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HYPERSURFACE WEIGHTED DUAL GRAPHS OF NORMAL
SINGULARITIES OF SURFACES

By StEPHEN SHING-TOUNG YAu.

Introduction. Let p be a normal singularity of the 2-dimensional Stein

space V. Let 7: M—V be a resolution of V such that the irreducible compo-
nents A;, 1<i<n, of A=7"1(p) are nonsingular and have only normal cross-
ings. Associated to A is a weighted dual graph I (e.g. see [10] or [14]) which,
along with the genera of the A,, fully describes the topology and differentiable
structure of A and the topological and differentiable nature of the embedding
of A in M.
One of the important questions in normal two dimensional singularities is “the
classification of all weighted dual graphs for hypersurface singularities.” It is
known that in the weighted dual graphs for hypersurface singularities, the K’
cycle (see Definition 0.9) exists. M. Artin has studied the rational singularities
[those for which R '7,(0)=0]. Double points are hypersurface singularities. He
has shown that if p is a rational double point, then the graph associated to p is
one of the graphs A;, k> 1; D,, k > 4; Eg; E;; Eg which arise in the classification
of Lie groups. In [26], Wagreich introduces a definition for p to be weakly
elliptic. He proved that for double points, Z-Z > —2, where Z is the fundamen-
tal cycle. Using this fact, he listed a lot of the possible weighted dual graphs of
elliptic double points [26] (34 possible cases). I was kindly informed by Laufer,
and Wagreich himself that the list is incomplete. In this work, we will give a
complete list (131 cases) of all weighted dual graphs for weakly elliptic double
points (cf. Theorem 2.9). Moreover, for each of these weighted dual graphs, a
typical defining equation is given. The defining equations have been found by
means of an unpublished technique of Laufer. Rational singularities have
H'(M,0)=0. The hypersurface rational singularities are actually double points.
For H'(M,0)=C, Laufer was able to list all weighted dual graphs of hyper-
surface singularities. In this paper, we list all possible weighted dual graphs of
hypersurface singularities with H'(M, 0 )= C?. As a consequence of this classifi-
cation, the following theorem is proved.
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TuEOREM. Let m:M—V be the minimal good resolution of normal two
dimensional Stein space with p as its only singular point. Suppose H'(M,0)=
C? and p is a hypersurface singularity. Let E be the minimally elliptic cycle. If
H'(A,Z)=0, then p is an almost minimally elliptic singularity. (For definition
see [29].)

An example in [28] shows that the above theorem is sharp. Our main tool is
the previous result [28] that — K’=summation of the elliptic sequence, the
complete list of minimally elliptic hypersurface singularities by Laufer [18] and
Theorem 2.7 of Wagreich [26].

We begin by recalling some theorems and definitions in Section 0. In
Section 1, we get a lower estimate on the dimension of Zariski tangent space of
general two dimensional normal singularity in terms of the fundamental cycle
Z,

dimm/m?* > x(Z) — Z-Z + dimH*(M,0(— Z)) — dimH'(M,0(—22)),

which will give us a necessary condition on hypersurface weighted dual
graphs. This kind of estimate is sharp in the sense that equality holds for
certain singularities. In case of maximally elliptic singularities, we know that
dimHY(M, 0 (— Z))=dimH"(M, 9 (—2Z)). In particular, for maximally elliptic
singularities, Z-Z > — 3. This enables us to list all the possible maximally elliptic
hypersurface singularities. However, the list is too long to be included. In
Section 2, we give a topological classification of elliptic double points. In
Section 3, we list all possible hypersurface weighted dual graphs for those
singularities with H'(M, 0)=C2

I gratefully acknolwedge the encouragement and help of Professor Henry
B. Laufer during the investigation of these results, especially for showing me his
unpublished technique in finding a defining equation for the weighted dual
graph of double points. I would also like to thank Professor Kuga, Professor Siu
and Professor Wagreich for their encouragement and discussion of mathemat-
ics.

0. Preliminaries. Let 7: M—V be a resolution of normal two dimensional
Stein space V. We assume that p is the only singularity of V. Let 7 " '(p)=A =
U A,, 1<i<n, be the decomposition of the exceptional set A into irreducible
components. Suppose 7 is the minimal good resolution. Let I" be the associated
weighted dual graph. The vertices of I' correspond to the A;. The edge of T’
connecting the vertices corresponding to A; and A;, i7j, corresponds to the
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points of A;NA;. Finally, associated to each 4, is its genus, g, as a Riemann
surface, and its weight, A;-A;, the topological self-intersection number. I" will
denote the graph along with the genera and the weights.

Definition 0.1.  degA; =3 A;A,, j#i.

A cycle (or divisorial cycle) D on A is an integral combination of the A,.
D=2dA;, 1<i<n with d, an integer. In this paper, “cycle” will always mean
a cycle on A. There is a natural partial ordering, denoted by <, between cycles
defined by comparing the coefficients. We shall only be considering cycles
D >0. We let suppD=|D|= U A4,, d;#0, denote the support of D.

Let O be the sheaf of germs of holomorphic functions on M. Let O (— D)
be the sheaf of germs of holomorphic functions on M which vanish to order d;
on A;. Let O, denote O /O(—D). We use “dim” to denote dimension over C.
Then

x(D) = dimH°(M, 0,,) — dim H'(M, O,)). (0.1)

Some authors work instead with the arithmetic genus P,(D)=1—x(D). The
Riemann-Roch theorem [24, p. 75] says

x(D) = —(D-D+DK). (02)

In (0.2), K is the canonical divisor on M. D-K may be defined as follows. Let w
be a meromorphic 2-form on M, i.e., a meromorphic section of K. Let (w) be the
divisor of w. Then D-K = D-(w), and this number is independent of the choice
of w. In fact, let g be the geometric genus of A, ie., the genus of the
desingularization of A;. Then [24, p. 75]

A-K=—A;-A +2g—2+28, (0.3)

where §; is the “number” of nodes and cusps on A;. Each singular point on A;
other than a node or cusp counts as at least two nodes. Fi ortunately, such more
complicated singularities will not occur in this paper.

The minimal resolution of V is characterized by there being no A; which is
a nonsingular rational curve with A;-A; = —1 [5, p. 364]. The intersection matrix
(A;4;) is negative definite [14], so by (0.3) we see the following.

ProposiTiON 0.2. 7 is the minimal resolution of V if and only if A;;K >0
for all A,.

It follows immediately from (1.2) that if B and C are cycles, then

x(B+C) = x(B) +x(C) — B-C. (0.4)
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Associated to 7 is a unique fundamental cycle Z [1, pp. 131-132] such that
Z>0, A;Z<0 (all A;), and such that Z is minimal with respect to those two
properties. Z may be computed from the intersection matrix as follows [15, p.
607] via what is called a computation sequence (in the sense of Laufer) for Z:

Zy=0, Z,=A,

Zy=Z,+ Ay,
=7+ A,
Zl = Zl—l+Ai, = Z,

where A, is arbitrary and A;-Z;,_, >0, 1 <j<L.
Since M is two dimensional and not compact,

HX(M,%) =0 (0.5)

for any coherent analytic sheaf % on M [25].

Wagreich [26] defined the singularity p to be elliptic if x(D)>0 for all
cycles D >0 and x(F)=0 for some cycles F >0. He proved that this definition
is independent of the resolution. It is easy to see that under this hypothesis,
x(Z)=0.

Definition 0.3. A cycle E >0 is minimally elliptic if x(E)=0 and x(D)>
0 for all cycles D such that 0<D <E.

TueoreM 0.4 (Laufer). Let I' be a weighted dual graph including genera
for the vertices, associated to a minimal resolution with nonsingular A; and
normal crossings. Suppose that x(Z)=0. Then, generically (in the sense of
Laufer [18]), H'(M,0)=C. Consequently x(D) >0 for any cycle D >0. Let E
be the minimally elliptic cycle, E<Z. If there exists A,C|E| with A;Z <0,
then H (M, 9)=C for all p associated to T.

Henceforth, we will adopt the following definition.
Definition 0.5. p is said to be weakly elliptic if x(Z)=0.

Definition 0.6. Let 7: M—V be the minimal resolution of V. p is minim-
ally elliptic if p is elliptic and every connected proper subvariety of A is the
exceptional set for a rational singularity.

The following definitions and theorems can be found in [28] and [29].

Lemma 0.7. Let m:M—YV be a resolution of normal two dimensional
space V with p as its only weakly elliptic singularity. Let 7~ (p)=A=UA,
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1<i<n, be the decomposition of the exceptional set A into irreducible compo-
nents. Let E be the minimally elliptic cycle on A. If suppE consists of more
than one irreducible component, then all A, 1<i<n, are rational curves.
suppE=A, if and only if A, is a nonsingular elliptic curve or A, is a singular
rational curve with a node or cusp singularity. In this case, all A;, 2<i<n, are
nonsingular rational curves.

ProrosiTION 0.8. Let m: M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only weakly elliptic singular point. In
the computation sequence for the fundamental cycle Z, we have A,-Z;_,=1 for
all 1<j<1 except possibly one 1<k <l such that A, Z,_,=2. In this case, A,
is in |E|.

Definition 0.9. Let K be the canonical divisor on M. We define the
negative cycle K'=3kA; on A, where k; EZ, the set of integers, to be a cycle
such that A;K’=A;K for all A;CA. (K’ does not always exist.)

Definition 0.10. Let A be the exceptional set of the minimal good
resolution 7: M— V, where V is a normal two dimensional Stein space with p as
its only weakly elliptic singularity. If E-Z <0, we say that the elliptic sequence
is {Z} and the length of elliptic sequence is equal to one. Suppose E-Z=0. Let
B, be the maximal connected subvariety of A such that B,DsuppE and
A;Z=0 for all A;C B,. Since A is an exceptional set, Z-Z <0. So B, is properly
contained in A. Let Zp be the fundamental cycle on B,. Suppose Zg -E=0. Let
B, be the maximal connected subvariety of B, such that B,D|E| and A;Zz =0
for all A, C B,. By the same argument as above, B, is properly contained in B;.
Continuing this process, we finally obtain B,, with Z, -E <0. We call {Zy =Z,
Zy,..., Zg } the elliptic sequence, and the length of the elliptic sequence is
m+1.

TueoreM 0.11. Let m: M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only weakly elliptic singularity.
Suppose p is not a minimally elliptic singularity. If E-Z <0 and |E|#A, then
K’ does not exist. If K’ exists, then the elliptic sequence is of the following
form:

A\Y
=2

Zy,=Z,Zg,..., Zg, 2y, = Zp, |

Moreover — K’ =Eli=OZB, +E.

Definition 0.12. Let 7: M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only weakly elliptic singularity.
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Suppose K’ exists. If dim H'(M, O )=length of the elliptic sequence, then p is
called a maximally elliptic singularity.

Definition 0.12. Let 7,M,V,p be as in Theorem 0.11. If for all A;Z|E|
and A;N|E|#J, then A;-Z <0. We call p an almost minimally elliptic singular-
ity.

ProrosiTioN 0.14. Let p be the maximally elliptic singularity. Let Z,
Z,Zg,..., Zy, Zy="Zg  be the elliptic sequence. Then for any 0<h <l, there
exists f EHO(M 0(— Eh_OZB)) such that f & HY(M, 0 (—Zh21Zp)). In fact, the
vanishing order of f on A; is precisely Ei—OB, where ZB‘ Zk A Ax and
AjCBy ..

TueoreM 0.15. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only weakly elliptic singularity.
Suppose H'(M, 0)=C? and 0, is Gorenstein. Let Zy =Z, Zp ,..., Zg, Zy be
the elliptic sequence. Then the multiplicity of 0, > — 3! OZB‘ Moreover if
Zy-Zp < —2, then the equality holds.

THEOREM 0.16. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space V with p as its only weakly elliptic singularity.
Suppose H'(M, 0)=C?, HY(|E|,Z)=0, and 0, is Gorenstein. Let Z , Zy ,...,
Zg, Zy =7y be the elliptic sequence. Let D be the subvariety of B, consisting
of those irreducible components A,CB, such that A,N|E|#Q. If Z/D=
Zy/ D, then 1=0, i.e., p is an almost minimally elliptic singularity.

Notation and Terminology.

vO =the sheaf of germs of holomorphic functions on V.
v0, =the stalk of the sheaf O over p.

E =minimally elliptic cycle.

Z =fundamental cycle.

m=maximal ideal of 0.

| D|=support of the divisor D.

Convention of weighted dual graphs: vertices without specifying genera
are of genus zero. We record the multiplicity z of A; in the fundamental cycle
Z=2zA, by placing that integer in the corresponding position of the vertex.
See e.g. Figure 1.

Ay -4
1
Z=131=A,+3A,+A;+A,
: v g
-3 -1 -3

Ficure 1.
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Let D=3d,A; be a positive cycle. Let BC|D|. Then D|z=XfA, is a
positive cycle, where f,=d, if A;,CB and f,=0 if A;ZB.

1. Lower Estimate of the Dimension of Zariski Tangent Space and Upper
Estimate of Multiplicities of Hypersurface Singularities.

