEOREM 3.2. Let V be normal two-dimensional Stein space with p as its 
only weakly elliptic singularity. Let 7T: M-> V be the minimal good resolution. 
Suppose v?p is Gorenstein and H 1(M, 0) = C2. Let ZB= Z, ZB*,..., ZBi, ZE be 
the elliptic sequence. If ZE*ZE ?-3, then dimmn/mn'l= -n(2Y=OZ i), n > 1. 

Proof. The long cohomology exact sequence 

0 O 
H?MX ( 9(-( 

n 
)B) ) H?(M' e)(n+l)B) 

H?(M, )H ( M (n + 1-B) ) 

H1(M, ?)(n+1)B) -- H1(M, ?nB) -? 0 

says that 

dim H?(M, C9 (- nB) / C (- (n + 1) B)) -dim H'(M, 6 (nB /) (- (n + 1) B)) 

=dim H?(M, ?(n+l)B) - dim H'(M, ? (n+ 1)B) 

-dimH?(M, ?nB) +dimH'(M, ?nB) 

=x((n+ 1)B)-X(nB) 

= (B) + X(nB) - n(B). (B) -X(nB) 

n(E ZBt 

Consider the following cohomology exact sequence: 

O H(M, (-(n + 1)B)) H?(M, (-nB)) 

O H(-(nMB) H H (M, (( +1) B)) 
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By Theorem 3.1, 

dimm n/mn+l 1 

= dimH0(M, (-nB))/H?(M, ( (-(n +1)B)) 

= dimHo(M (- nB) - dimH1(M,6(- (n+l)B)) 

+dimH'(M, (9(-nB))-dimH' M, n 
( B)) 

= -n(E ZB) +dimH'(M,( -nB))-dimH'(M,(-(n+l)B)). 

We claim that H'(M,0(-nB))-C for al n>1. Choose a computation 
sequence for Z of the following fonn: ZO = 0,..., Zk = E,., ZrO = ZE, 
Zrl=ZB,...,Zr=ZBI,,,, Zri+i= ZBO= Z. Consider the following sheaf exact 
sequence: 

0(-nB- Z1) 0(-nB) (-nB) 
(-nB- E) 0(-nB-E) 0(-nB-Z1) 

0 ( nB - Z2) ( - nB - ZI) 0(-nB- ZI) 
0(-nB-E) 0(-nB-E) 0 (-nB- Z2) 

0 0 (- nB -Zk - ) (- nB- Zk -2) ( - nB - Zk -2) 
O(-nB- E) O(-nB- E) 0(-nB-Zk-1) 

By the proof of Theorem 2.1, we know that there exists f E H?(M, 0(-nB)) 
such that the image of f in H?(M, 0 (- B)/0 (- B - Zj)) is nonzero. The usual 
long-cohomology-exact-sequence argument will show that 

H'(M,0(-nB)/0(-nB-E)) - C. 

Since H'(M,0(-nB- E))=O, the exact sequence 

H'(M,6(-nB- E))-+ H'(M,0(-nB)) 

H H1'M 6(-nB) 0 
0 (-nB-E)j 

will show that H'(M,0(-nB))-C. Hence dimmn/mn+l= -n'El Z. 

Q.E.D. 
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4. Absolute Isolatedness of Almost Minimally Elliptic Singularities. The 
name absolutely isolated singularity is given in [3] and [14, 15] to a two-dimen- 
sional normal singularity, realized in C3, which can be resolved by means of a 
sequence of a-processes with centers at points. It is proved in [3] and [32] that 
double rational points are always absolutely isolated and, conversely, an arbi- 
trary double absolutely singularity in C3 is rational. In this paper we shall say 
that a two-dimensional isolated singularity is absolutely isolated if it can be 
resolved by means of a sequence of a-processes with centers at points, without 
requiring, in what follows, that it should be realized in C3. It is in this sense 
that Laufer proved that minimally elliptic singularities which are not double 
points are absolutely isolated. In this section, we will prove the following 
theorem. 

