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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 257, Number 2, February 1980 

ON MLAXIALLY ELLIPTIC SINGULARUIES 
BY 

STEPHEN SHIING-TOUNG YAU 

AssTRAcr. Let p be the unique singularity of a normal two-dimensional 
Stein space V. Let m be the maximal ideal in V&p, the local ring of germs of 
holomorphic functions at p. We first define the maximal ideal cycle which 
serves to identify the maximal ideal. We give an "upper" estimate for 
maximal ideal cycle in terms of the canonical divisor which is computable 
via the topological information, i.e., the weighted dual graph of the singu- 
larity. Let M-. V be a resolution of V. It is known that h - dim H '(M, e) 
is independent of resolution. Rational singularities in the sense of M. Artin 
are equivalent to h - 0. Minimally elliptic singularity in the sense of Laufer 
is equivalent to saying that h - 1 and vOp is Gorenstein. In this paper we 
develop a theory for a general class of weakly elliptic singularities which 
satisfy a maximality condition. Maximally elliptic singularities may have h 
arbitrarily large. Also minimally elliptic singlarities are maximally elliptic 
singularities. We prove that maximally elliptic singularities are Gorenstein 
singularities. We are able to identify the maximal ideal. Therefore, the 
important invariants of the singularities (such as multiplicity) are extracted 
from the topological information. For weakly elliptic singularities we intro- 
duce a new concept called "elliptic sequence". This elliptic sequence is 
defined purely topologically, i.e., it can be computed explicitly via the 
intersection matrix. We prove that - K, where K is the canonical divisor, is 
equal to the summation of the elliptic sequence. Moreover, the analytic data 
dim H'(M, &) is bounded by the topological data, the length of elliptic 
sequence. We also prove that h - 2 and v&p Gorenstein implies that the 
singularity is weakly elliptic. 

0. Introduction. Letp be a singularity of a normal two-dimensional analytic 
space V. In [2], M. Artin introduced a definition forp to be rational. Rational 
singularities have also been studied by, for instance, DuVal, Tyurina, Laufer 
and Lipman. In [37], Wagreich introduced a definition for p to be weakly 
elliptic (see Definition 1.6). Weakly elliptic singularities have occurred 
naturally in papers by Grauert [7], Hirzebruch [12], Laufer [22], Orlik and 
Wagreich [27], [28] and Wagreich [37], [38]. Karras and Saito have studied 
some of these particular elliptic singularities. Recently, Laufer [24] developed 
a theory for a general class of weakly elliptic singularities which satisfy a 
minimality condition. These are the so-called minimally elliptic singularities. 
Suppose V is a Stein space and p is its only singularity. Let 7r: M -* V be a 
resolution of V. It is known that h = dim H '(M, 0) is independent of 
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270 S. S.-T. YAU 

resolution. One might classify singularities by h. Rational singularity is 
equivalent to h = 0. Minimally elliptic singularity is equivalent to saying that 
h = 1 and v?p is Gorenstein. In this paper, we develop a theory for a general 
class of weakly elliptic singularities which satisfy a maximality condition. 
Maximally elliptic singularities may have h = dim H '(M, 0 ) arbitrarily large. 
Also minimally elliptic singularities in the sense of Laufer [24] are maximally 
elliptic singularities. It is clear that maximally elliptic singularities should play 
an important role in the theory of normal two-dimensional singularities, 
especially from the point of view of classification of normal two-dimensional 
singularities. Our main results are the following. 

THEOREM A. Let 'r: M -* V be a resolution of a normal two-dimensional 
Stein space with p as its only singular point. Suppose dim H '(M, 0 ) > 1 and 
v?p is Gorenstein; then the maximal ideal cycle cannot be greater than or equal 

to -K'. 

THEOREM B. Let 'r: M -* V be a resolution of the normal two-dimensional 
Stein space with p as its only singularity. Suppose v?p is Gorenstein and 
H'(M, 0) C2. Then p is a weakly elliptic singularity. 

