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ON STRONGLY ELLIPTIC SINGULARITIES 

By STEPHEN SHING-TOUNG YAU.* 

1. Introduction. Let p be a normal singularity of the two-dimensional 
analytic space V. In [1], Artin introduced a definition for p to be rational. 
Rational singularities have also been studied by, for instance, DuVal [2], 
Tyurina [22], Laufer [12], and Lipmann [17]. In [23], Wagreich introduced_a 
definition for p to be elliptic. Elliptic singularities have occurred naturally in 
papers by Grauert [3], Hirzebruch [7], Laufer [14], Orlik and Wagreich [18, 19], 
and Wagreich [24]. Karras [9, 10] and Saito [20] have studied some of these 
particular elliptic singularities. Choose V to be a Stein space with p as its only 
singularity. Let ST: M-> V be a resolution of V. It is known that dimnH'(M, 6)) is 
independent of resolution. Rational singularities are those singularities with 
H1(M, e) =0. 

Recently, Laufer [15] examined a class of elliptic singularities which satisfy 
a minimality condition. Let v?p be the germs at p of holomorphic functions on 
V. These minimally elliptic singularities are actually those singularities with 
H (M, 0) = C and v?p Gorenstein ring [15, Theorem 3.13]. Let t: M--V be the 
minimal resolution such that the irreducible components of A= - (p) are 
non-singular with normal crossings. Let F denote the associated dual graph (see 
e.g. [8] or [11]) including the genera of the irreducible components. In [13], a 
deformation theory preserving F was developed. This theory allows him to 
introduce the notion [15, Definition 4.1] of a property of the associated 
singularity holding generically for r. Let Z be the fundamental cycle. Let 
e (- Z) be the sheaf of germs of holomorphic functions on M whose divisors are 
at least Z. Let (Z9=e/?(-Z). Then X(Z)=dimH0(M,Oz)-dimH'(M,Oz) 
may be computed from F via the Riemann-Roch theorem. Weak ellipticity is 

X(Z)=0. If X(Z)=0, then [15, Theorem 4.1] generically H1(M,O))=C. So it is 
interesting to develop a theory for those singularities with H'(M, e)) = C. 

In this paper, we complete the theory for those singularities with H1(M, 6)) 

=C and v?p non-Gorenstein. In Section 2, we first define Laufer sequence 
(Definition 2.1). We find that dim H'(M, e)) < (length of Laufer sequence), i.e., 
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856 STEPHEN SHING-TOUNG YAU. 

an analytic invariant is bounded by topological data. This Laufer sequence is 
completely determined by the topology of the singularity. In fact, the Laufer 
sequence may be computed from F explicitly via the intersection matrix. The 
reader should discover the difference between the Laufer sequence and the 
elliptic sequence which we introduced before [25]. In Sections 2 and 3, 
important invariants of singularities such as multiplicities and Hilbert functions 
are computed in terms of the Laufer sequence. Therefore, the analytic in- 
variants are extracted from the topological information. In Section 4, we discuss 
the general lower bound for mi, where m is the maximal ideal of V?p. 

In this paper, all the notation and terminology are standard; cf. [15], [25], 
and [26]. The basic knowledge necessary to read this paper is contained in [15] 
and [25]. 

We gratefully acknowledge the encouragement and help of Professor 
Henry B. Laufer during the investigation of these results. We would also like to 
thank Professors Bennett, Kuga, and Siu for their encouragement and discussion 
of the mathematics. 

2. Calculation of Multiplicities. In this paper, Z will always denote the 
fundamental cycle and E will denote the minimally elliptic cycle [15, Definition 
3.1]. 

Definition 2.1. Let A be the exceptional set of the minimal good resolu- 
tion S: M-> V of normal two-dimensional Stein space with p as its only weakly 
elliptic singularity. If E Z < 0, we say that the Laufer sequence is {Z } and the 
length of Laufer sequence is equal to 1. Suppose E Z =0. Let L1 be the 
maximal connected subvariety of A such that LI : I El and Ai Z = 0 for all 
Ai C L1. Since A is an exceptional set, L1 is properly contained in A. Let ZL1 be 
the fundamental cycle on L1. Suppose ZL1E =0. Let L2 be the maximal 
connected subvariety of A such that L2 D El and Ai (Z + ZL1) = 0 for all 
AiCL2. Having defined Li-1, let Li be the maximal connected subvariety 
containing |El such that for all A,C : ALi(ZLO+ZL1+ i +ZL <) 0 where 
ZL0= Z. Continuing this process, we finally obtain Lm with (ZL0+ +.* + Z1Q) E 
= ZL * E < 0. (This will be justified in Proposition 2.2.) We call that 
{ ZL(, ZLI .,..5 ZJ} is the Laufer sequence and the length of Laufer sequence is 
m+1. 