Tueorem 1.1. Let m:M—V be a resolution of normal two dimensional
Stein space V with p as its only singular point. Let Z be the fundamental cycle.
Then

dimm/m® > x(Z) — Z-Z + dimH M, 0(— Z)) — dimH*(M,0(—2Z)).

If p is weakly elliptic, then dimm/m?> —Z-Z+dimH'(M,0(—Z))—
dimH'(M,0(—2Z)). Suppose 7 is the mmmwl good resolution and p is a
maximally elliptic singularity. Then dimm /m®> — Z-Z. Moreover, if Zy-Z; <
—3, then dimm"/m"*'= —nZ-Z for all n> 1

Proof. It is true that H%(A, O (— Z)) =dirimH(U, 0(— Z)), U a neigh-
borhood of A. Since Z is minimal, m=H%A, O(—Z)). Since m?C
H°(A,0(—2Z)), we have dimm/m?>dimH%A,0(—Z))/H%A,0(—-2Z)).
The cohomology exact sequence

0— H%A,0(—2Z)) - HY%A,0(—-2))
— H%(A,0(-2)/0(-2Z)) > H'(A,0(-2Z))
H'(A,0(-2))—H'(A,0(-Z)/0(-2Z)) -0

says that
dimH%(A,0(—-Z))/H%A,0(-22))
=dimH%A,0(—-2)/0(—2Z)) —dimH'(A,0(—2Z))
+dimHYA,0(—-Z)) —dimH (A,0(—Z)/0(—2Z))
= dimHO(M, 0~ Z)/6(~22)) - dim H'(M, 0 (—22))
+dimH'(M,0(—-Z)) — dimH'(M,0(-Z)/0(—-2Z))

by Lemma 3.1 of [15].
Look at the following cohomology exact sequence:

0— H(M,0(—2Z)/0(—2Z)) - H(M, Oyy)

s HO(M, 0,) — HY(M,0(—Z)/0(—2Z))

— HY(M,0,;) > H'Y(M,0,) -0
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Since HY(M, 0,)=C, and H°(M, 0,,)—H°M,0,) is not a zero map, we have
two short exact sequences

0 HM,0(—2Z)/0(—2Z)) - H'(M,0,,) - H*(M,0,) -0,
0> HY\M,0(-2)/0(—2Z)) > H'(M,0,,) > H'(M,0,) - 0.

Hence,

dimm/m?
> dimH(M, (‘)(—Z)/(‘)(— Z)) —dimH'(M,0(—2Z))
+dimH'(M,0(~Z)) - dimH(M,0(~2)/0(~22))
= dimH(M, O,,) — dimH(M, 0,) — dim H'(M, 0(—-2Z))
+dimH'(M,0(—-Z)) — dimH'(M,0(—-Z)/0(—-2Z2))
= x(2Z) — x(Z) + dimH'(M, O,,) — dimH'(M, 0)
—dimHY(M,0(-Z)/9(—-2Z)) + dimH'(M,0(—Z))
—dimH'(M,0(—22))
=x(2Z) - x(Z) + dimH(M,0(— Z)) —dimH'(M,0(—-2Z))
=x(Z)— Z-Z+dimH(M,0(—Z)) —dimH'(M,0(-2Z)).
If p is weakly elliptic, then x(Z)=0. So dimm /m®>> —Z-Z+
dimH'(M,0 (- Z))—dimH'(M, 0 (—2Z)).

Suppose 7 is the minimal good resolution and p is a maximally elliptic
singular point. We claim that H'(M, O (—nZ))=C'*!, where [+2 is the length
of elliptic sequence ZBO, ZB,’ e, ZB,’ Zp= ZBM. Choose a computation sequence
for Z of the following form: Z,=0,..., Z,=E,..., Z, =Zg,..., Z, =Zg,...,
Z,=Zg,..., Z,, =Zg =Z. Consider the following sheaf of exact sequences:

T+1

0->0(—nZ—-2,)/0(—nZ—B—Zg) > O(—nZ)/O(—nZ—B—Z)
- 0(=nZ)/0(-nZ—-Z,) >0,
0-50(—nZ-2,)/9(—nZ—-B—Zg) > O0(—nZ—2Z,_,)/O(—nZ—B—Zg)
—>0(=nZ-Z,_))/0(—nZ-2,) -0,
0-0(—nZ—25)/9(—nZ—B—Zg) > 0(—nZ—Z,_,)/0(—nZ—B-Zg)
- 0(-nZ-2Z,_,)/0(—nZ—Zg) -0,
0 O(—nZ—Gy—Z,)/0(—nZ—B—2Zg) —» 0(—nZ—Gy,)/O(—nZ—B—2Zg)
- 0(-nZ-G,)/0(-nZ~G,~Z,) >0,
05 0(—nZ—G,—2)/9(—nZ—B—2Zg) > O0(—nZ—G,—Z,_,)/0(—nZ—B—Zg)
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= 0(-nZ-G,~Z_,))/0(—nZ—-G,—Z,) -0,
0—»0(—nZ—Gh+l)/O(—nZ—B—ZE)—>O(—nZ—Gh—Zn_h_l)/O(—nZ—B—ZE)
> 0(-nZ-G,~Z,_, 1)/0(~nZ—Gy,y) -0,
0 O(—nZ—B-2,)/0(~nZ—B—-2Z;) - O(—nZ—B)/O(—nZ—B—2Z)

— 0(—nZ-B)/0(-nZ-B-2Z,) -0,
0—0(-nZ-B-2,)/0(~nZ~B~2z) - O0(—n7—B-Z,_,)/0(—nZ—B—Z;)
- 0(-nZ-B-2Z,_))/9(—nZ-B-2Z) -0,

0->0(-nZ-B-Z7, _ 1)/0(—nZ—B—ZE)—>0(—nZ—B—Z,0_2)/O(—nZ-—B-—ZE)
- 0(-nZ-B-2,_,)/0(-nZ-B-Z,_,) -0,

where

l h 0
B=27,, G,=32Z ad > Zg = 0.
i=1 i=1 i=1

We claim that HO(M, O(-nZ -G, —Z_,)/0(—nZ - B- Z;))>
HM,0(-nZ~G,~Z_,)/0(—nZ-G,— Z,)) is surjective for all —1<h<I
-1 and 0<j<n, 1 The Chern class of the hne bundle associated to O (—nZ —
G=2_1)/0(—nZ—-G,—Z) is —Ay(Z+ G+ Z_ )= —A;'Z;_,, which is
<0 for j>1 and 0 for j=1. For ]> 1, the clalm is tnv1ally true because

HYM,0(=nZ—G,—Z_,)/O(—nZ—G,— Z,))=0. For j=1, by Proposition
0.14, we know that there exists f € H'(M, O (—nZ — G,)) such that the image of
f in HYM,0(-nZ-G,)/9(—nZ -G, —Z,)) is nonzero. Therefore,
HoM,0(-nZ—G,)/9(-nZ~- G, —Z,))=C, and H'M,0(—nZ-G,))—
HM,0(-nZ~ G,)/0(—nZ— G, — Z,) is surjective. Now the usual
cohomology exact sequence argument will show that H'(M, 0 (—nZ )/ 0 (—
—B—Z;))=C""". By Proposition 2.7 of [28], H(M,0(—nZ—B— Z;))=0. So
the exact sequence

H'(M,0(~nZ— B—Z,)) - H\(M, 0(~nZ))
- HY(M,0(~nZ)/0(—nZ—-B—-2;)) >0

shows that H(M, O (— nZ))=C!*!,

dimm/m? > —Z-Z + dimH" (M,0(—Z)) —dimH'(M,0(-2Z))
=-ZZ
If Z;-Zp < -3, then —Z-Z >3. In this case, all the inequalities above are
actually equalities. In particular, m®*=H%A, 0(—2Z)). By Theorem 3.15 of
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(28], we have m"=H%A,0(—nZ)), n> 1. Hence

dimm"/m"*! = dimH%A,0(—nZ))/H%A,0(— (n+1)Z))

=dimH%A,0(—nZ)/0(—nZ—2Z))
—dimH'(A,0(—nZ—Z)) + dimH'(A,O(—nZ))
—dimH'(A,0(-nZ)/0(—nZ—-Z))

=dimH°(M,0(—nZ)/0(—nZ-Z))
—dimH'(M,0(-nZ)/0(—nZ-2Z)) - (l+1) (1+1)

= dimH(M,0,, ;) — dimH(M,0,,) — (M, 0,7.2)

+dimH'(M,0,;) = x((n+1)Z) —x(nZ) = —nZ-Z  Q.E.D.

CoroLLaRrY 1.2. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space V with p as its only maximally elliptic singularity.
Suppose p is a hypersurface singularity. Then Z-Z > —3.

The following theorem of Laufer and Lipman, gives an upper estimate of
multiplicity in terms of dimH'(M, 0).

Taeorem 13. Let V={f(x,y,2)=0} have an isolated singularity at
(0,0,0). Let n be the multiplicity of V. Then dimH(M,0)> (n—1)(n—2)/2,
where M is a resolving manifold of V.

Proof. The proof is a refinement of the proof of [18, Theorem 3.14].

2. Topological Classification of Weakly Elliptic Double Points. In 1964,
M. Artin gave a complete topological classification of rational double points. In
1970, Wagreich proved that for double points, Z-Z > —2. Using this fact, he
listed a lot of the possible weighted dual graphs of weakly elliptic double points.
Using the fact that — K’ is the summation of an elliptic sequence and a
combinatorial argument, we list all possible weighted dual graphs for weakly
elliptic double points. Moreover, all these weighted dual graphs actually arise
from weakly elliptic double points, because we can find a defining equation for
each of them. The defining equations have been found by an unpublished
technique of Laufer.

ProposiTion 2.1.  Let T be a weighted dual graph including genera for
the wvertices, associated to the minimal good resolution of weakly elliptic
singularity. Suppose K’ exists. Let Z=Zg,..., Zp, Zg, be the elliptic sequence.
Then Z-Z<Zy Zp <+ <ZpZy<ZyZy If Zy-Zpy=Zp -Zy , then A-A=
—2 for all A;CB, A 2By, 0<i<L
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Proof. For 0<i<l,let A/\CB and A;ZB,,,. If AN B, =%, then A;-(Z,
+Zg,)=ArZy <0. If AiNB;,,#, then A;:Z; <0 by the definition of
elliptic sequence. Since A;+Z; =1 in this case, Ay (Zg+Zy, )<0. We observe
that Z, >7, , ie., Zy —Zp  is a positive cycle. It follows that (Z, —Z, )
(Zy +Zy, ) <0. Hence Zy-Zy <Zp _-Zp .

Suppose that Zy-Zp =Zp -Zp . We want to prove A;A;=—2 for all
A;CB;and A;ZB,. . Since (Zy —Zy ) (Zg+Zy )= Z;, —Zz =0, we have
A (Zy +Zy )=0. Recall that K'= —3!_,Z; —E. Then

l
0<A-K'=—A- (,«goZB‘+E)
—A,.(ZBI+ZB_,H+ e +ZB,+E)

= —A-(Zp, + - +Zy+E)

<0 since Ai Z B, .,

Therefore 0= A;K'=2g,—2—A;-A;= —2—ArA;and ApAj= —2. Q.E.D.

ProposiTioN 2.2. Let I' be a weighted dual graph including genera for
the vertices associated to the minimal good resolution of weakly elliptic
singularity. Supose K exists. Let Z=1Zg ,..., Zy, Zy be the elliptic sequence. If
Z:Z= —1, then there exists a unique A, Z B, A;'A, = —2, such that Z= 7y +
Ay and A, N B,# 3. Moreover, if A, C B, such that A*A,=1, then Ay Zy = —1
and z,=1.

Proof. By the definition of the elliptic sequence and Z-Z= —1, there
exists a unique A, Z B, such that A; N B, #J and z, = 1. By Proposition 2.1, we
know that A;*A;=—2. Since z,=1, A;Z<0 and A;-A;=—2, we conclude
that z,=1 and A, cannot intersect any A, B, with A,7#A,. Hence Ay Zp = —
1. Otherwise Ay:Zp =0 would imply that z, > 2. So Z=7Z; +A,.

CoroLLARY 2.3. Let I be a weighted dual graph including genera for the
vertices associated to the minimal good resolution of weakly elliptic singularity.
Suppose K’ exists and Z=1Zg ,...,Zp = Zy is the elliptic sequence. If Z-Z.= —
1, then T must be one of the forms in Table 1 below.

We now explain the notation we shall use in Tables 1, 2, 3 and 4. We shall
employ Laufer’s notion of unweighted dual graphs which he needed to describe
minimally elliptic singularities (see [18]). The special cases of Proposition 2.4 of
(28], where it is not true that the A, in the support of the minimally elliptic
cycle are nonsingular rational curves with normal crossings, are described and
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named individually. In the other dual graphs of |E|, * denotes a vertex which
will have z4; =1 and 0 denotes a vertex will have z); equal to 2 or 3 and
Ay Ay= —3. The remaining vertices, each denoted by ®, will all have weight
—2. Each vertex is a nonsingular rational curve unless otherwise specified.