THEOREM C. Use the notation of Definition 3.3. Suppose p is not a minimally 
elliptic singularity and K' exists. Then the elliptic sequence is of the following 
form: 

ZBO - ZB S * * ZBp ZB+- ZES I > ?. 

Moreover, -K' = E.0ZB + E and dim H'(M, ?) )< l + 2 = the length of 
the elliptic sequence. 

THEOREM D. Use the notation of Definition 3.3. Suppose p is a maximally 
elliptic singularity. If ZE* ZE < -2, then mE) = ) (- Z), in particular, the 
multiplicity of v?p is equal to - Z. Z. If ZE * ZE - -3, then 

H?(M, ?(-Z)) c H? (M, ?(-nZ)) -*H? (M. ?(-(n + 1)Z)) 

is surjective for all n > 1. If we assume further that the length of the elliptic 
sequence is equal to two, then the above map is surjective for all n > 1. In this 
case 

m n Ho (A, C (-nZ)) for all n > 1 

where A = q-Tl(p). 

THEOREM E. If p is a maximally elliptic singularity, then p is a Gorenstein 
singularity. 

One important question in the theory of normal two-dimensional 
singularities is "the identification of the maximal ideal m of vp". In ?2.4 we 
first define the maximal ideal cycle which partially serves to identify the 
maximal ideal. In [21, the argument of M. Artin gave a lower estimate for 
maximal ideal cycle in terms of the fundamental cycle. Our Theorem A gives 
an "upper" estimate for maximal ideal cycle in terms of the canonical divisor 

This content downloaded  on Tue, 18 Dec 2012 01:38:26 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MAXIMALLY ELLIPTIC SINGULARITIES 271 

which is computable via the topological information, i.e., the weighted dual 
graph. Theorem B permits us to develop a theory for those Gorenstein 
singularities with dim H'(M, ?) = 2. In ?3.1, we introduce a new concept 
called "elliptic sequence". It turns out that weakly elliptic singularities can be 
effectively studied by the method of elliptic sequence. For instance, it allows 
us to give a complete topological classification of elliptic double points. In 
order to compute the canonical divisor, one has to solve a system of linear 
equations, which is very painful. Theorem C provides us a quick and easy 
method to compute the canonical divisor. Moreover, it tells us that the 
analytic data dim H '(M, ?) is bounded by the topological data, the length of 
the elliptic sequence. We remark that the elliptic sequence is defined purely 
topologically, i.e., it can be computed easily via the intersection matrix. In 
Theorem D, we are able to identify the maximal ideal. Therefore, the 
important invariants of the singularities (such as the multiplicity) are ex- 
tracted from the topological information. Theorem D can also be used to 
compute the Hilbert function for the ring v?p. All complete intersection and 
hypersurface singularities are Gorenstein. Theorem E explains the reason why 
maximally elliptic singularities play an important role in the theory of normal 
two-dimensional singularities. We can also give a topological classification of 
maximally elliptic hypersurface singularities. However, the list is too long to 
be included. 

We shall adopt Laufer's terminology [24] throughout this paper. Our 
presentation goes as follows: 

In Chapter I we provide the necessary basic knowledge to read this paper. 
Most of it can be found in [24]. In Chapter II, we examine the structure of the 
exceptional set of weakly elliptic singularities and prove Laufer-type 
vanishing theorem. 

We gratefully acknowledge the encouragement and help, of Professor 
Henry B. Laufer during the investigation of these results. We would also like 
to thank Professors Bennett, Kuga, Sah, Siu and Wagreich for their 
encouragement and discussion of mathematics. 