PROPOSITION 2.2. Use the notation of Definition 2.1. The Laufer 
sequence is well defined in the sense that the above process is stopped after a 
finite number of steps. 
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Let { ZLO ZL, ... , Z } be the Laufer sequence. Then = O, 0< h 
< m and (Ei=OZLA) -AO < O for all A, CA. Moreover, dimH 1(M, (9) < (length of 
Laufer sequence) = m + 1. 

Proof. Let Y be the minimal positive cycle > Z such that Y E <0 and 
YAi < 0 for all Ai C A. Obviously, by the definition of Laufer sequence we have 

(h=OZL,) -Aj < 0 for al A, C A. If { ZL() ... ZL, } is a proper subset of the Laufer 
sequence, then (Eh=OZB,) E=0. Therefore (h=oZB) < Y and the Laufer 
sequence is well defined. Moreover, it is easy to see that the summation of 
Laufer sequence is equal to Y: 

X( E ZBt = X( E ZB) + X(ZLk) (E Z,} Z4, 

h-1 

= x E Z4) 
i =O 

By induction, we have X(Eh=OZL)=X(Z)=0. The proof that dim H'(M, )< 
m + 1 is quite similar to the proof of Theorem 3.9 of [25]. The details are left as 
an exercise to the reader. Q.E.D. 

Definition 2.3. Let : M-> V be a resolution of a normal two-dimensional 
Stein space with p as its only singular point. Suppose H 1(M,5 )=. Then we 
call p a strongly elliptic singularity. 

It is known that strong ellipticity implies weak ellipticity [15, Theorem 
4.1]. 

THEOREM 2.4. Let g: M-> V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only strongly elliptic singularity. Let 
{ ZL1, ZL, ... , Zj } be the Laufer sequence. Then m C5 ( (- E' OZ4). If Z4" , ZE 

-2, then m(9 = ( (- '=OZ4) provided that either one of the following 
holds: (1) ZE=E, i.e., 7 is the minimal resolution. (2) ZL, /IEI=ZE. 

Proof. By [15, (2.6)] and X(Z) = 0, we have H '(M,5 z) =. The exact 
sequences 

H' M (9 zL)->H'(M,Cz) = C0, 

H1(M, (9) = C- H' (M 5 , 
ZLt 

) 

show that H (M,5 ( zLL) =C. AsX(Em OZB,)= 0 H0(M5 m zL.) i0. Now 
i 0~~~~~~~~EL 
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look at the following commutative diagram with exact rows: 

O H?(M, 0 (- Z)) -*H?(M, 0) -*H?(M, CZ) ?C-O 

H 
0 

M'/( 0Z4)) >Ho(M,?)-Ho(M, X z, )--O 

m 

By the five lemma, H?(M, C (-, ZL ))-*H?(M, 0 (-Z)) is an isomorphism. 
i =o 

Since mO c ( (-Z), it follows that mO C 0 (- L OZL,). 
Suppose Z,< ZE< -2, we want to prove 09(- tOZ,Z)=min. There are 

two cases: 

Case (i). There exists Ai C {E I such that E ZL,, + 1 <Ai-ZL. 6-1 or E=Ai 
is a non-singular elliptic curve. 

For any A C El, choose a computation sequence for Z with Ai =A1, 
E=Zk, and Aik such that Aik, Zi, <0. Our hypothesis guarantees that such a 
computation sequence can be chosen. By Proposition 2.7 of [25], 

H'(M,(9(-SX=OZL,- Al)) = So the map 

is surjective. Given a point a EA1, let 

feH M 

HO~ ~ m, I, AI 
O Ml ) 

= 

be non-zero near a as a section of the line bundle f EH0(M, 09(-t-Z) 

projecting onto f will generate 09 (-E t=OZ4) near a, since it must vanish to the 
prescribed order on the A1 near a and will have no other zeros near a. 

For any A1 g E 1, choose a computation sequence of the following form: 
Z00,_ Z1=AilA1,., Z7, Zr+i,.. ZT+k=ZT+E,..., Z71=Z, where 
1 Znl 5A \ {Et and Zr 1-2; Z7* * X ZT+k Zr =E is part of a computation sequence 
for Z. Our hypothesis guarantees that the computation sequence for Z can be 
so chosen such that At k'ZLr <0. Consider the following exact sheaf sequence 
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for n > 0: 

o-*(- jEzi4 nZ-ze)-*( -o nZ Z-)?( zIfl j ?) 