List L.

denotes

with r vertices and r+1 edges. The case r=0 is included.

El * The vertex A, is a non-
singular elliptic curve.

/'*\
// AN
No T s,
4 \\\
* e pm——m- *
T~
/ N
/ \
or * *
\ /
\\ //
s
or * r or>1 with each A, a nonsingu-
lar rational curve, or
* with A, a rational curve
with a node singularity
(r=0).
Cu * A, is a rational curve
with a cusp singularity.
Ta gy S The vertices are nonsin-
gular rational curves
which meet tangentially
to first order.
Tr The vertices are nonsin-

gular rational curves
which meet transversely
at the same point.
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Ax o *—0 Zop =2
Al,*,O *’—’_O z0E=3
Ay, %%,00 *—I---(n—l)---o z0p=2
n>1

Al,****

An,****, »——I(n_g) L

n>2

A:;,**,o *—‘—f—‘—* Zop =2

Zoe =3

Ag xx,0 4._‘_4—1—0—‘—* z,E=2
Az %0 o_‘_f—-‘_‘_o_‘—* Zop =3
A7 xx0 *—-‘—‘—‘—j—‘-—‘—‘—* Zop =2
A %0 o_‘_o_f_o_._‘_‘_‘_‘_* Zor =3

D4,***
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Ds, *,0 %—‘—‘—I——‘—O Zop =2
D7, *,0 *—‘—‘—‘—‘-—I——‘—O 2o = 9

Eg, ‘—-‘—I——‘—‘—o Zor =3

E;, ‘-—‘-—I—‘—-‘—‘——Q Zog =2
Es, * ‘——‘—I—-‘—‘—O—‘—*

In order to describe weakly elliptic double points or hypersurface singular-
ities with geometric genus equal to two thoroughly, we need to introduce some
special notions of weighted dual graphs, each of which consists of one special
vertex © which we call the end component of the corresponding weighted dual
graph. We make a convention that an edge with at most one vertex attached to
it will be omitted.

List II.
A,l>1: -+ (I-1)--- O,  Ay:=empty graph
(by our convention A, is @2 ).

DA(L,+4, —3,1,), 1,>0, ,>1:
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AAA(LLL, —3,1), 1,30, 1> 1:

///’ll
1,>0,1,=0
~
\\ l
~
1\\
0
e -3
////lI
e

EA(6,—3,1), 1> 1:

=0

Aél+3’ l > 0:
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D(I+4), 1>0:

I=-1
F, ©
F_ g3 O

-3

A(m+2,—3), m>1:

”
A5 .

AF:

STEPHEN SHING-TOUNG YAU.
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In Tables 1, 2, 3 and 4 below, the underlying part of a weighted dual graph
I'; corresponds to the weighted dual graph of a minimally elliptic singularity.
The weighted dual graphs T'; are described by giving values for the A, A in
the graphs in List I. These A, -Ay are listed from left to right. The union of
subgraphs T’y with the A, identified is indicated by +. Thus, for example
Fp=A, %40+ A5xx0 With n=2 and weights A,-A, given by
=3, —2, —2, —2 denotes the weighted dual graph shown in Figure 2.

A2,**,0 ;’;,**,o
FIGURE 2.
The weighted dual graphs denoted by N, may have either three, two or one A .
These correspond respectively to three, two and one given value for Ay. The
weighted dual graphs in Tables 1, 2, 3 and 4 are described by attaching (also
indicated by +) the end components of graphs in List II to a weighted dual
graph of a minimally elliptic singularity. Except in cases (98) and (117) of Table
4, all the end components of graphs in List II are attached to the A,
components in I'; whose self-intersection numbers (in column 2) are undefined.

Table 1 The Weighted Dual Graphs for Weakly Elliptic Singularities with Z-Z= —1.*

Dual Graph ALA, Equation
(1) El+4 -1 22= 1+ 40+
=1,r=0 - 2421y, 2, r+5+4l
@  No+a, T B O e
(3) Cu+4 -1 2= yP+ 2T+
4) Ta + 4, -2, -3 2=+ 54y
) Tr +4, -2,-2, -3 2= y3+xs+ez
(6) Al,:n:nr"'AI —-2,-2, _2,;3_ z2=y3+x9+6’
() ApperstAnn>2  —2,-2,-2, =3 22=(y+x>*)(y2+an+5H4)
(8) Dy rpuxtA -2,-2, -3 2= Pt 1046
9) Eg . tA -2, -3 2=y + T4y
(10) Eg,+A -3 2=+ 110
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The singly underlined A, component is attached to one graph from List II. The
doubly underlined A, component is attached to two graphs from List II. The
triply underlined component is attached to three graphs from List III. The
attaching order is from left to right: the graphs from List II and the underlined
self-intersection numbers A, -Ay are listed from left to right.

Example 1. In Table 4, (56), A, 4xx+A;+A;+A; (n>2) and weights
Ay-Ay given by —2, —3, —3,—3 denote the weighted dual graph shown in
Figure 3.

. (n=92). ..
- (n-2) -0
FiGure 3.

Example 2. In Table 4, (58), Ny+A;+A;+A, (r>0, s >0) and weights
Ay Ay given by —3, —4 denotes the weighted dual graph shown in Figure 4.

r ©
P \\\ -2
/ \

o—* *

-2 -3\ -4
N s _ \
©

-2

-2

FiGURE 4.
Example 3. In Table 4, (73), Dy yxx+A;+A;+ A, and weights A, A,
given by —2, —2, —5 denote the weighted dual graph shown in Figure 5.

-2

N S
S

_g 2 -2 -2

FiGurE 5.
Example 4. In Table 4, (116), Ay o+ Ay g+ Ay o+ Ag 45 o+ A+ A and
weights A, A given by —3, —2, —2, —2, —2 denote the weighted dual graph
shown in Figure 6.
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Example 5. In Table 2, (20), Eg4x+AAA(l},1;, —3,3), and weights
Ax-Ay given by —2, —3 denote the weighted dual graph shown in Figure 7.

-9 —l -
//' 1
* — @ @ o —@ w—0O— 0 @ @
—9 -2 -2 -2 -2 -2 -3 -2 -2 -2 —3\\1
FiGuRE 7. I

ProrosiTionN 2.4. Let T' be a weighted dual graph including genera for the
vertices associated to the minimal good resolution of weakly elliptic singularity.
Suppose K’ exists. Let Z=Zy,...,Zp, Zy be the elliptic sequence. If -7 = —2,
ZyZy = —1, then T must be one of the following forms:

(1) AyCBy, AyZBy Z=A+Zy, AyZy =—1,2,=1:

A A,
s
g

(2) Z=2A;+D, D is a positive cycle, |D|=B,; 2,=3, Ay-Zs =0, A,C
B,, A, ZB,:

1

where Ty is the graph of B,.

Proof. By the definition of elliptic sequence and the fact that Z-Z= —2
we have the following two cases.

() There exist A,A,ZB,, A;NB,#3+#A,NB, and A,#A,. In this
case, Ay Z=—1=A,Z and z;=1=2, For i=1,2, we have 0>A; (—K')=
A ooZy+E)>A; (Z+Z5)=0.50 0= — A;K'=2+ A-A, and hence A;-A,=

—2,i=1,2. Let A;,A,C B, such that A|-A;=1, A;A,=1. Since A;-A, = A,A,
=-2,z=%=l,and Ay Z=AyZ=—1, there is no A,Z B, Ay 7#A;7A,, such
that A;A;>0 or A;A,>0, ie, A=A UA,UB,. Moreover, we know that
z=z,=1. Hence A3 Zp <0 and A, Zy <O. It follows that A;=A, and Ay Zy
=—1,since ZgZp = —1. As z3=1, Z=A,+ Ay + Zy , we have AgZg =1>0,
which is a contradiction. This case cannot occur.

(I) There exists a unique A; Z B, such that A, N B, . In this case, we
have either (A) A;Z=—2 and z,=1, (B) A'Z=—1 and z,=2, or (C) A" Z=
—land z,=1.
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In (A), 02A,-(—K")=A (Z}0Zg) >A, (Z+Zg)=—2+1=—1. So
either A,-(K")=0 or A;(—K’)=—1. If A;-(—K’)=0, then A;-A,+2=0, ie.,
A A= —2. It follows that A;-Z > — 1. This is a contradiction. If A;-(—K')=
—1, then A;*A;=—3. Let A,CB, such that A;-A,=1. Then A,ZB,. Since
AyZ=-2, A;rA;=-3 and z,=1, there is no A;,ZB,;, A;#A,, such that
A;A;>0, ie., A=A, U B;. Moreover, we have z,=1 and hence Z=A,;+Zp .
So AyZy = —1 and we are in (1).

In (B), 0>A, (—K')=A,(Z\_oZs +E)>Ay(Z+Z5)=0. Then A,K'=0
and A;*Zp =0, 2<i<I+1. Let A, CB, such that A;-A;=1. We have A-A,=
—2 and A, B,. For any A, Z B,, A;%#A,, we have A;; Z=0=A;-Z, . It follows
that 2+ A;A, = A(—K")=A; (2} _gZg + E)=0, i.e., A A, = —2. We claim that
z,> 1. For if z,=1, then supp(Z— Zp ) consists of those A, Z B;. Consequently
Z*—75 =(Z—17y)(Z+Z3)=0. However, Z*—Z7 =—2+1=—1. This
leads to a contradiction. Since 2, =2, 2,>1, AA;=—2 and A-Z=—1, it is
clear that 1<degA, <2. If degA, =2, then there exists a unique A;Z B, such
that A3 A, =1, ;=1 and z,=2. Let I; be the subgraph of I" consisting of those
A,ZB,, A;#A,. Since A;A;=—2 for all A, in T, T'; is a graph of rational
double point. Because z;=1, it is easy to see that this case cannot occur. We
conclude that degA, =1, i.e., A=A, U B,. Since z,=2, A'A;=—2and A;-Z=
—1, we have z,=3. Then we are in (2).

In (C), 0>A,(—K')=Ay(Z}.gZy + E)>A - (Z+ Z5 )=0. Then A;-K'=
Oand A;Zp =0,2<i<l+1. Let A, C B, such that A;*A,=1. We have A-A; =
—2. Since z,=1 and A;Z= —1, we have A=A,UB, and z,=1. So Z=A,+
Zp,. But then Z-Z=(A,+Zp )(A,+ Zp)=A,(A;+ Zp )= — 1, which is absurd.

QED.

ProrosiTioN 2.5. Let I' be a weighted dual graph including genera for
the vertices associated to the minimal good resolution of weakly elliptic
singularity. Suppose K' exists. Let Z=1Zp,...,Zg,Zy be the elliptic sequence.
If Z:7Z.= —2=17y - Zg , then I’ must be one of the following forms:

(1) Z=A1+ZBI+A2, A3,A4QBI, As,A4Z_Bg; z3=1=z4, A3‘Z31= —1=

AyZy:
Ty,
@) z= }ZBI, A3CB), AsZBy; 23=1, Ay Zg = —2:

-2
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1
(3) Z=122"'2ZBZ’ Angl, A2ZB2; Zy= ]_’ A2.ZBI= —92:

-2

1>0 T,

(4) Z=12D, |D|=B,, D is a positive cycle, z,=2, AyZp =0, A,CB,
A2ZB2:

(5) Z=2D, D is a positive cycle, |D|=B,, 2,=3, AyZp =0, A,CB,,

A, Z By:
=
-2

g

1

where T is the graph of B,.

Proof. We firstly recall that by Proposition 2.1, A;-A;= —2 for all A,Z B,.
By the definition of elliptic sequence and the fact that Z-Z = —2, we have the
following cases.

(I) There exist A},A;ZB,, A;#A,, such that A|NB,#J#A,N B,. In
this case A;'Z= —1=A,Z and z,=2,=1. Let A;,A,CB, such that A-A;=1
=AgyA, Sincezy=z,=1land A Z= —1=A,-Z, there isno A,ZB,, A, #A;#
Ay, such that A:A; >0o0r A;:A,>0, ie., A=A, UA,U B,. Moreover, z;=1=2z,
and Z=A,+A,+Zy. If A;#A,, then AyZ; = —1=A,Z; and A,A,ZB,
We are in (1). If A;=A,, then AyZy = —2 and A;Z B,, and we are in (2).

(IT) There exists a unique A, Z B, such that A, N B, #. Since Z-Z= —2
=Zy 7y, (Z—Zg) (Z+ Zg)=0. It follows that A,(Z+ Z )=0 for all A; Z B,.
In particular, if A;NB,=, then A;;Z=0. So we have either (A) A;"Z=—2
and z;=1, or (B) A;*Z=—1 and z,=2.

In (A) Aj'A; must be less than —2. But this is impossible because
ApA = —2.
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In (B) let A,C B, such that A;-A,=1. We claim that A, Z B,. Otherwise
0>A1(—K')=A1~(2’i=OZB‘ +E)> —1+2=1. This is absurd. The proof breaks
up into four subcases.