THEOREM 4.1. Let :M->V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only almost minimally elliptic 
singularity. If ZE-ZE < -3 and v0p is Gorenstein, then p is absolutely isolated. 
Moreover, blowing up p at its mwximal ideal yields exactly those curves Ai such 
that Ai2Z<O. The singularities remaining after the blowup are the rational 
double points and a minimally elliptic singularity corresponding to deleting the 
A2 with A' Z < 0 from the exceptional set. The self-intersection number of the 
fundamental cycle of the minimally elliptic singularity is less than or equal to 
-3. 

Proof. Since p is an almost minimally elliptic singularity, the elliptic 
sequence is of the form Z, ZE. Let a: V'-> V be the blowup of V at the maximal 
ideal m at p. Let Ai,,..., Aik be those irreducible components of A= v- (p)= 
U = LA for which Z Ai < 0. We consider the curve All (Ai, U ... U Aik). Gener- 
ally speaking, this is a reducible curve. Let IEl,C2,...,C, be its connected 
components. For any Ai 5 C>, 2< j < s, we have Ai n I E =0, so-Ai Ai + 2g,- 
2=Ai K'=-Ai(Z+E)=-A1 Z=O, i.e., Ai Ai=-2. Therefore, C2,...,C5 are 
exceptional sets of rational double points. We shall contract to a point each of 
the curves IE 1, C2,..., Cs on the surface M. We obtain a surface M' with s-1 
rational double points and one minimally elliptic singularity. We denote by A' 
the image of the curve A on the surface M'. In order to prove the theorem, we 
need the following proposition. 

PROPOSITION 4.2. The surface M' is biholomorphically equivalent to the 
surface V'. 

Proof. Use the notation of Theorem 4.1. Let 7':M-M->V' be the induced 
map. g' is holomorphic, since m?(S = 0 (- Z) by Theorem 2.1. Choose f1,... 'fd E 
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H0(M, C(- Z)) project to a basis of m/m2. Then a-'(p) is the image of A in 
P`d- of the map given by the (well-defined) homogeneous coordinate 

[fi(q),... ,fd(q)], q E A. Suppose that fi generate (9 (- Z) near q. Then functions 
near iT'(q)E V' include quotients g/ffr where gEm& and r is a nonnegative 
integer. gT*(g/fJ) is holomorphic near q. More precisely, let a neighborhood U 
of the singular point p e V be realized in the space Cd, and let zi,..., zd be 
restrictions of coordinates in C? to U. We consider the functions fi = S'*(zi) in a 
neighborhood of the curve A on the surface M and define by means of them the 
mapping 7': M-> V'. Let a be a point on the curve A. It follows from the proof 
of Theorem 2.1 that there exists a neighborhood Ua of the point a and a number 
1 <i S d such that the divisor of the function fi in the neighborhood Ua is 
precisely the cycle Z and f = g fi, i#j, where g are holomorphic functions in 

Ua. Then by definition the mapping gT' transfers Ua into the neighborhood Ai of 
the set 0(Cd), the blowup of Cd at the maximal ideal at origin p, with 
coordinates (t1,...,ti -, t ,zi, ti+, ... , td) in accordance with the formula 

7T/(q) = (gl(q),. . .,gi-(q),fh(q),gi+1(q),.. X gd(q)), (4.1) 

where q E Ua. Since the mapping a on the neighborhood Ai is given by the 
formula a(t,.. ..,td)=(tlzi,. . ., ti zi,zi, ti+ lzi,..., tdzi), the map- 
ping a o ,' transfers the point q E Ua to the point (f1(q), ... .d(q)), i.e., ST = a o 7T'. 

It is easily verified that the mapping defined in this way is concordant on the 
intersection of the neighborhoods Ua and Ub, a,bEA. If we put T'=a- 1 o 7T on 
M\A, the mapping will be concordant on the intersection of Ua and M\A. 
Thus we have defined a holomorphic mapping 7T' of surface M into V' which is 
biholomorphic on M\A. As we know, the manifold 0(Cd) is a line bundle with 
fiber C and base ?pd-1, and ST-'(A)=a_1(p) pd-1. The mapping 7'/A 
can be given as whole by the formula 

7T'/A(q) = (f,(q),... .d(q)), q E A. 

To prove the proposition, it is sufficient to show that the mapping ,' contracts 
the curves I El, C2,.. ., Cs to points, and is biholomorphic on M- (U i=2Ci U El). 
Also we must show that V' is normal. 