(2.1) 

By Proposition 2.2, (E2t=0Z4,) A1 ?0( for all Aj CA. 

m~~~~~ 
e ( - i~O Z4 - nZ- -nZ 

H'M ZZ,,-nZ-7?) 

i =o ~ ~ ~ ~ i= 

m~~~~ 
m~~~( -M ZL,,-nZ-Zji 

and the mhapsf H'(M,( Z -nZ s=o 

Z-A)in (21 areOZ +snZjective. Comsuparing ath meaps, twe sredbe thatnets 

issrective for+ alokl) n n >0.Z>l= F or sufcety ag ,pis th 0mpby [3,oito ?4, Sat 

[25. o i,i E =Z Ls+n 4 1) 1 Zfor al n l .Tu 

i=O~~ i=L, nZ- Z, nZ- Z H1 M i=o ~~~~~~= 0 

an th map H1M (9 Z- i=o-nZ-Z)H(M(9-:i=Z,,-nZ 

By suropostivforaln 22 (ETZ.) -Aor suforenl larg A, p isteA. mpb 3,?,St 
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1, p. 355]. Hence H'(M, 6) (- -m OZ. -Zj)) = 0. If suppE = Ai is a non-singular 
elliptic curve, then EZL < -2. By Proposition 2.5 of [25], we have A 
(E2in ZL, + nZ + Z ) < 1 for n and all j/#r+ 1 and A, (tmOZL, + nz + Zr) < 
- 1 for all n. It follows that 

| 19(-#ZL- nz- Zi-l) H' M, (=o ) 0 

for all j and n. A similar argument to the previous one will show that 
H 1 (M, 6(- mOZ,- Z;)) = In particular, Hl(M,5m(- =oZ4-A1))=0. We 
have proved 

M~~ 

Ho M'6 - Y, 
Z)) 

HO 
IV.3 ( , A 

is surjective. 

We remark that the argument in case (i) also handles the following case. 
There exists Ai C IE I such that AiZ1, < 0 and ei > 2. 

Case (ii). EJ has at least two irreducible components and there exists 
Ai C E I such that ei = 1, Ai' ZL < 0 and A, ZL,, = 0 for all Aj c IE I where Ai =#Ai. 

Suppose A1 C EJ. The proof of case (i) fails only because A1 = Ai and 

el =1. If T is the minimal resolution, then ZE = E and Ag-ZL, = ZEZL,,, -2. 
Hence 

dimH? M, i=o > ) 

and dimS > 2, where S is the image of H0(M, 0(-E OZL,)) in 

Ho [jM ?( i=O) 
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By Proposition 2.8 of [25], the elements of S have no common zeros as sections 
of the line bundle L on A1 associated to 

m 

E, ZL1 

e( E ZL1 A 1 
i =o 

If S is not the minimal resolution, then Z., /E =ZE. This implies that 
Al-ZE< O. (In fact A,*Z4 < 0 implies A,*ZE<O for all A,j5 IE 1). By Proposition 
2.8 of [25] and case by case checking, the same argument as above still holds. 
(The crucial point is that the coefficient of A1 in ZE is equal to 1.) 

Suppose Al I Ej. The proof of case (i) fails only because A +k #Ai, i.e., 
Ai, Z4L < 0. Suppose first that A1 n A An A 0. Choose a computation 
sequence for Z with E=Zk, Aik =Ai, A ik+I =Al. By Proposition 2.7 of [25], 
H 1(M (-Em =OZL- Z1)) =? for all j. Hence 

is surjective. It follows that H?(M, 0 (-z a=OUZL)) and 

H?;M, , ) 

(- EZ4ZkZk) 

have the same image 1R in 

isjhHM, zm ,) 

H0M~~ 
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and 

- ~H0M ?(- zL? z) 
| H( - 

?(- ZL -Zk) ZL 

--> H t =O H) M J= 

is an exact sequence. Thus the image of 

HM (-Z E ZL-zk) 

H =O M, = 

which is injected into 

l ( tZL-Al) 

via the natural map is contained in R. If 

((E ZL- Zk) 

H0 M, i =OO, 

then the elements of 1 have no common zeros on A1o-(A1 n A) as sections of 
the line bundle L on A1 associated to 

?( t' = O) 

m ()( E ZL. A1) 

i -o 
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If 

?(- EZI-Zk) 

H? M, t0= 0, 

then Al1(EM0Z-,)=O. So 

H? M, m-? 
E Z4A)) 