(B1)

(B2)

(B3)

(B4)

There exist A;,A,ZB,, A;#A,, such that A;;A,=1=A A, and
z3=2z,=1=2, It follows that A=A, UA;UA,UB, and Z=2A,+
Az+Ay+Zg. We are in (3).

There exists A; Z B, such that A;-A;=1 and z;=2. Because A;;Z=0
for A;ZB,, A;A,, it is easy to see that we are in (3).

There exists A;Z B, such that A;*A;=1, z;,=1 and z,=2. Since
z=2, z3=1 and A;Z=0, it follows that there is no A,ZB,,
A;#A,;#A; such that AA;=1, ie, A=A UA;UB, and Z=2A,
+ Az + D, where D is a positive cycle with support B,. We claim
that Ay-Zy =0. Otherwise Z=A,+A;+Zp and hence A;-Z=0.
This leads to a contradiction. We are in (4).

2,=3. Then A=A ,UB, and Z=2A,+D, where D is a positive
cycle with support B;. We claim that Ay-Z; =0. Otherwise Z=A,
+ Zg . This leads to a contradiction. We are in (5). Q.E.D.

Definition 2.6. Let m:M—V be the minimal good resolution of weakly
elliptic singularity p. Let Zg =Z,...,Zy =Zj be the elliptic sequence. The set
of self-intersection numbers of the elliptic sequence is {Zj,...,Z5)}.

CoroLLARY 2.7. Let I' be a weighted dual graph including genera for the
vertices associated to the minimal good resolution of weakly elliptic singularity.
Suppose K’ exists and the set of self-intersection numbers of the elliptic
sequence consists of —2 and — 1. Then T’ must be one of the forms in Table 2.

Table 2. The Weighted Dual Graphs for Weakly Elliptic Singularities with Z-Z=—2 and

ZpZp=—12
Dual Graph Av-As Equation
(1) Ta+a, —2,-3 2=x5+y7
@ ElL+DA(,+4,~3.L) -1 2= (yP+ b+ 12O
—-1,r=0

(B) Ny +DA(l,+4,-3,L) - 2=(y2+ 23 h)(x+ ytt k)

- _—_3 ,r>1

x(x2+y9+4lg+r)

(4) Cu +DA(L,+4,-3,L) -1 22=(y2+23+h)(x3 + y13+6k)
(5) Ta+DA(L+4,—3,L) -2, -3 22=x(yi+xh I (x2+ 4O+ k)
(6) Tr+DA(L+4,-3k) —2,-2, =3 zZ=(y2+xh*I(xd+ylé+oh)

(T) Ay ssss +DA(L+48-3,1,) —2,-2,-2, =3 z%=(y2+xh*)(x3+y!5+6k)
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Table 2. (cont.)
Dual Graph A,-A, Equation
(®) Apxuxx +DA(h+4,-3L),n>2 —2,-2-2, =3 zP=(yi+a"*Ia+yotun)
X (124 yn+O+4k)

9) B‘L‘.‘.‘i+DA(ll+4’ -3,L,) -2,-2, -3 22=(y2+ 23+ 1)(x3 4 y16+6k)
(10)  Eg xs + DAL +4, —3,1) -2, -3 22=x(y2+ 23t h)(y2+ 2114k
(1) K+ DA(l,+4, -3,L) -3 22=(y2+x3+h)(x3+ y17+6k)
(12) El +AAA(LL, —3,L) -1 2= (x+ Yl 1)(a3 4 4O+ O+ 3h)
(13) Np +AAA(LL, -31) { —1,r=0 ] B=(x+yhtY) (a4 ydthrok)

- —3,r>1
X (a2 4 yT+r+2h+ k)

(14)  Cu +AAA(LL, —3,k) -1 22=(x+ yh+1)(xd + y10+6k+3h)
-(15) Ta+AAA(l,l, —3,) -2, -3 P=x(x+yht)(a2+yTH2h+ k)
(16) Tr + AAA(L,L, —3,h) —2,-2, =3 22=(x+yht)(ad+yll+oh+eh)
(A7) Ay xsxx +AAA(LL, =3,1) —2,-2,-2, =3 22=(x+yhitl)(xd+y12+30+ok)
(18) é,.,_:::-irAAA(ll,ll, -3,b) -2,-2,-2, -3 2= (x+yh (x4 ytrh+h)

X (a2 4 ynH T+ 4l

(19) Dy sxx +AAA(lL L, —3,L) ~2,-2, =3 z2=(x+yht])ad+yl3+3neh)
(20)  Eg xs + AAA(LL, —3,1) -2, -3 22=x(x+yh+l) (a2 + yO+2h i
(1) Eg s +AAA(L,L, —3,1) -3 22= (x4 yh+ 1)+ yl4+3h 6k
(22) El+A’A@QL+3,-3,h) -1 22=y(x+yht )3+ y12+3h+eh)
@3) Np +A’A@L+3,-3,k) { i:::?} 2= y(x+yh ) (x+ ytrhroh)

X (124 yr+O+2h k)
(24) Cu +A’A(2L+3,-3,h) -1 22=y(x+yli+l)(xd 4 yl3+3h+oh)
(25) Ta +A'A@L+3,-3,k) -2, -3 2=yx(x+yht a2+ yo+2htik)
(26) Tr+A’A@L+3,—3,L) —2,-2, =3 R=ylx+yht o+ ylroaton)
(27) A xxxx +A'AQQL+3,-3,1) -2,-2,-2, =3 2=y(x+yh+h)(x3+ yI5+3h+6h)
(28) E +A’A@2L +3,-3,L) -2,-2,-2, -3 22=y(x+yh+l)(x+ ySth+k)

X (24 yn+O+2h+ k)
(29) Dy xsx +A’A@L+3, -3,k -2,-2, -3 22=y(x+yh+1)(x3+ yl6+3h+ol)
(30) @ +A’A@2L +3,-3,1) -9, -3 22=yx(x+yh (a2 + yl1+ 20+l
(31) Eg« +A’'AQ2L+3,-3,L) -3 22=y(x+yh+1)(xd 4 y17+30+6k)
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Dual Graph AA, Equation
(32) El+EA(6,-3,]) -1 E=(+ )= +y )
—1,r=0 2, 3 5+21
(33) No +EA(6, —3,0) 2=+ y%)(x+y5+)
—_3 ,r>1
x(x2+y""u+‘“)
(34) Cu +EA®8,-3,]) -1 2=+’ +y'%*)
(35) Ta+EA(6, —3,]) -2, -3 B=x(a®+y) 2+ y1 )
(36) Tr +EA(6, —3,]) -2,-2, =3 Z@=@+y’)at+y'"r)
(37)  Apxsex +EA(B,—3,]) -2,-2,-2, =3 22=(P+yx+y’**)
(38) A, xsxs +EA(6, —3,]) -2,-2,-2, =3 Z=(*+y)(x+y**¥)
- X(x2+y"+u+‘“)
(39) D, xsx +EA(6,—3,1) -2,-2, =3 2Z=(22+y)(=3+y**%)
(40) Egsx +EA(6, 3,1) -2, -3 B=a(x+y%)(x"+y 3+ )
(41) Eg s +EA(B, —3,1) -3 22=(x%+yd)(x3+y* )
2,>0,1,>0,1>0.

CoroLLARY 2.8. Let T be a weighted dual graph including genera for the
vertices associated to the minimal good resolution of weakly elliptic singularity.
Suppose K’ exists and the set of self-intersection numbers of elliptic sequence
consists of —2. Then I must be one of the forms in Table 3.

Table 3. The Weighted Dual Graphs for Weakly Elliptic Singularities with Z-Z= —2=27,-Z,*

Dual Graph Ax-Ax Equation
(1) No+A+A(r>0,5>0) -3,-3 2= (x24I
X[(x+yltR4 ys+3+2

@) Ta + A+ A -3, -3 z2=y4+x5+4'

@) Tr+A+A -2, -3, -3 2=yttt

) M"’Al"'Al -2,-2, =3, -3 Z=yt+s0+4

® Anreex TATA -2,-2, -3, -3 z2;(y2+x3+2l)(y2+xn+2l+2)

(6) A xsex +A+A -2, =3, =3,-2  22=(y’+23* AR+ b,
2a+@3+20)b=11+n+8l

M Dy sxs + A+ A -2, -3, -3 2=yt+ 5+

*From (1) to (40) [ is assumed to be > 0. From (51) to (60) [ is assumed to be > —1.
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Dual Graph A A, Equation
8 Egxs +A+4 -3, -3 2=yt a7
(9) El+A+A4 =2 2=yttt
—-2,r=0
10) No +A+4 { _=4’r>1 } 2=(y+a*)(y+2x'*)
x(y2+xr+21+3)
(11) Cu+A+4 _=2 2=(y+ 2+ (g3 + 21+
(12) Ta+A+A4 -9, _=4 2=x(x+yl a2+ y?+Y)
(13) Tr+A+4 _2,_2’—;3 2=(y+x"+ (P + 25+
(14) Aj sxsx+A;+A; -2,—-92 -2 =_=3 22=(y+xl+Y)(y3+ 28+
15) Anreee +A4+4, “2-2,-2, Z4  A=(y+at(y+atd)
X(y2+xn+3+el)
(16) Dy xxx +A+A; -9, _2,___24 2=(y+x (34273
(17)  Egxx +A;+ A _2)_=4 =y(y+x"+I)(y2+ 25+
(18) Egs +A+A —4 =(y+xl*)(y3+28+3)
(19) El +Ay., -2 Z=y(x+y' )P+ y8+3
(20) No+Aj,s { :—Z ::(; } =y(x+y"*)(x+y"*?
X (x2+ yr+5+2h
@1) Cu+Agy,s -2 =y(x+y' )3+ y7+
(22) Ta +Ay., -2, —4 2=xy(x+y' a2+ y5+%)
23) Tr+Agy.s -2,-2, —4 2=ylx+y" =P+ y8+)
(24) Ay ssxx +Ajg ~2,-2,-2, —4  Z=y(x+y"t)+y*Y)
(25)  Anwexx + A543 -2,-2,-2, -4  2Z=ylx+y"t)x+y""?)
X (a2 +yn+5+2))
(26) Dy xxx +As43 -2,-2, -4 2=y(x+y! Y3+ y10+30)
(27) Egxs +Abiiq -2, —4 P=ay(x+y"t )2 +y"t )
(28) Egx +Ag.s —4 2=y(x+y ) +y1 )
(29) Ta +Ay -2,-4 22=xy(x3+y2+3)
(30) Np +Ay (r=0,5=0) —2,-4 2=x(y2+ 22+ (y2+22+2)
@1) Tr+Ay —2,-3,-3 = y(xt+y3*4)
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Table 3. (cont.)
Dual Graph A A, Equation
(32) Ny +Ag (r=0,t=0,5>0) -2,-3,-3 2=x(y2+ 22+ Y)(y2+x3+2+s)
(33)  Awo+Asg+AsgtAsgtAsg +Ay 2,-2,-2-2,-2 Z2=ylx+y'*)x+2y'+)
X (x+3y' Y (x+4y'+Y)
(34) AuotAsgtAsgtA, seg+Ay —2,-2,-2,-2,-2 Z=y@@+y2¥) (22 +yn+2+)
(n>1)
(35) Awo+AxgtAfang +Agy —2,-2,-2,-2 Z=ylx+yt)xl+y**?)
(36) Awo+Axo+Dseg+Agy -2,-2,-2 2=ay(x+y' Y2+ y3+)
(87) Asot+AsgtAzg +Ay -2,-2 2=y(x+y' NP+ y5+)
(38) Aot A, asot A, weg+Agy —2,-2,-2,-2,—-2 22=(x+y)x2+y2+n+Y)
(n>1,m>1) o X[(x+ylt Y24 ymH2l+e)
(39) Auwg+Afesg+Agy —2,-2,-2 2=y(xt+yH+9)
(40) Auo+D;ag +Ay -2,-2 2=xy(x>+y**%)
(41) El +Eq -2 2=(2+ ) +y°)
42 No+E, { —2.r=9 } P4 Pty )
- —4,r>1
(43) Cu +Eg -2 2=(2+y3)(x3+ y10)
(44) Ta+E, -9, —4 P=x(x*+y%(x*+y")
(45 Tr+E, -2,-2, —4 2=(+y)x*+y")
(46) Ay sxx +Eg -2,-2,-2, -4  2Z=(2+y%(x%+y"?)
(4T) Anssss +Eq -2,-2,-2, =4 2=(2+y(x+yH(x2+y"*T)
(48) Dy xxs +Eq -2-2, -4 22=(x2+ y¥)(x3+ y 1)
(49) o ux+Eq -2, —4 2=x(x*+y°) (2 +y°)
(50) Eg« +Eq —4 2=(x2+y%)(x3+ y™)
(51) El +D(I+4) -2 2=(y*+ 23 (2P +yf)
(52) Ny +D(l1+4) { _—_2,r=0} 2=(y2+ > (x+ yH)(x2+y "+
- _—_4 ,r>1
(53) Cu+D(I+4) -2 2=(y?+23 )2 +y7)
(4) Ta+D(I+4) -2, —4 2=a(yP+23 a2+ )
(85) Tr+D(l+4) -2,-2, —4 2=(y2+ 23+ 23+ P
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Table 3. (cont.)
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Dual Graph AA, Equation
(56) Ay xsax +D(1+4) -2,-2,-2 -4 Z=(y*+23 P+
57 Ay esns +D(I+4 —2,-2,-2, —4  2=(P+P)a+ g +y")
(58) Dy, xxs +D(1+4) —2,-2, —4 2=(y2+ 23+ (x> + ¢y
(59) Egxx +D(I+4) -2, -4 2=x(y?+ x> )(x2+y7)
(60) Egs +D(I+4) —4 E=(y?+25+ )= +y")
(61) No+4(r=1s=1) 2,4 B=(2+yY) (P +yY
(62) Ay sxsx +4; —2,-2,-2,-4 Z=x(x*+y9
(63)  Ap xxsx +4; -2,-2, -2,-4 Z=x(y’+xHP+2y",