CHAPTER I. PRELIMINARIES 

Let so: M -) V be a resolution of normal two-dimensional Stein space V. 
We assume that p is the only singularity of V. Let 

rf (p) = A U Ai, 1 < i < n, 
i 

be the decomposition of the exceptional set A into irreducible components. 
Suppose sr is the minimal good resolution. The topological nature of the 
embedding of A in M is described by the weighted dual graph r [14], [19]. 
The vertices of F correspond to the Ai. The edge of r connecting the vertices 
corresponding to Ai and Aj, i # j, corresponds to the points of Ai n Aj. 
Finally, associated to each A, is its genus, gi, as a Riemann surface, and its 
weight, Ai * Ai, the topological self-intersection number. r will denote the 
graph, along with the genera and the weights. 
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DEFINITION 1.1. deg A, = TAj # Aij # i. 
A cycle (or divisorial cycle) D on A is an integral combination of the Ai. 

D = YdiAi, 1 < i < n, with d, an integer. In this paper, "cycle" wil always 
mean a cycle on A. There is a natural partial ordering, denoted by <, 
between cycles defined by comparing the coefficients. We shall only be 
considering cycles D > 0. We let supp D = ID} = U Ai, di # 0, denote the 
support of D. 

Let e be the sheaf of germs of holomorphic functions on M. Let e (-D) 
be the sheaf of germs of holomorphic functions on M which vanish to order di 
on Ai. Let OD denote e /? (- D). We use "dim" to denote dimension over C. 

x(D) = dim H?(M, OD) - dim H' (M, ?D) (1.1) 
Some authors work instead with the arithmetic genus Pa(D) = 1 - x(D). The 
Riemann-Roch Theorem [31, p. 75] says 

X(D ) =-2I (D * D + D * K). (1.2) 2~~~~~~~~~~~12 
In (1.2), K is the canonical divisor on M. D * K may be defined as follows. Let 
w be a meromorphic 2-form on M, i.e. a meromorphic section of K. Let (w) be 
the divisor of w. Then D K = D (w) and this number is independent of the 
choice of w. In fact, let gi be the geometric genus of Ai, i.e. the genus of the 
desingularization of Ai. Then [31, p. 75] 

Ai *K= -Ai *Ai + 2gi - 2 + 28i (1.3) 

where 6, is the "number" of nodes and cusps on Ai. Each singular point on Ai 
other than a node or cusp counts as at least two nodes. Fortunately, such 
more complicated singularities will not occur in this paper. 

The minimal resolution of V is characterized by there being no A, which is 
a nonsingular rational curve with Ai . Ai = -1 [7, p. 364]. The intersection 
matrix (A, * A>) is negative definite [26] so by (1.3) we see the following. 

PROPOSITION 1.2. so is the minimal resolution of V if and only if Ai * K > 0 
for all Ai. 

It follows immediately from (1.2) that if B and C are cycles then 

x(B + C) = x(B) + X(C) - B - C. (1.4) 

Associated to so is a unique fundamental cycle Z [2, pp. 131-132] such that 
Z > 0, Ai * Z < 0 all A,, and such that Z is minimal with respect to those two 
properties. Z may be computed from the intersection matrix as follows [20, p. 
607] via what is called a computation sequence (in the sense of Laufer) for Z: 

ZO = 0, Z1 = Ai,g Z2 = Z1 + A i29 . . . 9 

Zj = Zj-1 + A,, .. ., Z l= ZI + Ail = Z 

where A,1 is arbitrary and A,, * Zj-I >0, 1 < j 1. (-Zj - / (-Zj) 
represents the sheaf of germs of sections of a line bundle over A, of Chern 
class -A, * Z.- 1 So 
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H?(M, ?(-Zj1)/?(-Z1)) = 0 forj > 1. 

0 -)I0 (-v_ l- NO (_-Zy) _)ZJ C)Zi 
, 

?zi-I -)I 0 (1.5) 

is an exact sequence. From the long exact homology sequence for (1.5), it 
follows by induction that 

Ho(M OZk) = C, 1 < k < 1, (1.6) 

dim H 1 (Mg Ozk) = dim H I 
(Mg 0 (-Zj- I )/O (- Zj))g 

I j < k. (1.7) 

Since M is two dimensional and not compact, 

H2 (M, q) = 0 (1.8) 

for any coherent sheaf qy on M [33]. 