Ho MM ( C.O 

is surjective. It suffices to prove that the map is not zero. But this is indeed the 
case, because the elements of image of 

have no common zeros on A2 as sections of the line bundle on A2 associated to 

ZQ-A2) 

by Proposition 2.8 of [25]. To finish the proof of case (ii), it remains to consider 
those AclaEm such that AtnhA=0 and the computation sequence for Z 
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starting from A1 in order to reach IE I must first reach Ai. Choose a computation 
sequence for Z with E= Zk, Aik =Ai5 Aik+1 nAi70 Aik+t =A1, A1 
supp(Zk+t-l). Moreover A, for k+ 1< j <k+ t are distinct from each other and 
not contained in IEJ. By Proposition 2.7 of [25], H1(M, 0 =_ - 

for all j. Hence 

M~~ H?(M 
/S)(- 

~~~E Z ) ?MI U 

i=O 6 ?( ~ZL -Zk+t) 

is surjective. It follows that H?(M, 0 (- 70Z..)) and 

?(- ? ZL) 

?(-4 ?z-Zk+t) 

have the same image R in 

HO M, i=o ) 

Hl ?( - L1 1)J 

and 

( E Z4 Zk+t-1)1 [ E Z4) 
O H? M , i=o( HO M5 

i=o 

E ZI, Zk+tE? ZI,-Zk+t) 
i=tO ) ( tO 

HO M, i=O 

E ZI, Z Zk+t-) 
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is an exact sequence. Thus the image of 

( Z L, Zk +t-1 

Ho M5 
i=O 

? (- EZ 4-Zk+t) 

which is injected into 

( m ) 

Ho M5 i=? H0M, ?(- Z,-l) 
(i=o ) 

via the natural map is contained in R. If 

E9( ZL,-Zk+1 ) 

Ho M i=(O #0, 

e(- EZ 4-Zk+t) 

then the elements of R have no common zeros on A1 - (A1 I Aik+) as sections 
of the line bundle L1 on A1 associated to 

( 
m 

) i =O 

(- Z4,-AI) 

If 

HM iE ZL Zk+t-1) 

H( M i=O =z0 

0 EA ZI, 
- Zk+t) 
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then A (E =0ZL) =0. Hence 

HM e Z(- E -ZAl) 

But by induction, we know that the elements of the image of 

H?(M0(-E Z4))H?MX ( z ) 

have no common zeros on A. 
i 

as sections of the line bundle Lik on A. 

associated to 

?(- E 0Z4) (i=? 

e ( E0Z4, Aik+ -I) 

It follows that 

HO(M'OZ( -ZH)) |o M( E A) 

is surjective. This completes our proof of 0 (- Em%Z4) C mi?. Q.E.D. 

3. Calculation of Hilbert Function. 

THEOREM 3.1. Let :M-*V be the minimal good resolution of normal 
two-dimensional Stein space with p as its only strongly elliptic singularity. Let 

ZL(,ZL, ... . Zl be the Laufer sequence. Suppose ZLm, ZE< -3. Then mn_ 

H0(A,?9(-n: 0Z and dimmZ/mL'= -n(Em OZL) provided that either 
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one of the following holds: (1) ZE= E, i.e., g is the minimal resolution; (2) 
ZL,/IEI = ZE. 

Proof. It is true that H0(A, 0 (-' OZ4)) = dirlimH0(U, 0(-6 OZL)), 
where U is a neighborhood of A. By the proof of Theorem 2.4, we have 
H((A, / (-_ Em=OZ4))= m 

Since H'(M, 1 (- nEm OZ4)) = 0 for all n by Proposition 2.7 of [25], 

0(-nEZ4) 
H M, i=o =0 

- ((n+ l) 2- Z4) 

for all n. The long cohomology exact sequence corresponding to the sheaf exact 
sequence 

0 () ( 9_._j 

i=o i=o i=o 

shows that 

dimH0 M,__ ( - = n ) = X((n+1) Z4) -x(n EZ4) 

- 

t-n( 4).(~ z4o ) 
m 

=-nn Z 
i=o 

To show that m =H?(A,(9(-nMLZ4)), we shall show that 
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is a surjective map. We claim that it suffices to prove 

( m m 9(n2Z, 

Ho M i =o <C H? M, i=?m 

e(-2 ,zL) __, l (n___ _ 4)J 

(((n +l) Y, ZL, 

HH M, i=Mo 

(3.1) 

is a surjective map for all n. 
Let us first demonstrate this fact. We first show that the image of 

H?(M, 0 ( -m=OZ.))(& cHO(M, 0 (- n2Em OZL)) contains H?(M, ? (-tIT OZ,)) 
for some t. Let fi,. . . ,fs e H?(M, 0 (- nXm=OZL)) generate n? (-n0OZL) as an 