3a+2b=n+14
(64) No+A,(r=1t=1,5>0) -2,-3,-3  2=(P+y>*)x’+y
(65)  Ag xxsx +A4; —2,-2,-3,-3 =22+ y)=*+y
(66) Dy xxs +A; —2,-3,-3 22=x5+y8
(67)  Axg+Ax o+ As g+ Agsxg +A; ~2,-2,-2, ~2,-2 2=(P+y"+y?)
(68) Axo+Aso+Dsag+A; -2,-2, -2 2=(x2+ yY(x*+ y°)
(69) Aso+A, weotAg e +A -2,-2,-2,-2, -2 Z=(x+y?)(x+y°)(x>+y**")
(n>1)
(70)  Aso+Dyxo+A, -2, -2 2=x(x*+y")
(71) &:£+A1 —__2 2=x54+ y9
(72)  AgxsotAfxxo+4; —2,-2,-2,-2 2=+ +y)
(73) Agsso+Dsag+A; -2,-2,-2 22=x(x2+ y3)(x2+ y°)
(T4) A 220+ D5x0 +4, -2,-2, -2 2=(x2+y**")(x3+ ¢
(n>1)

(15)  AgaxotEqo+4, -2,-2 2=+ yd)(x3+yd)
(76)  Azxno —2,-2 Pt yP
(T7)  Dgxo -2 2=x5+xy5
(T8) Apsx0+Aj s (n>1) -2,-2,-2,-2  Z2=(y2+x""Y)(x>+y?
(19)  Apsx0+Dssg (n>1) -2,-2,-2 2=(y2+x"*)(x3+ 2y
(80) A uso+Eso (n>1) —9,—2 2=(y+ 2+ y)
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THeOREM 2.9. Let m: M—V be the minimal good resolution of a normal
two dimensional Stein space with p as its only weakly elliptic double point.
Then the associated weighted dual graph is one of the form shown in Corollary
2.3, Corollary 2.7 and Corollary 2.8. Moreover any such wezghted dual graph
has a weakly elliptic double point structure.

Theorem 2.9 gives a complete topological classification of weakly elliptic
double points because of the following fact. Suppose p, €V, and p, EV, are
isolated singularities of complex surfaces such that the graph of p, is the same
as the graph of p;. Then there are open neighborhoods U,3 p, and U, 3 p, and
a homeomorphism h : Uy— U,, such that h(p,)= p,. For the proof, see Remark
3.9 of [26].

3. Topological Classification of Hypersurface Singularities with h=
dimH'(M,0)=2. Rational singularities have H'(M, 0)=0. The hypersurface
rational singularities are actually double points. For H'(M, 0)=C, Laufer was
able to list all weighted dual graphs of hypersurface singularities. In this section,
we are going to list all possible weighted dual graphs of hypersurface singulari-
ties with H'(M, 0)=C?

PropositioN 3.1. Let I be a weighted dual graph including genera for
the vertices associated to the minimal good resolution of weakly elliptic
singularity. Suppose K’ exists. Let Z=Zy,..., Zy, Zy, be the elliptic sequence.
If Z-Z= -3 and Zy - Zp = — 1, then T must be one of the following forms:

1) z= 1ZB,A2CB1,A Z By, 2y=1, Ay Zy = — L

T,
@) Z=12D,|D|=By, A,CB,, A,Z By, 2,=2, Ay Z =0:

Ty,

(3) Z=123D,|D|=B,, A,CBy, A, Z By, %,=3, Ay Z, =0
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(4) Z=3D,|D|=B,, A,CB,, A, ZB,, z,=5, Ay Zg =0:

Iy

where Ty is the graph of B,.

Proof. Since Z-Z=—3, by the definition of the elliptic sequence, we
have the following three cases:

(I There are only three distinct A;,A,,A;Z B, such that A,n B, #Q,
1<i<3.
(I) There are only A},A,Z B, such that A;N B,@#A,N B, and A, #
Ay
(III)  There exists unique A, Z B, such that A, N B, #.

In the first case, we have A;Z=—1=A,Z=A,Z and z,=2,=2,=1.
Since 0> A;- (—K')=A; (2} OZB+E)>A (Z+2Zy)= 0fort—123 we have
A;NBy,=F and A;A;= -2 for i=1,2,3. Let A4,A5,A6CBl such that A-A,=
Ay As=AyzAg=1. Then z,=25;=2,=1. Hence A, Z, <0, Ay Zg <0, Ag-Zp <
0. Since Zg - Zy = —1, we have A, = A;= A4 and A4Z = —1. However, z4—l
will imply that Z=A,+ A, + A+ Z, cand A;Z=2>0. "This is a contradiction.

In the second case, there are two subcases.

(IIA) A;Z=—1=AyZ. Since 0>A;(—K)=A, (2} oZg+E)>A; (Z+Zp)
=0, we have A;N B,= and A;-A;= —2 for l—l 2. We claim that there is no
A3Z B, such that A;7#A;7#A, and Ay Z <0. Otherwise AyZ=—1 and z,=z,
=z;=1. By our hypothesis for any A, Z B,, A|#A,;#A,, we have A,N B,=0.
Since A is connected, there exists A, /2By, A ?’=A #A, such that A;A;=1 or
A;Ay=1. It follows that either A, Z >0 or A -Z >0 This is a COI]tl'adJCthI]
Without loss of generality, we may assume that z, =1, z,=2. There is no A, Z B,
such that A;- Al—l For A;,ZB,, A;7#A;#A;, we have ArZ=0=A;Zg. So
A (—K)=Ar(ZiseZg +E) 0 and A;A;= —2. Let A;,A,CB, such that A;:
Az=1=A,A Thenz3—1 and AyZp <0 Since Zp +Zp = —1, we have Ay Z,
=—L1If A;=A, then Z=D+Z, where |D| consists of those A, Wthh are
not in B,. Hence AyZp =—3. This is a contradiction. We conclude that
A3 #A4 7, cannot equal one: otherwise A, Zg = —2, which is absurd. There-
fore z,> 2. For any A, C B, A;#A,, we have A; *Zg =0. Since B, is connected,
there exists A;C B, such that z; > s+ 1 and Ay A;=1. However, z,=1 and
AgZg=-1 w1]l unply that A;-Z > 1, which is absurd
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(IIB) A;*Z=—1 and A,,Z=—2. In this subcase, we have z,=1=z,. Since
0>A; (—K)=Ay;(S}_oZs + E)> A (Z+Z5)=0, we have A;-A;=—2 and
ANB,=Q. Also 0>A, (—K)=Ay (S oZg +E)> Ay (Z+Zp)=—2+1=
—1. Either Ay Ay=—2 and A,N B,7# D or Ay Ay=—3, Ay,NBy=. Ay A=
—2 and AyN By7# < cannot occur: otherwise Ay'Z > — 1, which contradicts to
our assumption Ay'Z = —2. Therefore Ay A,= —3 and A,N B,=. Let A5, A,
CB,; such that A;*A;=1, A,;A,=1. Then A=A ;UA,UB, and z;=1=z,.
Moreover, Z=A;+A;+Zp and AyZ; <0 and A, Z <0. If A;7#A,, then
ZpZp < —2, which is absurd. If A;=A,, then A;-Zp = —1, since Zp - Zp = —
1. Hence Ay Z=Aj3 (A;+ Ay+ Zp )=2—1=1. This is again a contradiction.

In the third case, there are three subcases.

(IIA) A,-Z=—3. In this case, =1, 0>A;"(—K")=A(Z}_gZp + E) >A
(Z+Zg)=—3+1=—2. Either (i) A;"A;= -3, A|NBy,#J and A;N B;=0,
or (ii) A;*A;=—4 and A, N By,=(, or (iii) A;'A;= —2 and A, N B,#J#A,N
B,. If (i) holds, then A;-Z > —2, since z;=1. This is a contradiction. If (iii)
holds, then A;-Z > —1. This is also impossible. Suppose A;-A;=—4 and
AN B,=. Let A,C B, such that A;-A,=1. Since A;-Z= -3, we have z,=1
and A=A, U B,. Moreover, Z=A,+ Zp and hence Ay Z =1. So we are in (1).
(IIIB) A;-Z= —2. In this case, we have z;=1. Otherwise 2z, >2 would imply
that Z-Z< —4, which is absurd. 0>A;-(—K")=A;(Z\_¢Zs +E)>A, (Z+
Zp)=—2+1=—1. Either (i) A;*A;=—2 and A;N B, or (ii) A;A;=—3
and A; N By=. If (i) holds, then A;-Z > —1, since z,=1. This is a contradic-
tion. Suppose A;*A; = —3 and A; N B,=. Since A;-Z= —2 and z, =1, there is
no A, Z B; such that A;:A, =1. It follows that A=A, U B, and Z=A, + Z . But
then Z-Z=(A,+Zp)-Z=A,Z= —2. This is a contradiction.

(IIC) A;Z=—1. Then 0>A;(—K")=A,(Z\_gZp + E)>A, (Z+ Zy)=0.
So Aj*A;=—2 and A;N By=¢. z, cannot equal 1: otherwise A=A, U B, and
Z=A,+Zy, which implies that Z-Z=(A,+Zp)-Z=A,Z=—1. This is a
contradiction. Therefore either z; =2 or z; =3. Let A, C B; such that AyA, =1,
A,ZB,.

(IIIC ) z,=2. Let A;&ZB,;, A;#A, such that A;+Z <0. Then A;Z= —1 and
z3=1. Since 2+ Ay Az=Ay (—K')=Ay (Z_oZg + E)=AgZ=—1, Ay Az=—
3. For any A,ZB,, A;7A;#A,, we have A;Z=0 and A;NB,=<. Hence,
A,»(—K')=A,-(Eli=0ZB, +E)=A;:Z=0 and A;A;=—2. There are four sub-
cases.

(IIIC a i) 2,=1. In this case Z/B,;=Zp . Therefore Ay Z=2A,A,+ Ay Zy =
2—1=1. This is impossible.
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(IIIC « ii) z,=2. Since z,=2 and A;-A;= —2, there exists A;,ZB;, A;A,=1
and z;=1. Ay'A; is either —2 or —3. If A;A;= —2, then A=B,UA,UA; and
Z=A;+2A,+ D, where D is a positive cycle with |D|=B,. Then Z-Z=(A,+

2A,+D)-Z=2A,-Z= —2. This is a contradiction. So A;-A;=—3 and we are
in (2).

(IIIC « iii) ,=3. Then A=A,UB, and Z=2A,+ D, where D is a positive
cycle with |[D|= B,. It follows that Z-Z=2A,-Z = —2. This is a contradiction.

(IIIC & iv) 2,>4. Then A;-Z > 0. This is impossible by our hypothesis.

(IIIC B) 2=3. Since Z:Z= -3 and A-Z=—1, A;Z=0 for any A,ZB,,

A;#A,. Moreover 0>A;(—K')=A; (2)_oZs +E)=A;Z=0. Hence A;A,=

—2.

(IIIC B 1) z=1. Then Z/B,=Z; . Since z,=3, we have AyZ >3A,-A,+ Ay
Zg =3—1=2. This is a contradiction.

(IIIC B ii) z,=2. Let I'; be the subgraph of I consisting of those A, Z B, such
that A;7A,. Since z,=3, 2,=2, A;"A;= —2 and A|-Z= —1, we have degA,=
2. AsAyA;=—2forall A; in T}, T, is a graph of a rational double point. There
exists a unique A; CTI'; such that z;=3. Because A;Z=0 and z, =3, degA,=2.
There exists a unique A, CT, such that z,=3 and A,A;=1. By induction T, is
of the following form:

-2 -2 -2 -2
A, A Ay Az

Z=3A,+3A, ;+ -+ +3A,+3A;+3A,+D, where D is a positive cycle with
|[D|=B,. Then A,-Z=—3 and Z-Z < —3. This is a contradiction.

(IIIC B iii) z,=3. It is easy to see that degA,=2. Hence we are in 3).