If Ai I El, by almost minimally ellipticity, we have Ai Z = 0 and 
H?(M, 6 (-Z )/ e (-Z-Al))-C. If Ai : C;, 2 j A s, then Ai is a nonsingular 
rational curve and H?(M, e (-Z)/6 (-Z-Ai)) C. Since m? = e (-Z) by 
Theorem 2.1, H?(M, 0 (- Z))-*H?(M, 0 (- Z)/ 6 - Z - Ai)) is surjective for all 

Ai C U I=2Ci U IE 1, and the mapping 7T' transfers the component Ai to a point. If 
A IZ<O, then Al.ZIEl. We shall first show that g7' is biholomorphic near the 
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regular points R1 of A within A1. There are two subcases. First suppose that 

Al (Z+ ZE) < -1. If there exists A, C IEI such that ZEE+ 1 ?AiZE < -1, then 
as in the proof of Theorem 2.1, case (i), H1(M,O0(-Z-ZE-AL))=O. Hence 

H?(MXC0 (-Z-ZE))--HO(M, ? (-Z-ZE-A1)) is surjective. Elements of 
H?(M, 0 (- Z- ZE)) suffice to show that 7T' is biholomorphic on Al\(A1n E 1). 
We claim that actually 7T' isomorphically embeds A1 in Cpd-1. For A1nl El = 

0, this is clear. Suppose AInIEI#30. Let A2C_El such that Al A2=1. 
SinceH?(M, 0 (- Z))-*H?(M, 0 (- Z)/(9 (- Z -A2)) C is surjective by the 
proof of Theorem 2.1, there is an fE H?(M, 0 (-Z)) whose image in 
H0(M,6(-Z)/0(-Z-A1)) as a section of line bundle on A1 associated to 
( (-Z)/ (-Z-A1) is nonzero at A1 n A2 = A1 n IE 1. Hence 7T' isomorphically 
embeds A1 in C pd- 1. Suppose that A1 has the following property: Any 
computation sequence for Z starting from A1 must first reach A, in order to 
reach JEl, where AiZE = ZEZE. If H?(M, 0 (-Z-ZE))->HO(M, 0 (-Z- 

ZE)/6 (- Z - ZE - A1)) is surjective, then the previous argument shows that 7T' 

isomorphically embeds A1. Suppose H?(M, 0 (-Z-ZE))->HO(M, (-Z- 

ZE)/ O (- Z - ZE - A1)) is not surjective. By the proof of Theorem 3.1, we have 
-Ai (Z+ZE)>2. So dimH0(M,0(-Z-ZE-Zk+t-l)/0(-Z-ZE-Zk+t))-> 
2, where { Zi } is the computation sequence chosen in Theorem 2.1, last part of 
case (2). As proved there, the image of H?(M, 0 (- Z - ZE - Zk+t- 1)/ (- z - 

ZE-Zk+t)) which is injected into H?(M,O(-Z-ZE)/O(-Z-ZE-A1)) via 
natural map is contained in R, the image of H?(M, J (-Z-ZE)) -> 

H (M, C0 (- Z - ZE)/ (- Z - ZE - A1)). Therefore elements of H?(M, 0 (- Z - 
ZE)) still suffice to show that TT' is biholomorphic on A1 - (AI n IE). Conse- 
quently 7T' isomorphically embeds A1 in ?pd- l. The other subcase is A1 (Z + 
ZE)=O. Then A1nJEj7#0. Let AQjEj, A1Al=1. Choose a computation 
sequence for Z as follows: ZO=O, Z1=Ai, =A1, Z2=Z1+Aj,..., Zl+k = ZL + 
E*..., Zro+i = Z1 + ZE. * Consider the following sheaf exact sequence: 

0 (9(-Z -Z2) (9- Z-Al) (-Z- Al) 

Z) - 
ZE -Al) Ze - 

ZE -Al) (9 ( Z2) 

0 ( Z Zk) e(ZZk- 1) Z( ZZk- 1) 

(9(-Z-ZE l) 0(-Z-ZEO-A) (9(-Z-Zk) 

0(-Z-Zrl0) ?(--Z_0-A1) _ 6(-Z-Z_) 
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By Proposition 2.5 of [36], we know that A,. * Z, - 1 = 1 forj # k + 1 and Aik+, Zk= 

2. Hence the Riemann-Roch theorem and the usual long-cohomology-exact- 
sequence argument will show that H 1(M, 0 (- Z-A1)/ ( (- Z- ZE-A1))- C. 
Consider the following exact cohomology sequence: 

H 1(M, 6(- Z - ZE - Al))- H 1(M, 6(- Z - Al)) 

> H1(M, 0 (- Z-A1)/O (- Z- ZE-Al)) -- 0. 