LEMMA 1.3. Let Zk be part of a computation sequence for Z and such that 
X(Zk) = 0. Then dim H'(M, OD) < 1for all cycles D such that 0 D < Zk. 

Also, X(D) > . 

DEFINITION 1.4. A cycle E > 0 is minimally elliptic if x(E) = 0 and 
x(D) > 0 for all cycles D such that 0 < D < E. 

PROPOSITION 1.5. Let Zk > 0 be part of a computation sequence for the 
fundamental cycle and such that X(Zk) = 0. Let B = 2b,Ai and C = EAi, 
1 < i < n, be any cycles such that 0 < B, C < Zk and x(B) = x(C) = 0. Let 
M = z min(bi, c)Ai, 1 < i < n. Then M > 0 and x(M) = 0. In particular, 
there exists a unique minimally elliptic cycle E with E < Zk. 

Wagreich [37] defined the singularity p to be elliptic if x(D) > 0 for all 
cycles D > 0 and x(F) = 0 for some cycles F > 0. He proved that this 
definition is independent of the resolution. It is easy to see that under this 
hypothesis, X(Z) = 0. The converse is also true [37], [24]. Henceforth, we will 
adopt the following definition. 

DEFINITION 1.6. p is said to be weakly elliptic if X(Z) = 0. 
The following analogue to Proposition 1.5 holds for weakly elliptic singu- 

larity. 

PROPOSMIION 1.7. Suppose that x(D) > 0 for all cycles D > 0. Let B = 

z biAi and C = Y*Aig 1 < i < n, be any cycles such that 0 < B, C and 
X(B) =X(C) = O. Let M = z min(bi, c)Ai, 1 < i < n. Then M > O and 
x(M) = 0. In particular, there exists a unique minimally elliptic cycle E. 

LEMMA 1.8. Let E be a minimally elliptic cycle. Then for Ai C supp E, 
Ai * E = -Ai A K. Suppose additionally that so is the minimal resolution. Then E 
is the fundamental cycle for the singularity having supp E as its exceptional set. 
Also, if Ek is part of a computation sequence for E as a fundamental cycle and 
Aj c supp(E - Ek), then the computation sequence may be continued past Ek so 
as to terminate at E = El with Ai, = Aj. 
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THEOREM 1.9. Let ffr: M -) V be the minimal solution of the normal two- 
dimensional variety V with one singular point p. Let Z be the fundamental cycle 
on the exceptional set A = ,- '(p). Then the following are equivalent: 

(1) Z is a minimally elliptic cycle, 
(2) Ai * Z =-Ai * Kfor all irreducible components A, in A, 
(3) X(Z) = 0 and any connected proper subvariety of A is the exceptional set 

for a rational singularity. 

DEFINITION 1.10. Let p be a normal two-dimensiona; singularity. p is 
minimally elliptic if the minimal resolution so: M -) V of a neighborhood of p 
satisfies the conditions of Theorem 1.9. 

CHAPrER II. BASIC THEORY FOR WEAKLY ELLIPTIC 
SINGULARrrIES AND MAXIMAL IDEAL CYCLE 

1. Minimal good resolution of weakly elliptic singuladties. In this section, we 
study the minimal good resolution of weakly elliptic singularities. We want to 
understand the nature of the computation sequence for the fundamental cycle 
Z and what kind of curves can be in the exceptional fibre. 

LEMMA 2.1. Let ff : M -* V be a resolution of the normal two-dimensional 
space V with p as its only singularity. Let '- l(p) = A = U Ai, 1 < i < n, be 
the decomposition of the exceptional set A into irreducible conponents. Suppose 
there exists a minimally elliptic cycle E on A. Then supp E = A1 Iif and only if 
either A1 is a nonsingular elliptic curve or A1 is a singular rational curve with 
node or cusp singularity. If supp E= UAi, 1 < i < k, and k > 2, then 
X(A 1)= ... = x(Ak) = 1 andA, ... Ak are nonsingular rational curves. 