O -module. The existence of such f follows from Theorem 2.4. The ? -module 
map 

P: Eso 2 Z4--> (n ) )Ya 
- i=o i=o 

given by (gj,...,gs)-->2fjgj is then surective. Let K=kerp; then 

is exact. Multiplying by ? (- kETYOZL), we get the following: 

4 ->s (k ( 1) 2 ZL -(n+ 1) 2 Z4) ->o 
i=o i=o i=o 

O K ( -- .D _ 
A 
4 )L (n( + 1) E ZL, -->O 
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-a commutative diagram with the vertical maps the inclusion maps. The 
verification that the first row is exact is the same as the verification that (5.5) of 
[11] was exact. 

HO(MD ( -(k+l) ? -HO M, (n+ k +1) Z4)) (*H( (- 2 Zi ) 

4, 4~~~~~I,X 4a* 
J0 J,A P* f 

H?(MD 0 ( 2 z4) _4H?(M,O-(n+l) Z4)) H'(M,K) i-O 4 ~ \ i =0 

is commutative with exact rows. By [3, ?4, Satz 1, p. 355] a* is the zero map for 
sufficiently large k. Then given h E H?(M, (9 (- (n + k + 1)2EtZO))Z *(h) = 

p*( g) for some g, by exactness. Letting t = n + k + 1, we have that the image of 
H0(M, E (- Y-t=oZ4)) ?CH(M, ( (- nE2 OZZ4.)) contains H?(M, ? (- tEXOZ4)) 
as required. 

If t>n+1>2, we shall show that the image of H?(M, 0 (-ET OZL,)) 

?CH0(M, (9 (-n2T =OZL)) contains H?(M, /E (- (t-- 1)2oZL)). By decreasing 
induction, we will be done. Look at the following diagram: 

0 

HO(M, O(-t-1) 2, ZL. 

0( - 4) 1 H[ e(-(t-2)?Z4) 1 2 e( (t 1) zZ4)1 HO M, i? OcH? M, i=mO -.H? M, i-o 

l (-2 2 ZL2 l -(t -l) 2 Z4)J 6(t2 ZL) 

0 

with the vertical sequence exact and the horizontal map suriective. It follows 
that the image of H?(M, ( (-T 7=OZ4,) H(M, (9 (- n2'=.Z1)) contains 
H?(M, ) (- (t -l)> OZ4)) 



870 STEPHEN SHING-TOUNG YAU. 

It remains to prove that (3.1) is surjective for all n. The proof breaks up 
into three cases: 

(i) There is an A, (call it A1) such that Z4n ZE + 1 <A( ZLn <-2. 

(ii) There is an Ai (call it A1) such that AZLn = ZL-ZE. 

(iii) A.ZL, =-1lor OallAi C jE1. TakeA,-ZL, =- 1 

In case (i), all irreducible components are non-singular rational curves. 
Choose a computation sequence for as follows: Zo =0, Zi,..., Z= E Z= 

+A,...,* Z' = Z4 where A!= A1. Consider 

STL>LI,...Lh;S*HM ?(- i=o ~) 

M,:Ho4~z~ 1) M 

(3.2) 

for all -1AhAm-1 and sArh+l. To show that (3.1) is surjective, it will 
suffice to show that -rLbL1.Lh;s is surjective for al sArh+l, 1?hAm-1. 
Indeed, since (2 =0ZL)A% 0 for all A. 5A all of the first cohomology groups 
H '(M,)(9 (- -B XOZL-Zs -5)O 0 byProposition 2.7 of [25]. So 

(~~~~ h 

H0 M ?L=?mz) 

(n (z) 
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can be written via successive quotients: 

-(n 
h 

ZL Z+i) 

O H? M, 
i=o 

i=h 

t /E) ((n + 1) E ZL, 

H?M ( i=? ~~=? h 

(h Z4Zjh+1) 

i=o i=o 

where we denote _ lOL=0 and Zoh' =0 for all h. By the proof of Theorem 
2.4 and Proposition 2.7 of [25], we have H'(M, (9 (-mo tOL-At)) =? for all 

04 Am,ArjHence 

H o0M, ( ) H? M 

l~ ~ ~ - 
t-O 4) 1 )(- Z- ) J 

is surjective. Look at the followving commutative diagrams: 

?{M~ ~ ~~ F9-)&{F(-nG-Bh-ZPi'l) \( &{F(-(n+1)G-Bh-7Pi'+l)' 

4,(4 4,)(B 

H?(M,e( G) XCH e( M G Bh-Zf) 8HHM e(-(n+l)G-Bh-zh+) 

-1 <h <m, 0 <j < rh+l- 



872 STEPHEN SHING-TOUNG YAU. 

where we denote t , =To hus G=itfOZL and Bh 2i=OZL .us 
(3.2) is surective for all s < rh+1, -1 < h ? mr-1, then (3.1) is also surjective. 

Suppose that the target space in (3.2) is non-zero, i.e.,-Ah+' 

((n + 1)t = OZL. + X_ =OZL, + Zs+1) > O. We need -A. 
and - A/h+i. (nY:T OZ1 + XiOZL +Z +Jj) >O. For s=#k, A1+ lZSh+l= 1. If 
-Ah I * (E =OZ.) > 0, then -Ah+1 *(nE OZ +2i=OZ + Ztz1)>O. If -AUZ=0 then n-Z+XAZ+Z 

IA + *( = Z ) = O, then - At (nE t= OZ,B + 2 i OZ,; + Zs- 11) t 