(IHIC B iv) z,=4. Since z,=3, A;;A;=—2 and A;-Z=—1, there exists a
unique A;ZB; such that A;A;=1 and z;=1. Then A, Z >1. This is a
contradiction.

(IIIC B v) z,=5. We are in (5).

(IIIC B vi) z, > 6. In this case, A,-Z >0. This is a contradiction. Q.E.D.

Prorosition 3.2. Let ' be a weighted dual graph including genera for
the wvertices associated to the minimal good resolution of weakly elliptic
singularity. Suppose K' exists and Z=17g,..., Zy, Z; be the elliptic sequence.
If Z-Z= -3 and Zy -7y = —2, then T must be one of the following forms:
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(1) Z=1D21, z=1, z,=2, D is a positive cycle, |D|=B,, AyZs <0,
A4.ZB1 = 0, A3,A4Z Bz, A3 #A“:

-2 -2 -2

Ty

1

@) Z=1D2, z=1, 7,=3, D is a positive cycle, |D|=B,, Ay Zp <0,
A4'ZBl =0, A3,A4gBl, A3,A4ZB2, A3¢A4:

A, A,

B) Z=1Z5 1, z3=2,=1, AyZy =—1=A,Zy, A, A,CB,, A3, A,ZB,

AzFAg
A, A,

@) z= iZBl,z3=1, AyZy =—2,A;CBy, A, ZBy:

_1
() Z=22..2Zy, %=1, AyZs = 2, A,CB,, A, Z By:
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(6) Z=12D, D is a positive cycle, |D|=B,, z,=2, A,CB,, A,ZB,,

A2.ZBI =0:
A,

Ty,
(7) Z=123D, D is a positive cycle, |D|=B,, z,=3, Ay'Zy =0, A,CB,,

2ZB2
-2 -2 -2 A2

Tp
(8) Z=3D, D is a positive cycle, |D|=B,, 2,=5, AyZy =0, A;CB,,

A2ZB2:
-2 A2

Ty

1

where T’ is the graph of B,.

Proof. Since Z:Z= —3, by the definition of elliptic sequence, we have
the following three cases:

(I) There are only three distinct A;,Ay,A;&Z B, such that A,N B, #4J,
1<i<3.
(IT) There are only two distinct A;,A,Z B, such that A,N B, #J, 1<i<
2.
(IIT)  There exists a unique A, Z B; such that A;N B, #J.

In the first case, we have A Z=—1=A,Z=A,Z and z;=2,=2;=1,
0>A;(—K")=AZ\_Zg +E) >A(Z+ Zp)=0 for i=1,2,3. So A;yA;=—2
and AN B,=(, 1<i<3. Let A,A5,AgC B, such that A A,=1=A, A;=A,
Ag. Then z,=25=25=1 and Z=A;+ Ay +A;+ Zy . Hence A, Zy <0, AyZp
<0, and AgZg <0. If A, A5,Ag are distinct, then Zy-Zp < —3. This is a
contradiction. If A, = A;7A,, then A4 Zp = —2 because A A=A, A,=1 and
Ay Z=0. Again we get Zy -7, 3 which is absurd, If A=A = A6, then
Ay Zg < —3. In particular, ZB —3. This is absurd.

In the second case, there are two subcases.
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(ITA) A Z=—1=A,Z. We claim that there are no A;Z B such that A, #A,
#A, and A3 Z <0. Otherwise A Z=A,Z=A;Z=—1 and z;=2,=2z,=1. By
our hypothesis, for any A;Z B, A,#A;7#A,, we have A;N B;=4. Since A is
connected, JA;ZB,, A;7#A;7#A, such that A;A;=1 or ArA,=1. As 0>A;
(—K)=A(Z}_oZg + E)>Ay (Z+ Zy)=0 for i=1,2, we have AjA;= —2=
AyAy, and A;N By=F=A,N B,. It follows that either A;*Z >0 or Ay'Z >0.
This is a contradiction. Our claim is proved. Without loss of generality, we may
assume that z;=1, z,=2. There is no A;Z B, such that A;A,=1. For any
A, ZB,, Ay#A;#A,, we have A, Z=0=A;Zy . So Ay (— K')=A,(Z}_Zy +E)
=0 and A;A;=—2. Let A;,A,C B, such that A,A;Z B, and A A;=1=Ay
Ay Then z;=1 and Ay Zp <0.If A;=A,, then Z/B,=Z;. So Ay Z=2AA,
+AyAz+AyZp > 1. This is a contradiction. We conclude that A;7#A,. 2,
cannot equal 1. Otherwise Z/B,=Zp and A, Zp = —2. This would imply that
Zp -Zp < —3, which is absurd. Suppose z,=2. Then there exists unique A5 Z B,
such that A,#A;#A,, A;A;=1 and z;=1. It follows that A=A, UA,UA U
B,. If AyZg <0, then Z=A;+A,+As+Z. This is a contradiction. So
AyZp =0 and we are in (1). Suppose z,=3 then A=A;UA,U B,. Similar
argument to the above will show that A,-Zy =0 and we are in (2).

(IIB) A;-Z=—1 and Ay Z=—2. In this case, z,=1=2,. 0>A,(—K)=A,
(Zi=0Zg +E)>A, (Z+Zp)=0. Hence A;'A; = —2 and A, N B,=(. Since 0>
Ay (—K')=Ay (Zh_oZg + E)>Ay (Z+ Zg )= —1, either Ay Ay=—2 and A,N
By,#J or AyAy=—3 and A,NBy,=J. Ay;-A, cannot equal —2: otherwise
AyZ > —1, which is a contradiction. Therefore A,-A,=—3 and A,N B,=4.
Let A;,A,CB,, Ay, A,Z B, such that A;-A;=1=AyA,. Then A=A, UA,UB,
and z;=2,=1. Moreover, Z=A,+A,+ Zy and Ay Zy <0, Ay Zp <O0.If Ay#*
Ay then AyZp = —1=A,Zy and we are in (3). If A;=A,, then AyZ; = -2
and we are in (4).

In the third case, there are three subcases.

(ITA) A;-Z=—3. In this case z;=1. Since 0> A, (—K")=A,(Z}_(Zy + E) >
Ay (Z+Zg)=—3+1=—2, either (i) A’ A;= —2 and A| N B,#J#A,N By, or
(i) A;A;=—3, A,N B,#J and A, N B, =@, or (iii) A;A,;= —4 and A, N B,=
. In case (i), A;'Z > —1, which is absurd. In case (ii), A;-Z > —2, which is
also absurd. In case (iii), it is easy to see that A=A, U B,. Let A,CB,, A,ZB,
such that A;-A,=1. Then z,=1 and hence Z=A,+ Z; . Since Ay Z=0, this
implies that AyZp =—1. However, Zy-Zp = —2, so there exists A;CB,,
A3#A, such that Ay Zp = — 1. It follows that Ay Z=(A;+Zy ) A3=AyZy =
—1<0. This is a contradiction.
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(IIIB) A;*Z= —2. In this case, z;,=1. Otherwise z, >2 and Z-Z < —4. Since
0>A; (—K')=A;(Zi_oZg +E)> A (Z+Zg )= —2+1=—1, either (i) A;'A,
=—-2and A|NB,#J or (ii) A;A;=—3 and A;N B,=. If (i) holds, then
Ay'Z >0, which is absurd. Suppose (ii) holds. It follows easily that A=A, U B,
and Z=A,+Zg. Then Z-Z=(A,+Zy)-Z=A,-Z=—2. This is a contradic-
tion.

(IC) AyZ=—1. Since 0>A;(—K')=A,(S\_Zp+E)>A; (Z+Z5)=0,
we have A;-A;= —2 and A, N B,=(. There are three subcases.

(IIIC a) z;=1. In this case, A=A;UB, and Z=A, + Zg . Hence Z-Z=(A,+
Zg)-Z=A,Z=—1. This is a contradiction.

(IIIC B) 2;=2. Let A;&ZB,, A35A, such that A;-Z <0. Then z;=1, A;-Z=
—1 and A;NB,=J. Since Ay(—K)=Ay (S} oZs+E)=AyZ=—1, we
have A; A3=—3. For A,Z B, A;#A,#A,, we have A;Z=0 and A, B,={.
Because A, (—K')=A; (2i_¢Zg +E)=A;Z=0, we have A;:A;=—2. Let A,
CB,, A, Z B, such that A-A,=1.

(IIIC B i) z,=1. It is easy to see that we are in (5).

(IIIC B ii) zp=2. It is easy to see that we are in (6).

(IIIC B iii) 2,=3. In this case, A=A,UB,; and Z=2A,+ D, where D is a
positive cycle with |[D|=B,. It follows that Z-Z=(2A,+ D)-Z=2A,Z= —2.
This is a contradiction.

(IIIC B iv) z,>4. In this case, A;-Z >0, which is absurd.

(IIC y) % =3. Since Z:Z=-3 and A;-Z=—1, A-Z=0 for any A,ZB,,
A;#A,. Moreover, 0>A;(—K')=A;(2i_oZg +E)>A; (Z+ Z5)=0. Hence
ApA;=—2 for all A;#A, and A, ZB,. Let A,CB, such that A,ZB, and
AyA,=1.

(IIIC vy i) zp=1. In this case Z/B,= Zp.S0 Ay Z=3A1Ay+AyZy >3—2=
1. This is a contradiction.

(IHIC y ii) 2,=2. Let I'; be the subgraph of I' consisting of those A, Z B,. Since
A;A;=—2for all A; in T'}, T, is a graph of a rational double point. Since z, =3,
z,=2, AyrA;=—2and A;-Z= —1, it is easy to see that degA,=2. Hence there
exists a unique A;CT' such that z;=3. Since A;Z=0 and z,=3, degA,=2.
There exists a unique A,CT, such that z,=3, A,;#A; and A A;=1. By
induction T', is of the following form:

—2 -2 -2 -2 -2 -2
*—@ -0 —o—0—0
A, A As Ay Az Ay

Z=3A4+ -+ +3A3+3A,+ D, where D is a positive cycle with |D|= B,. Then
A, Z=-3 and Z-Z< —3. This is a contradiction.
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(IIC vy iii) 2,=3. Since z,=3,A’A;=—2and A;Z= —1, we have 2 <degA,
< 3. It is not hard to see that degA; =3 cannot occur. Therefore degA,=2. It
follows that we are in (7).

(IIIC vy iv) 2,=4. There exists a unique A;Z B, such that A;-A;=1 and z;=1.
Therefore Ay:Z >3—2=1. This is a contradiction.

(IIC y v) 2,=5. Since z,=3, 2,=5, A;"A;=—2 and A-Z= —1, we have
A=A;UB,. So we are in (8).

(IIIC vy vi) z,>6. Then A,-Z >0, which is a contradiction.

ProrosiTioN 3.3. Let I' be a weighted dual graph including genera for
the vertices associated to the minimal good resolution of weakly elliptic
singularity. Suppose K’ exists. Let Z=1Zg,..., Zy, Zy be the elliptic sequence.
If Z-Z< —3 and Zy - Zy = —3, then I must be one of the following forms:

1
(1) Z=1Zy 1, zy=25=24=1, Ay Zy = —1=AgZp =AgZg; Ay AsAg
CB,, AL A, AgZ By, A, FAs7FAgF#Ay:

I-‘B
Q) Z= szl Lzy=2=1,A;Z =—2, AyZy = —1, A,A;CB,, A, A,
Z B2, A4 #As:
1

1
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1
(4) z=122..217,, =1, A, 7, = -3, A,CB,, A, 2 By:

(5) z=1zBlz...22}, B=2=1,AyZy =—1,A;Zy =2, A, A,CB,,
A3, A,Z By, A,#A,:
-2

A Ay
-2 -2 -2 -2
-2

Tg, n>0

(6) Z=1D21D is a positive cycle, |D|=B,, z,=1, z,=2, AyZg <0,
AyZp =0,A3A,CB,, A;,A,ZB,, AgF#A,:

(7) Z=1D2, D is a positive cycle, |D|=B,, z;=1, z,=3, Ay Zy <0,
AyZg =0,A3,A,CB,, A, A,ZB,, Az FAy:

A, A,
-2 -2

Tg,

8) Z= i gszBl, %=1,AyZs = —3, A,CB,, A, Z By
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2
(9) Z=12343Zy,2,=1, Ay Zy = —3, A,CB,, A, ZBy:

-2

-2

(11) Z=123D, D is a positive cycle, |D|=B,, 2,=3, Ay Zg =0, A,CB,,

A, & By: A,
-9 -2 -2

Ty,
(12) Z=3D, D is a positive cycle, |D|=B,, 2,=5, Ay:Zz =0, A,CB,,

AQZBzz
A2
E

g

1

where T'p, is the graph of B,

Proof. Since Z-Z=7Zg-Zy, (Z—Zp) (Z+Zg)=0. For all A;ZB,, we
have 0> A, (—K")= A, (2i_oZg + E) > A (Z+ Z3 ) =0. Therefore, A;A;= —2
and A;NB,= for all A;ZB,. As Z:-Z=—3, by the definition of elliptic
sequence, we have the following three cases.