Let Z be the fundamental cycle on A. If X(Z) = 0 and n > 2, then X(Ak+ 1) 
= ... = X(An) = 1. In particular, if supp E consists of more than one irre- 
ducible component, then all A,, 1 < i < n, are nonsingular rational curves. If 
supp E = A1, then all Ai, 2 S i < n, are nonsingular rational curves. 

PROOF. We claim that supp E = A1 if, and only if, X(A 1) = 0. Suppose 
supp E = A1. Then E = nAI for some positive integer n. 

X(nA 1) = x(A 1) + x((n - 1)A 1) - (n - 1)A1 A 

= nX(A) -2 n(n - 1)A1. A1. 

Since x(E) = 0, X(A1) = 2(n - I)A A1. By definition of minimally elliptic 
cycle (Definition 1.10), X(A1) = '(n - I)A A1 > 0. However, X(A1) = 

-(n -)A1 I A1 < 0. Therefore X(A1) = 0. Conversely, if X(A1) = 0, then 
E = A,. This completes the proof of our claim. By (1.2) and (1.3), 

X(A 1) - (A1 * A1 + A1 * K), where K is the canonical 
divisor on M, 

=-- (Al * Al-A1 * A1 + 2g1-2 + 2861), where 81 is the 

"number" of nodes and cusps on AI 
= 1- g1 - 81. 
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Therefore, 

X(A) = , I -g, 81 = ?, 

(1)gl = andO1 = 0, or 
(2)g1 = OandO1 = 1. 

So supp E = A1 if either A1 is a nonsingular elliptic curve or A 1 is a singular 
rational curve with node or cusp singularity. If supp E = A1 U * U Ak, 
k > 2, then X(Aj) > 0 for Ai C supp E by the definition of minimally elliptic 
cycle. On the other hand, X(Ai) < 1 by (1.1) and (1.6). So X(A) = 1 and, 
hence, 1 - gi -i = 1 for 1 < i < k. This implies that g, = 0 = 8i, i.e. Ai, 
1 < i < k, are nonsingular rational curves. 

To prove the rest of the lemma, it suffices to show that if X(Z) = 0, then 
X(A,) = 1 for Ai g supp E. X(Z) = 0 implies that x(D) > 0 for D > 0 [24, 
Corollary 4.3]. By (1.1) and (1.6), we know that X(A,) < 1. So 0 < X(Aj) < 1. 
However, X(Ai) cannot be equal to zero by Proposition 1.7. Therefore 
X(Aj) = 1 for Ai g supp E, i.e., Ai LZ supp E are nonsingular rational curves. 

PROPOSITION 2.2. Let r7r: M V be the minimal resolution for a weakly 
elliptic singularity p. Let 'i': M' V be the minimal resolution such that A' are 
nonsingular and have normal crossings, i.e. the A' meet transversely and no 
three meet at a point. Then XT = 'T' and all the Ai are rational curves except for 
the following cases. 

(1) A1 is a nonsingular elliptic curve. A2, .. ., A,, are nonsingular rational 
curves. In this case, XT = 'T'. In fact, 0 < Ai * Ai < I for i # j. 

(2) A 1 is a rational curve with a node singularity. A 2 .. ., A,, are nonsingular 
rational curves and have normal crossings. In fact, 0 < Ai * Aj < I for i # j. 

(3) A1 is a rational curve with a cusp singularity. A2, .. ., A,, are nonsingular 
rational curves and have normal crossings. In fact 0 < Ai - Aj < I for i # j. 

(4) All Ai are nonsingular rational curves and have normal crossings except 
A 1 and A2 having first order tangential contact at one point. In fact A 1 * A2 = 2 
and O < Ai * Aj < I for i :3- j, (i, j) (I (1 2) and (i, j) :3- (2, 1). 