If there exists Ai #A, such that AiZE<O, then by the proof of case (i) of 
Theorem 2.1, H1(M,O(-Z-E-Aj))=O. Hence H1(M,O(-Z-A1))_ C. If 
ApZE = ZE ZE, the elements of S which constitute the image of H0(M, 6 (- Z - 
ZE))-->H0(M,6(- Z - ZE)/C(-Z-ZE- A.)) as section of the line bundle 
associated to 0(- Z - ZE)/0(- Z - ZE - Ai) have no conunon zeros on A,. 
Since H?(M, 0(- Z - ZE)/O (- Z - ZE - A1)) _ C, we conclude that 
H0(M,(- Z - ZE))->HO(M,0(- Z - ZE)/0(-Z-ZE- A1)) is surective. The 
following cohomology exact sequence 

0 -> H(M,0(- Z - ZE- Al)) -> H(M,0(- Z - ZE)) 
-> H(M,0(- Z - ZE)/0(- Z - ZE-Al)) - C 

-> H1(M,(- Z - ZE-Al)) ->H1(M,0(-Z-ZE)) - 0 

-- HW(M, 0( Z - ZE)/O(- Z - ZE- A1)) --o 

shows that H1(M,0(- Z - ZE- Al))=0. Therefore we stil have H1(M,(- Z 
- ZE- A1)) C. Now consider the following exact cohomology sequence: 

0-> H(M,0(- Z -A1))- HO(M,0(- Z)) 

-+H?(M, (- Z) / 0(- Z - Al)) -- H 1(M, 0(- Z - Al)) 

H+ 1(M,@( Z)) -- H 1(M,6( Z)/( Z- Al)) -->0. 

By Theorem 1.2 and (1.6) of [20], H1(M, 0 (- Z))?C. The Riemann-Roch 
theorem and Serre duality will show that H1(M,(0(- Z)/(9(-Z-A1))=O. 
Therefore H'(M, 0 (- Z - A1))-->H'(M, 0 (- Z)) is an isomorphism by dimen- 
sional considerations. It follows that H0(M, 0 (- Z))-->H0(M, 0 (- Z)/6 (- Z - 
A1)) is surjective. Hence ?T' isomorphically embeds A1 into Cpd-1, Let q be a 
point on the curve Al, A1 Z<O, which is not a point of intersection of 
components. The mapping ff' acts in accordance with the formula (4.1), and it 
may be assumed that fi = TZr, where T = 0 is the local equation of the curve A1, 
and z1 is the coefficient of A1 in the cycle Z. If z1 = 1, then the formula (4.1) 
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gives 7T'(Z) = (T(Z), g2(Z),.. .,gd(Z)), where the point z lies in some neighborhood 
of the point q. Clearly the rank of the differential d?T' is 2, since we know by 
the previous proof that the mapping ?T' on the curve A1 is a biholomorphic 
embedding. 

Let z1 > 2. To complete the proof that ff' is biholomorphic near A1 for each 
q E R1, we need a function g C H?(M, 0 ) vanishing on A1 to exactly order z1 + 1 
near q. Let Y be the least cycle such that Y > Z + ZE + A1 and Ai Y < 0 for all 

Ai. With Y= yiAi, 1?i?n, we claim that y1=z1+1. Suppose first that 
(Z + ZE) -A1<0. Y is formed via a computation sequence as for fundamental 

cycles: Yo = Z + ZE, Y1 = Z + ZE + Al, Y2,..., Yr = Y. Then 0,Al, Y2-Y,,..., Yr 
- YO is part of a computation sequence for Z. Then A =Al, 1<j<r, is 
impossible, because if A1 (Y-1- YO) = 1, then AY1 ?0Y - O and Y, was not part 
of the computation sequence for Y. While if Al (Yj1l-YO)=2, the other 
possibility, then Y- YO contains a minimally elliptic subgraph and A. = Al 