(I) There exist A;,A;,A;ZB; such that A;NB,#d, 1<i<3, and

A, Ay, A, are distinct.
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(II) There are only A;,A,ZB,, A;#A,, such that A, N B, #J#A,N B,.
(IIT) There exists unique A, Z B, such that A;N B, # .

In the first case, we have A;"Z=—1=A,Z=A;Z and z,=2,=2;=1. It
follows that there is no A, ZB,, A #A;, 1<j< 3, such that A;A;>0 or
A; Ay >0 0r AfA;>0, ie, A=A UA,UA;UB,. Let A,,A;,AgC B, such that
ApAs AgZB, and ArA,=1=A,A;=AzAq Then z,=2;=25 and A, Z <0,
A5 Z<0,AyZ<0.If Ay, A, Ag are distinct, then Z=A,+ Ay + A3+ Zp and we
are in (1). If A;=A;7#A,, then A;Z; = —2 because A;Z=0 and A" A=Ay
A,=1. Hence Ag-Zg = —1. We are in (2). Suppose A,= A= Agq. Since Ay Z=
0, we have A, Zy = —3. We are in (3).

In the second case, we claim that there is no A; @ B, such that A; #A;7#A,
and A, Z<0. Otherwise A" Z=—1=A,Z=A;Z and z,=2z,=23=1. By our
hypothesis, A;,NB, =@ for any A,ZB,;, A;7#A;#A,. Since A is connected,
there exists A, Z B, A,7A,;#A,, such that A A; =1 or A;A,=1. Consequently,
either A;-Z >0, or A,-Z >0. This is a contradiction. Our claim is proved. There
are two subcases:

(IIA) A} Z=—1, Ay Z=—2. Since Z-Z= —3, we conclude that z,=1, z,=1.
However, Ay Ay = —2, so A, Z > — 1. This is a contradiction.

(IIB) AZ=—1=A,Z. Without loss of generality, we may assume that
z =1, z,=2. Let A;,A,CB,, A;,A,ZB, such that AjrA;=1=A, A, Since
z;=1and A"A;= —2, we have z;=1 and A3 Zp <0.If A;=A,, then Ay Zy =
—3 because Ay Z=A32A,+A,;+Z)=0. As Ay Ay=—2 and Ay Z=—1, we
have 2<degA, <3. We are in (4). Suppose A;7#A,. Because A, Z=—1, the
proof breaks up into four subcases.

(IIB i) There exist A5, AgZ B,, A, #A;7#Ag#A,, such that AgyA,=AgA,=1.
In this case, we have z,=z;=2,=1. Hence Z=A,+ A5+ Ag+2A,+Zy . Ay Z
=0, Ay-Z=0 imply that A, Z; = —2, Ay Zy = —1. Then we are in (5).

(IIB ii) There exists a unique A;Z B, A;#A57#A,, such that AyA,=1, z,=1
and z5=2. In this case, Z/B,=Zy. So Ay Zg =—2 and Ay Zg = — 1. Since
Ay As=—2, A;Z=0 and z;=2,=2, we have 2<degA;<3. It follows easily
that we are in (5).

(IIB iii) There exists a unique A;Z B,, A, 7#A55#A, such that Ag-A;=1, z5=1
and z,=2. In this case A=A;UA,UAz;U B,. Since z,>1, it is easy to see
that A,-Zy =0. We are in (6).

(IIB iv) z,=3. In this case, A=A, U A,U B,. Hence A, Zz =0. We are in (7).

In the third case, there are three subcases.

(IIIA) There exist Ay, A;Z B, such that A, A, A, are distinct and Ay Z <0,
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A3Z<0. Because Z-Z=—3,wehave A Z=AyZ=AyZ=—1and z,=2,=
z3=1. There exists A Z B, such that A;-A,=1. Since z,=1 and A-A; = —2, we
have A-Z >0. This is a contradiction.

(IIIB) There exists a unique AyZ B, such that Ay#A, and Ay Z <0. Since
Z-7Z = —3, we have three subcases.

(IlIB @) z;=2, z,=1. In this case, we have A;-Z=—1=A,Z. Let A;CB,,
A3 Z B, such that A;-A;=1. If 2;=2, then there exists a unique A,Z B,, such
that A;-A;=1 and z,=1. It follows easily that A=A, U A,U B,. Since z,=1,
z=2 and Aj-A;=—2, we have A;Z=0. This implies that A,#A,, which is
absurd. If z;=1, then Z/B,=Z; . Since 0=AyZ=Ay (2A,+Z)=2+AyZy,
we have Ay Zp = —2. As Zy -Zp = —3, there exists A, Z B, such that A, Zp =
— L It follows that A;-Z=A;Zy = —1<0. This is a contradiction.

(IIIB B) z,=1, z,=2. In this case, there exists A;ZB,, A;;A;=1. Since z;=1,
Ay;A;=—2, we have A|-Z > 0. This is a contradiction.

(IIB y) z;=1=2,. The same argument as (IIIB 8) shows that this case cannot
oceur.

(ILIC) There is no A;Z B,, A;#A,, such that A;Z<0. In this case, A Z=—1
and z,=3. Otherwise, A;'Z< —2 and A;"(=K')=A (Zi_oZg +E)=A (Z+
Zg )< —1. This would imply that A;-A; < —3, which is a contradiction. Let
Ay C B, such that A*A,=1 and A, Z B,. There are five subcases.

(IIC i) z=1. Let I'; be the subgraph of I' consisting of those A; Z B,. Since
A;A;=—2for all A; in T';, T, is a graph of a rational double point. Since z,=3,
2;=1and A|-Z= —1, it is not hard to check that we are in (8), (9) or (10).
(IIC ii) z;=2. Let I'; be the subgraph of T consisting of those A; Z B,. Since
A;A;=—2for all A, in T';, T, is a graph of a rational double point. As z;=3,
%=2, ArA;=—2 and A;-Z= —1, we have degA,=2. There exists a unique
A;CT such that z;=3. Since A;Z=0 and z,=3, we have degA,=2. There
exists a unique A, CT', such that z,=3, A,#A, and AA;=1. By induction, T,
is of the following form:

-2 =2 -2 -2 -2
*——=0 - —=0—0
Ap Ap Ay Az Ay

Z=3A,+ -+ +3A;+3A,+ D, where D is a positive cycle with |D|= B,. Then
A, Z=—3 and Z-Z < —3. This is a contradiction.

(IIIC iii) z,=3. Then we are in (11).

(IIC iv) z,=4. Since z,=3, A|*A;=—2 and A|-Z= —1, there exists a unique
A3Z B, such that A;A; =1 and z;=1. Then A;-Z >1>0, which is absurd.
(IIIC v) z,=5. Then we are in (12). Q.ED.
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THEOREM 3.4. Let m:M—V be a resolution of normal two dimensional
Stein space with p as its only singular point. If dimH"(M,0)<2 and p is a
hypersurface singularity, then the multiplicity O, is less than or equal to 3.

Proof. This is a trivial consequence of Theorem 1.3.

CoroLLARY 3.5. Let m: M—V be the minimal good resolution of normal

two dimensional Stein space with p as its only singular point. Suppose

HY(M,0)=C> If p is a hypersurface smgulamty, then the elliptic sequence is
one of the following forms:

(X) elliptic sequence is {Z,Zg},
@) ZZ=-3,ZyZg=—1,
(b) Z-Z=—3, ZyZp=—2,
© ZZ=-3=2Zy7,,
d) ZZ=-1, Zz-Zp=—1,
() ZZ=—2 Z,Zy=—1,
) ZZ=-2 ZyZy,=—2;

(II) elliptic sequence is {Z,Zg ,Zg}
@ ZZ=-2 ZyZy=—1=Zy7,
() Z-Z=—1=2Zy Zy =ZpZy;

(III)  elliptic sequence is { Z, Zy,Zy, Zg},

() ZZ=—1=2Zy Zy=Zp Zp =7y Zp.

Proof. 'This is an easy consequence of Proposition 2.1, Theorem 3.4 and

Theorem 0.15.

THEOREM 3.6. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only singular point. Suppose
HY(M,0)=C? and p is a hypersurface singularity. Then the associated
weighted dual graph is one of the forms in Table 4.

Table 4. The Weighted Dual Graphs for Hypersurface Singularities with Geometric Genus h =2.

Dual Graph As-Ax
o) Z-Z=-3,25Zg=—1
() El+F_, -1
—-1,r=0

@ Ho+F-q {—_3,r>1}
® Cu+F, -1
4 Ta+F_, -2, -3
(6) Tr+F_, -2,-2, -3

(6) Al,ttt* +F_4 _2, -2, _2)__3
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Table 4. (cont.)

Dual Graph A,-A,
() Ay xsex +F_, -2,-2,-2, -3
(8) Dysexx +F_, -2,-2, -3
®) Egus +F_, -2 3
(10) Ege+F_, -3
(11) Tr+A4, -2,-2,-3
(12)  No +A, (r=s=t=0) -2,-2,-3
Ib) Z-Z=-3,ZgZg=—2
(13) No+A,+F_5(r>0,5>0) -3,-3
(14) Ta+A+F_,4 -3,-3
(15 Tr+A;+F_4 -2, -3, -3
(16)  Ajexas +A;+F 3 -2,-2, -3, =3
(A7) A, sexx +A+F_, -2,-2, -3, -3
(18) E+A1+F_3 -2, -3, =3,-2
(19) Dyexs +A+F_, -2, -3, -3
(20) Egex +A;+F_, -3, -3
@l) El+A+F_4 -2
-2,r=0
©2) No+A+F_g {j,r>1]
@3) Cu+A+F_4 =2
@4) Ta+A+F_, -2, -4
(@5 Tr+A,+F_4 -2,-2, —4
(26)  Ajeess +A +F_4 -2,-2,-2, —4
@7) A, sxxs +A+F_, -2,-2,-2, —4
(28) Dy xs +A+F_, -2,-2, -4
(29) Egsx +A;+F_g -2, -4
B0) Egx+A+F_, —4
(31) El+A(m+2,—3) (m>0) -2
(32) Ny +A(m+2,—3) (m>0) { =2,r=0 ]
- _—_4, r>1
(33) Cu+A'(m+2,-3) (m>0) -2
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Table 4. (cont.)

Dual Graph ALA,
(34) Ta+A’(m+2,—3)(m>0) -2, —4
(35) Tr +A'(m+2,—3) (m>0) -2,-2, —4
(36)  Apsaxs +A(m+2,-3) (m>0) -2,-2,-2, —4
@37 m +A'(m+2,—3) (m>0) -2,—2,-2, —4
(38) Dy uxs +A'(m+2,-3) (m>0) —-2,-2, —4
(39) Egas +A'(m+2,—3) (m>0) -2, —4
(40)  Egx +A(m+2,-3) (m>0) —4
(41) Ny +AAA(0,0,—3,1) (r=0,5=0) —2,-4
(42) Ta +AAA(0,0,-3,1) —2,-4
(43)  No +AAA(0,0,—3,1) (r=0,5=0,¢>0) -3, -2,-3
(44)  Tr +AAA(0,0,-3,1) -2,-3,-3
(45) A +Auo+As +As o+ Asg +AAA(0,0,-3,1) —2,-2,-2,-2,-2
(46)  As +Axo+AsgtA, as o +AAA(0,0,-3,1) —2,-2,-2,-2,-2
(A7) Asx +As o+ A} aeo +AAA(0,0,—3,1) —2,-2,-2,-2
(48)  Ax +Aso+Dsxo+AAA(0,0,—3,]) —2,-2,-2
(49)  As +Aso+Eqo +As +Asot -2,-2
(50)  Awo+A, a0+ A, as o +AAA(0,0,—3,1) —2,-2,-2,-2,-2
(1)  Asxo+ Asxso+AAA(0,0,-3,1) —2,-2,-2
(52) Ao+ Dy +AAA(0,0,—3,1) —2,-2

Ic) 2Z=-3=ZypZ;

(53) No+A;+A+A, (r>0,5>0,t>0) —-3,-3,-3
(54) Tr+A,+A+A, =3,=3,23
(55) Ay xxsx +A;+ A HA, -2,-3,-3,-3
(56) A sxxx +A A A, -2, -3,-3,-3
(57)  Dyxsx +A1+ A +4, —-3,-3,-3
(58) No+A;+A;+A4,(r>0,5>0) =3, 4
(59) Ta+A;+A+4 —3, 4
(60) Tr+A;+A;+4, -2, -3, 4
(61)  Ajpxsxx +A +A +A, -2,-2, -3, -4
(62) Aprane -2,-2, -3, —4

A",.,‘** +A1+A1+Al
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Table 4. (cont.)