(5) All A, are nonsingular rational curves and have normal crossings except 
A1, A2, A3 all meeting transversely at the same point. In fact, if n > 4, then 
0 < Ai*Aj < lfor 1 < i < n,j > 4, i #jandA1 A2 = 1,A3. (A1 + A2)= 

2. 
In case (2), 1T' has the following weighted dual graph as its subgraph: 

w with w1 > 5. 
-Wi -1 

In cases (3)-{5), fr' has the following weighted dual graph as its subgraph: 

-W2 

-W1 -1 -W3 with w > 2, 1 < i < 3. 
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The proof is long but straightforward with many cases. 

COROLLARY 2.3. Let 1T be the minimal resolution with nonsingular Ai and 
normal crossings for a weakly elliptic singularity. Let E be the minimally elliptic 
cycle, E < Z, the fundamental cycle. Then E may be chosen as part of a 
computation sequence for Z and E = Zk. Moreover, if Zj < E is part of a 
computation sequence for Z and Am c supp(E - Zj), then the computation 
sequence may be continued past Zj so that A,k = Am. 

PROOF. The proof is the same as Corollary 3.6 of [24]. 

PROPOSITION 2.4. Let 1T be the minimal good resolution for a minimally 
elliptic singularity. Suppose 1T is not the minimal resolution. Then the fundamen- 
tal cycle is one of the following forms 

W2 with W2 > 5, 
(I) Z=2A1 +A2, 

Al A2 

w3 A3 

(II) with wi > 2, 
-W2 - 421 2SiS4. 

A2 A1 A4 

(1)IfA2*A2 < -3,A3 A3 < -3,A4 A4 < -3, then 
Z = 3A1 + A2 + A3 + A4. 

(2) IfA2A2 = -2,A3.A3= -3,A4 A4 < - 6, then 
Z = 6A1 + 3A2 + 2A3 + A4. 

(3) IfA2*A2= -2,A3A3 < -4,A4*A4 < -4, then 
Z = 4A1+ 2A2+ A3+ A4 

PROOF. An easy case by case checking. 

PROPOSITION 2.5. Let 'T: M -- V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singular point. 

Case 1. If supp E has at least two irreducible components, then for any 
computation sequence of the form 

Zo = ?, Z, = Aj,, .... *,Zk = E, * . , Z1 = Z, 

we have Ai Z l =1 forjk andA Zkl = 2. If suppZ-suppE=#0, 
then for any Ai 5supp Z - supp E we can choose a computation sequence of 
the form 

ZO = O, Z Ai, ... , Z,Zr+l *... , Zr+k = E + Z, ... , Zl = Z 

such that supp Zr 5spsuppZs-pupp E and Zr-j - . -Z Z - Zr =E is 
part of a computation sequence for Z. Moreover, any computation sequence of 
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the above form has the following properties: A,* Z 1= for j # r + k and 
Ai+k Zr+k- 2. 

Case 2. If supp E has only one irreducible conWonent, then for any 
computation sequence of the form 

Zo =0, Z = Ail= E,. .,Z =Z, 

we haveA *Z = lfor all j. If supp Z-supp E 0, then for any A C 
supp Z-supp E, we can choose a computation sequence of the form 

Zo = 0,Z1 = Ai,, . . Z, Zr+1 = Zr + Ai+,, ... , Z, Z 

where A,, = E. Moreover, any conWutation sequence of the above form has 
A,i l = lfor allj. 

PROOF. Case 1. 

O<Aik * Zk-1 = Aik (E -Aik) 

=-Aik* K-Aik* Aik by Lemma 1.8 

2gik + 2. 

So gik =0 and Aik Zk-l = 2. Since X(Z) = 0, H (M, ?z) = C by (1.1) and 
(1.6). As all A, are nonsingular rational curves, therefore (1.7) and the 
Riemann-Roch Theorem will show that A, - Zj- 1 = 1 forj # k. 

From the above proof, we know that for any Ai 5 supp E such that there 
exist Aj g supp E and Ai * Aj > 0, then e, = 1 and A, * Aj = 1, where e, is the 
coefficient of A, in E. It is easy to see that the computation sequence in Case 
1 of the proposition can be chosen. Now we are going to prove the last 
statement of Case 1. By the above argument, we know A4+k(Zr+k-1 - Zr) = 
2 and, hence, Ai Zr+k- I > 2 because Ai+k C supp E and 
Z, Csupp Z - supp E. Since H'(M, ?z) = C, by (1.7) and the Riemann- 
Roch Theorem, there is at most one A Z>= 2. So A Zr+k-1 = 2 and 
Aij-Z = 1 forj#+ r + k. 