JEl. This contradicts our assumption that AlZIEl. Notice that the above 
reasoning also shows that A2 Z supp(Y - YO) if A2. YO < O. If Al Yo = 0, then 
A1 n IE 1 #40, since A1I Z < 0. In this case, Y is actually the least cycle such that 
Y ?Z+A1 and YAi 0 for all Ai CA, because E Z=0 and IEl is connected. Y 
can also be found via a computation sequence as for fundamental cycle as 
follows: Xo=Z, X1=Z+A,,..., Xr=Y. Then 0,Al,X2-XO,...,Xr-Xo is part 
of a computation sequence for Z. Ai =Al A, 1<1 ir is impossible, because if 

AI (Xi-I-XO)= l, then Al Xil- < O and X, was not part of the computation 
sequence for Y. If A1 (X> 1- XO) = 2, the other possibility, then X,- XO contains 
a minimally elliptic subgraph and Ai. =AlC- I El. This contradicts the fact that 
A IZ Ej. To prove that there exists g c H0(M, 0) vanishing on A1 to exactly 
order z1 + 1 near q, we have to examine Y more closely. Suppose firstly that 
A1 n IE 1 70. Y= Z + ZE + D1 +A1 + D2 where D1, D2 are positive cycles such 
that |DlDl5|El and JD2JnJIE=0. Hence ZE.Y=ZE.ZE+ZE.Dl+ZE-Al=ZE- 

ZE+ZE DI+1?-2. Let AiClEl such that Ai-AI=1. If there exists A, CEI 
such that A, Y<0, A#=Ai , then by the proof of Theorem 2.1, case (i), 
H1(M, 0 (-Y-Al))=0. Hence H?(M, 0 (-Y))->H?(M, 0 (-Y)/0 (-Y-A1)) 
is surjective. Suppose A, Y =0 for all A, CI E1, AX :#Ai. Choose a computation 
sequence for Z with E=Zk, Ak =Ai, A ik+ l=A1. By Proposition 2.7 of [36], 
H1(M, 0 (-Y-Z,)) = 0 for all j. So H?(M, 0 (-Y))->H?(M, 0 (-Y)/0 (-Y- 
Zk+l)) is surjective. It follows that H?(M, 0 (- Y)) and H?(M, 0 (- Y)/0 (- Y 
-Zk+l)) have the same image R in H0(M, 0(-Y)/ 0(-Y-A1)), and 0-> 

H0(M,0(-Y-Zk) /0(-Y-Zk+l)) -> H0(M,0(-Y) /O(-Y-Zk+l)) -> 

H?(M, 0 (-Y)/ 0(-Y-Zk))-*O is an exact sequence. Thus the image of 

H?(M, 0 (- Y - Zk)/O (- Y - Zk+l)) which is injected into 



850 STEPHEN SHING-TOUNG YAU. 

H0(M,E(-Y)/O(-Y-A1)) via the natural map is contained in R. If 
H0(M, E (- Y-Zk)/ (- Y-Zk+l))#O, then the elements of R have no com- 
mon zeros on A1 - (A1 n Ai) as sections of the line bundle L on A1 associated to 

( (-Y)/( (-Y-A1). If H?(M, 9 (-Y-Zk)/O (-Y-Zk+l)) =O, then A1 Y= 
0. So H0(M,E(-Y)/O(-Y-A1))-C. We claim that H0(M,E(-Y))-> 
H ?(M, 0(- Y)/O (- Y- A1)) is suijective. It suffices to prove that the map 
is not zero. Since the coefficient of Ai in ZE is one, Ai Y < -2 and 

dimH0(M,E(-Y)/0(-Y-Aj))>3. The image of p:H0(M,E(-Y))-> 
H?(M, 60(-Y)/16(-Y-A?)) is a subspace S of codimension 1 in 
H?(M,0(- Y)/0(- Y-Ai)) Hence elements of S have no common zeros as 
sections of the line bundle Li on Ai associated to (- Y)/ (9- Y - Aj) by 
Proposition 2.8 of [36]. Suppose secondly that AI n IE = 0. Let Ai C [EI such 
that the computation sequence starting from AI in order to reach j E j must first 
reach Ai. Let C be the union of A1 and connected components Cn of those A, 
such that A1 (Z+ZE)=0 and A1nC,# 0. We claim that Y=Z+ZE+ZC, 
where Zc is the fundamental cycle on C. Obviously Y > Z + ZE + ZC. For any 