l OZ, + I + Z'-1 ')> O. For s=k, Aih+l.Zkjl =2. But by 
struction AkZLi,. <-2 and so (3.2) is surjective for all s <rh+1, -1 <h <m-1. 

Let us now do case (ii). Suppose first that suppE has more than one 
irreducible component. The proof of case (i) fails only because the maps 

tion sequence for 1starting from in order to reach j must first reach 
A1 and AhZe <0. In (3.2), 

H?0M ( t=O 4) = H?0M ( t=O 4 

mu s9 t Z4 re plcel b the s S 

neeunt be suplactivey thersbsae A! hS the Propowiiong pr8ofp2],werty en computa- 
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A1. (I tOZ1.)= -A1 ZL -ZEZL, >2. Also 

dimH? M, i=( k i=O 

mm h 

= I -A n ZI, + Zk L khl a L5,1> 
i=O 

--Al1n* Z, I + Z =1 1AiZ,, > 2. 

Under these conditions 

n E ZI, E ZL, Zt-+ ) 
TL(,L,,.Lh;kS ?cH0 M, i-o i=o 

-n E Zr h 4 h+i1 
( >H=O M = ) i 

'(i n~ ~~ h 

HO M ( i =O t= O) H M,-- ~~ - m h. 

t-O i=O 

is still surjective for -1 < h < mr-1. Namely, consider the subspace T of S of 
sections which vanish at some given point, say a E A1. T has codimension 1 in S. 
If all the elements of T have a common zero at some b =/=a EAl or if all have a 
second order zero at a, then T, having codimension 2 in 

(-E ZL) 

l e ( E ZL,, At h 1 

represents all sections of a suitable line bundle over A1. Then Lo L.,;k iS 

readily seen to be surjective, as in the proof of [11, Lemma 7.9, pp. 144-146], 
but more easily. If the elements of T have no common zeros, then think of T as 
codimension-1 subspace of the sections of a line bundle, and replace S by T in 
the previous case. Eventually we see that TLO. Lh;k is surjective when dim T= 1. 
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Also, in (3.2) 

H?0M, ( 4)i=o 
Ho M) z t+ 

must be replaced by the subspace St+ k which is the image of 

cPth+~i:HO(M 
=( l z4oZo Atk))- HI 

if zA-+ik1 is not surjective. By the proof of Theorem 6.4, case (ii), we know that 
St+k has at most codimension 1 in 

H? M, ( i=o 

Moreover, the elements of St+k have no common zeros as section of the line 
bundle on A.h +k1 associated to 

Wt + k m~t+ 

~~(i=O ) 4- + 

?(- 
E g0Ah l) 

i =O i= 

We are going to prove that 

dimH?M, / m h Z\) M 2. 
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Since we assume that 

m= i=(_,OZAh+l 

is not surjective, it follows from the proof of Theorem 2.4, case (ii), that 
-A +l (ET=OZ)> 1. We claim that -At+ l1( ( Z tz )1 Otherwise 

H? 0 M, ( i = o ) | /i2 

Ho M ) 

Inductive argument will show that there exists 

f eH? MX = i 

such that f as section of the line bundle associated to 

m 

?(- E Zo- +) 

has no zero on A1t+k nlAit+k l, and f is in SA2++Cl, the image of pAir.k Hence f 
cannot be in the image of 

? (- ? zo-zk+1) 

fEH? M) 
i=O C 

( 6 = -A h+) 
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which is injected into 

H? M,?( ~z-4A) 

)(-2zZL,-Aik)J 

via the natural map and which is contained in SWk. This implies that qPt +k' is 
surjective, which contradicts our assumption. We conclude that -A h+1 

t+k 

(2=oZL,) > 1 and hence 

h 

( 2 ZLi ZL4 Zth + k1) 

dimH? M, i m i= > 2. 

l tEo a4 Eo Z4 -Zth+k ) 

Now repeating the argument above, we get that 

TL(,L .h' k:Sh+k10cHO M) 
i= 

,k~'t+k Cl ( m h 

H0 M, _ 4 0 - Zt ) J 

i=O i=O 
p ()( E~~ ~ Z4)+l E ZL (-n I ZL,- Z4)+ 

HOoM i=o i=o 

m h~~~~ 0 -(n -(nl ) E L.- ZL-Zth+l) 
H?|Mx /O i-O i= I 
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is surjective. This is shown in [20]. The result follows from the proof above and 
the proof of case (i). 