Case 2. Since X(E) = X(Z) = 0, (1.1) and (1.6) imply that H'(M, ?z) = C 
= H'(M, 9E)* So by (1.7) and the Riemann-Roch Theorem, it follows 
immediately that A,. Z>j1 = 1, for allj. 

Now let us prove the last statement of Case 2. By Lemma 2.1 we know that 
A, is a nonsingular elliptic curve. Moreover, for any Aj # Ai,, A1 is a 
nonsingular rational curve. By (1.7) and H 1(M, ?z) = C, we have 

dim H I (M, e(-Z,)/ (-Z,-A )) < 1. 

The Chern class of the line bundle associated to e (- Z,)/E) (- Z, - A ) on 
A, is -A Z, < -1. By the Serre duality theorem and the Riemann- 
Roch Theorem, 

dimH1(M,?(-Zr)/?0(-Z r-A A4+))=2g , 
-2+A4+..Z =A1 *Zr 

So 

A.+1 Z, = 1 = dimH'(M,? (-Zr)/?0(-Zr-Ai+)). 
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By (1.7), the Serre duality theorem and the Riemann-Roch Theorem, we 
know that A,. Zj-I = 1 for all j. Moreover, A, are nonsingular rational 
curves forj # r + 1. 

COROLLARY 2.6. Let 7T: M -3 V be the minimal good resolution of a normal 
two-dimensional Stein space V with p as its only weakly elliptic singular point. 
Suppose supp E = A1. Let Z = I z,A,. Then zI = 1. 

PROOF. This is contained in the proof of Case 2 of the above proposition. 

2. Laufer-type vanishing theorem 

PROPOSITON 2.7. Let p be a weakly elliptic singularity. Let 'r: M -3 V be the 
minimal good resolution of a Stein neighborhood V of p having p as its only 
singular point. Let Y > 0 be a cycle on the exceptional set A such that 
Ai. Y < 0 for all irreducible components A, of A. Let Z be the fundamental 
cycle and E the minimally elliptic cycle. Let 0 = Zo, . . . , Z, = Z be a conpu- 
tation sequence for Z with E = Zk and Aik such that A ik *Y < 0. Then 
H'(M, e (- Y- Zj)) = Ofor O < j < 1. 

PROOF. The proof is similar to the proof of Lemma 3.11 in [24]. 

PROPOSITON 2.8. Let p, 'T, M, V, Y, Z and E be as in Proposition 2.7. Let 
E= I 1eAi. Suppose E* Y < 0. Let AI be an arbitrary Ai C supp E. Then 

p: H (M, e(-Y)) - Ho (M, (- Y)/? (- Y - A)) 

is surjective if AI is an elliptic curve or if there exists Aj C supp E, Aj ?A 
with Aj * Y < 0 or if el > 1. If A, is a rational curve, Aj - Y = 0for Aj #Al, 

Ai 5 supp E, and e, = 1, then the image of p is a subspace S of codimension 1 
in H?(M, ?(- Y)/?(- Y - A1)). If dim S > 2, then the elements of S have 
no common zeros as sections of line bundle L on A I associated to 
e (- Y)/(- Y - A 1). If dim S = 1, then there is one common zero at a point 
q E A with q E Aj where Aj * Y = 0 andAj C supp E. 

PROOF. The proof is similar to the proof of Lemma 3.12 in [24]. 

3. Structure theorem for weighted dual graphs of weakly elliptic singularities. 
For weighted dual graphs of weakly elliptic singularities, we can obtain some 
information from the following two propositions. Much more complete 
information is given in Chapter III. 