AjZ C and Ain C#0, we have Ar(Z+ZE)<0. By previous argument, we 
know that A, C supp( Y-Z-ZE). Hence Y<Z+ZE+ ZC. If A, Z C and A, Zc 
= 2, then A, C Ej and supp(E - A,) C C. If g is the minimal resolution, then 
ZE = E and the coefficient E Ztof At in ZE is equal to one. If g is not the minimal 
resolution, we still get EZt =1 by Proposition 2.2 of [36] and case-by-case 
checking. Hence At ZE= ZE-ZE< -3 and At Y S-1. The proof of case (i) of 
Theorem 2.1 shows that H1(M, 0 (- Y-A1)) =0. Therefore H1(M, 0 (- Y))-* 
H1(M, 0 (- Y)/( (- Y-A1)) is surjective. Suppose for all At Z C, At Zc < 1. If 
ZE = E, then the connected components C, of C -A1 are exceptional sets of 
rational double points. ZE ZE ?-3 will imply that either H 1(M, 0 (- Y- A1)) 
=0 or ZEY< -2. If ZE7#E, ZE-ZE ?-3 still implies that either H1(M, 0 (- Y 
-A1))=0 or ZE*Y< -2 by Proposition 2.2 of [36] and case-by-case checking. 
If there exists A, C: E 1, A, =#Ai, such that A,s Y < 0, then the proof of case (i) of 
Theorem 2.1 shows that H 1(M, 0 (- Y - A1)) = 0. Therefore we may suppose 
that AiY< -2. Choose a computation sequence for Z with E=Zk, Aik= 

Ai,Aik+l n Ai 0, A =k+t=Al, AlXlZk+t-ll, and such that A,, k +lj<S<k+t, 
are distinct from each other and not contained in jEl. By Proposition 2.7 of 
[36], H1(M, 0 (- Y - Z;)) = 0 for all j, so H?(M, 6 (-Y))-* 
H?(M, (- Y)/ (- Y-Zk+t)) is surjective. It follows that H?(M, 6 (-Y)) and 
H?(M, 6 (- Y)/0 (- Y - Zk+t)) have the same image R in 
H?(M, 0 (-Y)/0 (-Y-A1)), and 0-H?(M, 6 (-Y-Zk+t1)/6 (-Y-Zk+t)) 

-H(M, 6 (-Y)/0 (-Y-Zk+t))-->H?(M, 6 (-Y)/0 (-Y-Zk+t-1))-*0 is an 
exact sequence. Thus the image of H?(M, 6 (- Y-Zk+ t- 1)/ (- Y-Zk+ t)) 
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which is injected into H0(M,O(- Y)/6(- Y-A1)) via the natural map is 
contained in R. If H?(M,9(- Y-Zk+t-l)/6 (- Y- Zk+t))#0, then the ele- 
ments of R have no common zeros on A1 - (Al n Aik -) as sections of the line 
bundle L1 on A1 associated to (9(-Y)/((-Y-A1). If H?(M,e(-Y- 

Zk+t- )/@ (-Y-Zk+t))=O, then AlgY=O. Hence H?(M,O(-Y)/O(-Y- 
A1))- C. But by induction, we know that the elements of the image of 

H?(M, 6 (- Y))->H?(M, 6 (- Y)/ (- Y-Aik -)) have no common zeros on 
A. - (A. InA. ) as sections of the line bundle L. on A. 
associated to 0 (-Y)/(9 (- Y-Ak)+ I) It follows that H?(M, 6 (- Y))-* 
H?(M, 60(- Y)/ 6 (-Y -A1)) is surjective. So far we have proved that there 
exists g E H?(M, 6) vanishing on A1 to exactly order z1 + 1 near q. 