Let us now do case (iii). The proof of case (i) fails only because 

H ) Ho M i-oZi-o = 0. 

= i=O 

We can still get 

( m h) H0 M,?(~2~ ZI1,- _ ZI, Zk2i1) 
Ho M, i=o i-o 

((-3 .2 z4) 

as an image as follows. There are two subcases. First suppose that A1 can be 
chosen so that AlgZL, < 0 and el > 1 in E = E ejAi. In this subcase ZE = E. Then 
choose a computation sequence for ZE with Ail; Zjm <0, E= Zk = ZE, Al=Ak, 
and with a Zq (q<k) such thatAi =Al, AlZsupp(E-Al-Zq) and AiZq_l< 
0, i #1, Ai C I El. Such a computation sequence can be formed by letting 
Ai = AI only when Ai Cl EI cannot be chosen otherwise. Then also O,Zq - 

Zq-1, Zq+ 1-Zq-1, *. Zk -Zq- 1 is a part of a computation sequence for ZE = E 
which, by Corollary 2.3 of [25] can be continued to terminate at A?1. Recall that 
Ai, * ZL, < 0 by construction. So by Proposition 2.7 of [25], we have 
Hl(M, 6(- ZL -Zq))=O and also Hl(M,6(_ 1=OZL. Y1=oZ4 (Zk 
Zq))=, H l(M,?(-2 T=OZ - -=OZ -Zk 1))=0. In place of (3.2), we use 

H? M, (( iE Z4H?Zqi) M, Z,=0 i Z -(Zk 1Zq-l)) 

l ( = k q) J l ( E Z 
t EZ4 Z(k Zq-1)) 

2 E Z ZI - Zk-1) 

i=O i=? 
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++ +1 + 

3 
;~~~ 

I 3I : 

4-T - 4 4 

t^4 t^ X 

0 
~-4 
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with the column on the right exact. Notice that the computation sequence for 
ZL is so chosen that Zii= Zi as above for 1 <i <k and 0 j< m. The result 
follows easily. 

In the other subcase, we claim that there must be A1, A2, and A3 all 
distinct so that AiZ4< 0 and ei = 1. For if ZE = E, since AiZ4, =0 or -1 for 
all A, IEI, the claim follows easily. If Z4.,,/IEI=ZE, then AiZE=O implies 
that A,Z4 = 0 for Ai I El. The claim follows from Proposition 2.4 of [25]. 
Choose a computation sequence for ZE with E=Zk such that Ai,Ai>O, 
Aik = A1 and such that when Zq with q < k, Ai = A2 is reached, with Ai Zq - 1 < 0 
for i? 1, 2, Ai S I E 1. We may suppose A3 C supp Zq- 1, for otherwise we reverse 
the roles of A2 and A3. Since Ai,A1>O and el=l, Zq-,+A1 is part of a 
computation sequence for ZE. 0,Zq-Zq-1) .Zk-l-Zq-l is also part of a 
computation sequence for ZE. Hence H'(M,C0(-Y'oZiZ-Zq-i-Al))-O, 
H'(M, (9 (-- =ZL-- h=0Z-(Zkh+ -Zq_1))?O, and H'(M, ? (-22YT0Z4 

-2 0Z, Zkh))-O. In place of (3.1), we use 

O( ZhZq-1) 

HO MS mi=? 

?( EoZZ Zq-i A1) 

M ( m h 
_ 

H? h M i=o i-o \hL 

i=O :=O/ 

-*+ Ho M, 
= = 
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with the vertical column on the right exact. Notice that the computation 
sequence of Z is so chosen that Z,'= Zi as above for 1 <i 6k and 0 j <m. 
The result follows easily. Q.E.D. 

The following two examples show that our Theorem 3.1 is sharp. 

Example 1. 

-8 

v I Z . z=3621 ZE = 2410 
-2 -1 -4 -2 

We have X(Z)=0, ZE Z - 3, and ZZ= -4. The Laufer sequence consists of 
only one element, namely { Z }. (1) and (2) of Theorem 3.1 are not satisfied. We 
claim that dimmn/mn' -nZ Z. Otherwise dimm/m2= - Z=4 and di- 
mm2/m3 = - 2Z-Z = + 8. The ambient space has 4 variables, making 10 availa- 
ble dimensions of quadratic terms for m2/m3. Hence there are necessarily 2 
defining equations which begin with quadratic terms. By the proof of Theorem 
3.13 of [15] the variety is actually equal to the common zero set of these two 
equations. Since p has codimension 2, p is a complete intersection. In particular 
V(p is Gorenstein. However ZE-Z<O implies that p is a strongly elliptic 
singularity by Theorem 4.1 of [15]. This contradicts Theorem 3.10 of [15]. 

Example 2. 