Dual Graph ALA,
(63) An,t*** +A1+A1+A1 —2, —3,—_4,—2
(64) Dy sxsx +A+A +A, -2, -3, -4
(65) Egax +A;+A+A, 3, -4
(66) El+A,+A,+A, -3
=3 .r=0
(67) Np+A;+A+4, =
—_5 ,r>1
(68) Cu+A;+A+A, -3
(69) Ta+A,+A;+A, -2, =5
(70) Ta+A+A,+4, -2,-2, =5
(T1)  Apsxss +A+A +A, -2,-2,-2, -5
(12) Ay exs +A +A +A, -2,-2,-2, =5
(73) Dy axx +A+A +A, -2,-2, =5
(74) EG,“ +A1+A1+A1 _23 __5
(75) Egx +A +A +A -5
(76) El +D(I+4)+A, (1> —1) -3
-3,r=0
(T7) N +D(I+4)+A, (1> -1) -
— j ,r>1
(78)  Cu +D(I+4)+A, (1> -1) -3
(719) Ta+D(I+4)+A, (1> -1) -2, -5
(80) Tr+D(I+4)+A, (I>—1) -2,-2, -5
(81) Al,**** +D(l+4)+Al (l > —1) _2, _2) _2s _=5
(82) Aﬂ,m‘“ +D(l+4)+Al (l} _1) _2) _2) _2s_=5
(83) Dyaxx +D(I+4)+A, (1> 1) -2,-2, -5
(84) Eg s +D(I+4)+A, (I>-1) -2, -5
(85 Egs+D(I+4)+A, (I>-1) -5
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Table 4. (cont.)
Dual Graph A A,

(86) No +A;+D(l+4)(I>-1) -3, -4

(87) Ta+A;+D(l+4)(I>-1) -3, -4

88) Tr+A+D(I+4)(I>-1) -2, -3, -4

(89)  Apwaxx +A;+D(I+4) (1> ~1) -2,-2, -3, -4

(90) Ay sanx +A+D(I+4) (1> ~1) -2,-2, =3, —4

O1)  Anweax +A+D(I+4) (> 1) -2, -3, -4,-2

(92) Dysss +A+D(I+4)(1>-1) -2, -3, -4

(93)  Egsx +A;+D(I+4) (1> -1) -3, -4

(94) No +A;+A4;(r=0,5=0) =5,-2

(95) Ta+A;+A, -5, -2

(96) No+Ag+A, (r=0,t=0,5>0) —2,-3, —4

(97) Tr+A;+A, —2,-3, -4

(98) Ny +A,+A,(s=17>0,t>0) —3,-3,-3

/.r’ —=x3
_02—___3’E\ ar -2
s _ %,

(99) AsotAsgtAsotAsgtAsg+A+A, —3,-2,-2,-2, -2
(100) AxogtAngtAsgtA, xeg +A T4, =3, —_2, -2,—2,—2
(101)  AsptAsgtAsgtA,seg+A +A, —_2, —-2,—-2,-2, —_8
(102)  Aso+Asg+As g +Ay+A, —2,-2,-2, -3
(103)  Asg+AsotAsasg+A +A, —3,-2,-2,-2
(104)  Axo+Aso+Dsao+A +A, —3,-2,-2
(105)  Aso+Asg+Dsso+AytA; -2,-2,-3
(106) Aso+AsotE;q+A;+A, -3, -2
(107) Ao+ A, x50t A, 220 TAg+ A, —_2, —2,—2,—2, —_3
(108)  Aso+Agsxg+Ayt+A; -2,-2,-3
(109) Asxo+Dgsg+Ay+A —-2,-3
(110) Ny +A;+A4, (r=1,5=1) =5, -2
(111) -2, -2,-2, -5

Al,‘*** +Al +Al
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Table 4. (cont.)
Dual Graph AA,
(112) Ay xsxs +A;+A, -2,-2, -2, -5
(113)  No +A,+4, (r=1,t=1,5>0) -2,-3, -4
(114)  Ag suns +A,+A, -2,-2,-3, —4
(115) Dy oen +As+4, —-2,-3 -4
(116)  AsotAso+Axg+Agrso+A +A, —3,-2,-2,-2, -2
(117) Ny +A,+A4; (r=3,5>0,¢>0) —3,-3,-3
(118)  Axo+Aso+Dssxg+A+A —3,-2, -2
(119)  Axo+An xxotAg sxo +A1HA,; —3,-2,-2,-2,-2
(120)  Axo+A, xeotAg sno + A +4, -2, -3,-2,-2, -2
(121)  Aso+Dyxg+A +A; -3, -2
(122)  Ag ss ot Afasg +A +A, =2,-2,-2 -3
(123)  Ag #so+Dsso+A+A, —2,-2, -3
(124)  El +Ag =3
(125) N, +AZ { =3,r=0 }
1o —_5, r>1
(126) Cu +A¢ -3
(127) Ta +A{ -2, -5
(128) Tr +A{ -2,-2, =5
(129) Ay san +AZ ~2,-2,-2, -5
(130) A, ssx +AZ ~2,-2,-2, =5
(131) Dy vus +AZ ~9,-2, =5
(132)  Egxs +AZ -5,-2
(133) Eg s +Ag =5
(134) El+D, =
-3,r=0
(135)  No+Ds {__5,01]
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Table 4. (cont.)
Dual Graph AA,

(136) Cu +D, -3
(137) Ta +Dj -2, -5
(138) Tr + D, ~3,-2, -5
(139) Ay wens +Dg ~2,-2,-2, -5
(140) Ay xxss +Dg —2,-2,-2 -5
(141) Dy sxx +Dg -2, —2,—_5
(142) Eg«x +Dg -2, =5
(143) Egx +Dg =5
(144) El+E, =3
(145) N, +E, { S }

— —_5 ,r>1
(146) Cu +E; -3
(147)  Ta+E, -2, -5
(148) Tr +E; -2,-2, =5
(149)  Apwwns +Ey -2,-2,-2, =5
(150) A, suss +E -2,-2,-2, -5
(151) BT_Z’L E, -2,-2, -5
(152)  Eovon +Ey -2, -5
(153) Egs +E; =5
(154) Ny +Ag (r=0,5=1) -2,-5
(155)  Tr +4, —2,-2,-5
(156) Ay wees +4q —2,-3,-3,-3
(I57)  Axg+AsotAsg+ALsso+Aq -2,-2,-2 -2,-3
(158)  AxgH+Apsso+A, sno+Aq -2,-3, —2,-2,-2
(159)  Apsxo+Afano+Aq —2,-3,-2,-2
(160) Ay sso+Dsxo +Aq —2,-3,-2
(161) A, a0+ Eq7q +Aq -2,-3
(162)  Ajxo+Apso+ALsotApsg+Ag —2,-2,-2,-2
(163)  ApxotApsotAs s +A43 ~2,-2,-2
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Table 4. (cont.)
Dual Graph AA,
(164) Ay sotApeotEgo+As Z2.-2
(165)  ApsotAzso+A3 Z2.,-2
(166) Np +A,(r=1,5=3) —2,-5
(167) M+Al —2,-2,-5
(168) Ny +4; (r>0,5=3,1=1) —4,-3, -2
Id) ZZ=-1,2ZpZg=—1

(169) El +A4, -1
(170) Ny +A, { =Lr=0 }

- —3,r>1
(I71)  Cu +4, -1
(172) Ta+4, -2, -3
(173)  Tr +4, —2,-2, -3
(174)  Apssss +4, —2,-2,-2, -3
(I75) Ay xuns +41 -2,-2,-2, -3
(176) Dy axs +4, —2,-2, -3
(I77)  Egux +4 -2, -3
(178)  Egs +A, -3

) ZZ=-2 ZgZy=—1
(179) El+F_, -1
—1,r=0

(180) Ny +F_g {__3,01}
(181) Cu+F_, -1
(182) Ta+F_, -2, -3
(183) Tr+F_g -2,-2, -3
(184)  Apress +F_s -2,-2,-2, -3
(185)  Apssss +F s -2,-2,-2, -3
(188) Dy s +F_g -2,-2, -3
(187)  Egux +F_4 -2, -3
(188) Egs +F_g -3
(189) -2,-3

Ta +4,
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Table 4. (cont,)
Dual Graph A A,
Ify ZZ=-2,ZgZz=-2
(190) N +A,+A4; (r>0,5>0) —-3,-3
(191) Ta+A,+A4, —-3,-3
(192) Tr +A,+A4, -2, -3, -3
(193)  Aj sxsx +A;+A, —-3,-2,-2, -3
(199) Ay xers +A+4, -2,-2, -3, -3
(195) A, sxxs +A +A, —3,-2,-2, -3
(196) Dy axx +A;+A; -2, -3, -3
(197)  Egax +A;+A, -3, -3
(198) El+A,+A, —2
—-2,r=0
(199) &+A1+A1 { i,r>l}
(200) Cu +A;+4, —2
(201) Ta +A,+A, -2, —4
(202) Tr +A,+A4, -2,-2, —4
(203)  Aj sxxs +A +A, -2,-2,-2, —4
(204) A, sxxs +A +A, —2,-2,-2, —4
(205) ;)—.:.,_+A1+Al -2,-2, —4
(206) Eg s +A,+A, -2, —4
(207) Egx +A +A; -4
(208) El+D(i+4)1> -1 =2
(209) N, +D(I+4)1> —1 {_—2"=0}
— —4,r> 1
(210) Cu +D(I+4)1> -1 -2
@11) Ta+D(I+4)1> -1 -2, —4
@12) Tr+D(I+4)1> -1 -2,-2, -4
(213)  Ajsxxs +D(I+4)1> -1 -2,-2,-2, —4
(214) M +D(l+4)1> -1 -2,-2,-2, —4
(215) Dy ses +D(I+4)1> ~1 -2,-2, —4
(216) k+D(l+4) 1>-1 -2, —4
(217) Egx +D(I+4)1> -1 -4
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Table 4. (cont.)

Dual Graph AA,
(218) Ta +A, -2,-4
(219)  No +A, (r=0,5=0) —2,-4
(220) Tr +A, —-2,-3,-3
(221)  No +A,; (r=0,1=0,5>0) -2,-3,-3
(222)  Axo+As o+ AsotAsotAsg +A, -2,-2,-2,-2,-2
(223)  AsotAsgtAxgtA, xxg +A, —2,-2,-2,-2,-2
(224)  Aso+AsotAfaxo +A, —2,-2,-2,-2
(225)  Axo+Axo+ Dys ot A, -2,-2,-2
(226)  As o+ Aso+E o +A4, —2,-2
(227)  Asot A, xsot A, xx9 +Ay —2,-2,-2,-2,-2
(228) Ao+ Afxsg +A; -2,-2,-2
(229)  Axo+Dysg+A, -2,-2
(230) Ny +A4, (r=1s=1) 2,4
(1) Apssnx +4, -2,-2,-2,—4
(232) A, xsxx +A, —2,-4,-2,-2
(233)  No +4; (r=15=1¢>0) -2,-3,-3
(234)  Agssss +4, -2,-2,-3,-3
(235)  Dyses +4, -2,-2,-3
(236)  Axo+Aso+AsotAgsng +A, -2,-2,-2,-2, -2
(@37)  Axo+Axo+Dsso+A, -2,-2, -2
(238)  As ot Ag xs 0+ Ay, s0+A, -2, ~2,-2,-2,-2
(239)  Axo+Dyxo+A, -2, -2
(240) Do +4, —2
(241)  Agsxo+Ahano+A, -2,-2,-2,-2
(242) A ax 0t D5 e +4, —2,-2,-2
(243) A, xsot+Dsxg+A; -2,-2, =2
(244)  Agwaot+E;o+A, -2,-2

IIg) Z-Z=-2, Zg Zg=Z5Zg=-1

(245) El +AF -1
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Table 4. (cont.)
Dual Graph AyA,
-1,r=0
(246) N, +AF ['__301}
(h) ZZ=—1=2Zp Zy=2Zp7
(247) El+A, =1
248) N, +A e
. ~1
No T2 —3,r>1
() Z-Z=—1=Zg Zy =2Z5-Zp =757
(249) El+A, -1
(250) Ny +A i
=7 —3,r>1

Proof of Theorem 3.6. This is a consequence of Proposition 3.1, Proposi-
tion 3.2, Proposition 3.3 and Corollary 3.5.

By the virtue of Theorem 3.6 we have the following theorem.

THeOREM 3.7. Let m:M—V be the minimal good resolution of normal
two dimensional Stein space with p as its only singular point. Suppose
H'(M,0)=C? and p is a hypersurface singularity. Let A be the exceptional
set. If H'(A,Z)=0, then p is an almost minimally elliptic singularity.

Proof. The condition H'(A,Z)=0 rules out cases (245), (246), (247),
(248), (249) and (250) in Theorem 3.6. All the remaining cases in Theorem 3.6
are almost minimally elliptic by Theorem 0.16. Q.E.D.

Remark 3.8. Using Propositions 3.1, 3.2 and 3.3, we can list all possible
weighted dual graphs of weakly elliptic singularities such that K’ exists and
Z-Z < —3. By Corollary 1.2, we know that all hypersurface maximally elliptic
singularities must be one of these forms. However, the list is too long to be
included here. We remark only that the condition on the elliptic sequence of
Theorem 0.16 is automatically satisfied if Z-Z < —3 and K’ exists.

HARvARD UNIVERSITY
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