Let us now show that ff' is as one-to-one as possible on A, i.e., ff' should 
map the connected components j Ej, C2,..., Cs to distinct points and otherwise 
be one-to-one on A. We showed above that ff' is one-to-one on each Ai with 
Ai Z<O. So suppose that Al Z<O and A2 Z<O. Form Y, the least cycle 
Y >Z+ ZE +Al such that Ai-Y <O for all Ai. If both A1 and A2 are disjoint 
from IEj, then A1 (Z+ZE)<O, A2 (Z+ZE)<O. As shown in the previous 
paragraph, A2Zsupp( Y- Z - ZE). In the other case, interchange the role of A1 
and A2. If necessary, we may assume that A1 n IEI #0. Then Y is the least 
cycle >Z+A1 such that Ai YSO for all Ai. As shown in the previous para- 
graph, we still have A2 Z supp( Y - Z - ZE). Since mO =0 (- Z), by the proof of 
the previous paragraph, we know that there are functions which separate A1 
from any given point in A2-B,, where Bj = JE I or Ci, 2 < i <s, and Bj n A1 =#0. 

Finally, we must examine V' at the singular points of ?T'(A). Suppose that 
qEA1nA2, A1 Z < o, and A2Z < O. Let f1 E H?(M, e ) generate 9 (-Z) at q. 
The function f1 has in a neighborhood of q the form Tf= rljr2z2 where T=O, 
2= 0 are the local equations of the curves A1 and A2. Since A1 and A2 intersect 
at the point q transversely, the functions T, and 2 may be taken as the local 
coordinate system on the surface M. If both A1 and A2 are distinct from JEl, 
then there exist f2Jf3 E H?(M, 0 ) such that near q 

f2 = 42T1 T22 {2(q) # 0, 

f3= 43'l - 1 , {3(q) o0. 

In this case the formula for the mapping ff' looks like 

= 1 2 2 2r1 1324, .... gd) 

and its differential is of rank 2 at q. Suppose A1 n IE 1 #0. Then A2n JEI =0. 
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The previous proof shows that there exists f2E H0(M,0) such that near q, 
f2=4i2 Tr+ T22, where 4'2(q)#O0. If A Z< -2, there is also a function f3E 
H0(M, 0) such that near q, f3 =-43TZ+lT22. The same reasoning as before wil 
show that the differential of ?T' is of rank 2 at q. Suppose A1Z= -1. Then 
H?(M, 0(-Z)/ 6(-Z-A1)) _ C2. We need H?(M, 9(-Z))-> 
H0(M,0(-Z)/6(-Z-A1)) to be surjective. But this has been shown on pp. 
847-848. Choose instead f3 EH0(M, ( (- Z)) to have a first-order zero at q in 
H?O(M, 6 (- Z)/(9 (- Z-A1)). Then near q, f3 looks like Tj1z2z2(aT2+ ...), where 
a =#0. In this case the formula for the mapping ff' looks like 

ST (T1 r212 +2T,, Tt2 + * ***gd), a: 7# 0, 

and its differential is of rank 2 at q. Lastly, let C be a connected component of 
Us= 2Ci U IEI. We need that V' is normal at 7T'(C). Take A1 cA'. Let Y be the 
least cycle such that Y> Z + A1 and Ai Y < O for all Ai. Then, arguing as before, 
one sees that Ai Z supp(Y - Z) if Ai Z < 0. Since Y - Z is part of a computation 
sequence for Z, supp(Y - Z) is connected. Then Y - Z = Z' is the fundamental 
cycle for C. There is an fEH0(M,0(-Z)) which generates (9(-Z) in a 
neighborhood of C. Functions on V' near f'(C) thus include g/f2 for g E 

H?O(M,e (-2Z - Z')) cm2. Division by f2 gives an isomorphism H?(M, 0 (-2Z 
- Z')/0 (-2Z - 2Z')) -H?(M, 0 (- Z')/0 (-2Z')). The proposition is proved. 

It follows from the above proposition that after applying a a-process at p, 
we obtain a surface which has only rational double points and minimally elliptic 
singular points. Moreover, the self-intersection number of the fundamental 
cycle of the minimally elliptic singularity is less than or equal to -3. By 
Theorem 3.15 of [20] and Theorem 1 of [31], our theorem follows. Q.E.D. 
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