-2 
1 1 

* 4 * 0 ZE= 1210 Z = 1211 
-3 -2 -3 -2 1 1 

-3 

We have X(Z)-=, Z*ZE =-2, and Z Z= -3. Theorem 4.1 of [25] says that p 
is a strongly elliptic singularity. The hypothesis of Theorem 3.1 is not satisfied, 
because Z ZE> -3. Notice that the Laufer sequence consists of only one 
element, namely {Z). We claim that dimmn/mn '# -nZ Z. Otherwise 
dim M/M2 = - ZZ = -3. This implies that the singularity is a hypersurface 
singularity. In particular, v(p is Gorenstein. But this contradicts Theorem 3.10 
of [15]. 

4. General Lower Bound for min. In this section we introduce the 
definition of universal cycle. We then give a lower bound for mO in terms of 
universal cycle. The universal cycle is defined purely topologically, and it can 
be computed readily by a weighted dual graph. 
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Definition 4.1. Let A be an exceptional set in the resolution S: M-V of 
a normal 2-dimensional singularity p. Suppose that {Ai}, 1 <i An, the irreduc- 
ible components of A, are non-singular. The universal cycle L = aAi is the 
minimal positive cycle such that Ai-L < 0 for all Ai CA. 

PROPOSITION 4.2. There is a unique universal cycle L on the exceptional 
set A. 

Proof. By Lemma 4.10 of [11] there always exists a positive cycle L1= 

2'aiA, with the property that LI Ai <0 for all Ai CA. If L2=1a,2Ai is another 
positive cycle with this property, then so is L' = aAi, where ai = inf(ai', aj2) 
and moreover L' is positive. In fact, if (say) a11 < we have 

Ll-Ai = a/(A7.A,) + E ai(Ai Aj) 

< a/(Ap-A,) + E ai(AI.A1) = LI A < 0. Q.E.D. 

The following proposition tells us how to compute the universal cycle L in 
terms of weighted dual graph. 

PROPOSITION 4.3. L may be computed as follows. Let L1 = Ai,, any Ai,. 
Having defined 14= aiAi, if there exists an A4 such that A.L, > O, let 

Li+ = Li A,. If AiZi <0 for all Ai, then L = L. 

Proof. We prove by induction that L, < L. This is true if j=1. If L, <L, 
since L is minimal, there exists A, such that At, L > 0. However, a,,= a,. is 
impossible for Ai. *L < 0. Thus a, = a, would imply that A, iL1 < 0, since aif < a 
all i and Ak Al > O if k#l. Hence a,. <a, if Li <L, so that L,+1 AL. 

THEOREM 4.4. Let g: M-- V be the minimal good resolution of norml 
2-dimensional Stein space with p as its only weakly elliptic singularity. Then 
m? 2 C 0(-2L). If suppE has at least two irreducible components or E=A1 is 
an elliptic curve and Al L < -2, then m? 2 C) (- L). 

Proof. By the proof of Proposition 2.7 of [25] and the proof of Theorem 
2.4, we have H1(M, ? (-2L-Ai))=O for all A, 5A. Hence 

H?(M, ? (- 2L)) -* Ho(M, ? (- 2L-)) 

is surjective. 
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If we assume that supp E has at least two irreducible components or E = A1 
is an elliptic curve and AIL < -2, then similar reasoning to the above also 
shows that H'(M, ? (- L-Ai)) =0 for all Ai 5A. Hence 

H?(M, 
C) 
(-L)) H ?->) HL-A L) 

is surjective. Q.E.D. 

THEOREM 4.5. Let : M-- V be the minimal good resolution of norml 
two-dimensional Stein space with p as its only singular point. Let g = p(Z)= 1 
-X(Z) be the arithmetic genus of the fundamental cycle. Then m? D 
? (-3gL). 

Proof. By (2.6) of [15], g=dimH'(M,?z). By (2.7) of [15] and the 
Riemann-Roch theorem, A,-Z>i ? g+l for all j where ZO=O, Z1=Ail,..., 
Zi=7Zi +A4,..., Z is a computation sequence for the fundamental cycle. 
Similar reasoning as Theorem 4.4 will show that m(9 D ? (- 3gL). Q.E.D. 
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