PROPOSITION 2.9. Let 7T: M -) V be a resolution of a normal 2-dimensional 
Stein space V with p as its only weakly elliptic singularity. Let E be the 
minimally elliptic cycle on A = iT - 1(p). Suppose B is a connected subvariety of 
A such that B ; supp E. Then B is the exceptional set of a rational singularity. 

PROOF. The fact that B is exceptional in M follows from [19, Lemma 5.11, 
p. 89]. Let ZB denote the fundamental cycle on B. It follows by [2, Theorem 
3, p. 132] that X(ZB) < 1. On the other hand, since p is a weakly elliptic 
singular point, X(ZB) > 0, X(ZB) cannot be equal to zero. Otherwise it will 
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contradict the minimality of the minimally elliptic cycle by Proposition 1.7 
since B Z supp E. Therefore X(ZB) = 1. Applying Theorem 3 of [2], our 
result follows. 

PROPOSITION 2.10. Let 'T: M -) V be a resolution of a normal two- 
dimensional Stein space with p as its only weakly elliptic singular point. Let E 
be the minimally elliptic cycle on the exceptional set A = 'T - l(p). Suppose B is 
a connected subvariety of A containing I El. Then B is the exceptional set for 
weakly elliptic singularity. In particular, if B = supp E, then B is a minimally 
elliptic singularity. 

PROOF. As in Proposition 2.10, we know that B is exceptional in M. Let ZB 
be the fundamental cycle on B. Then X(ZB) < 1 by Theorem 3 of [2]. Since p 
is a weakly elliptic singularity, so X(ZB) > 0. Hence, 0 < X(ZB) < 1. X(ZB) 
cannot be equal to one. Otherwise it will imply that B is an exceptional set of 
rational singularity by Theorem 3 of [2]. Since B D IEl, Theorem 1 of [2] says 
that x(E) > 1. This is a contradiction, so X(ZB) = 0 and B is the exceptional 
set for a weakly elliptic singularity. 

4. Maximal ideal cycle. Let 7T: M -) V be the resolution of a normal 
two-dimensional space V with p as its only singularity. Let m be the maximal 
ideal in v?p. One important question in normal two-dimensional singularity 
is the "identification of m". In this setion, we define the maximal ideal cycle 
which serves partially to identify the maximal ideal. 

DEFINITION 2.1 1. Let A be the exceptional set in the resolution '7: M -* V 
of a 2-dimensional space V with p as its only singularity. Suppose that 
(Ai) 1,,~ are the irreducible components of A. Let m be the maximal ideal in 
vp Ifff E m, then the divisor of f, (f) = [f] + D, where [f] = I2niAi and D 
does not involve any of A,. Let Y be the positive cycle such that Y= 
inffjEm[f]. Then Y is called the maximal ideal cycle. 

PROPOSITION 2.12. Use the notation of Definition 2.11. The maximal ideal 
cycle is a positive cycle s.t. Y* A. < 0 for all A. C A. In particular, Y > Z. In 
fact iffl, . .. , f, E m such that fi,.. f, generate m, then Y = inflir [f ]. 

PROOF. Easy. 

PROPOSMON 2.13. Use the notation of Definition 2.1 1. Let Y be the maximal 
ideal cycle, then me c E)(- Y). Moreover, if me is locally principal, i.e. 
m = e (-D) for some positive divisor D, then D = Y and m = ) (- Y). 

PROOF. Easy. 
DEFINITION 2.14. Let a: M' -. M be a monoidal transformation with center 

q E M. We associate with the curve C C M, q 4 C, the curve C*, the proper 
transform of C in M'. If q is a point of multiplicity n of the curve C, we 
associate with this curve the curve C* + nL c M' where L = a-'(q). With 
the divisor Z = >2kiCi, we associate the divisor a*(Z) = 2k1Cj* + knL, 
where n, is the multiplicity of the point q on the curve Ci. 
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LEMMA 2.15. Let 7T: M -) V be a resolution of a normal two-dimensional 
analytic space with p as its only singularity. Let A = iT -'(p) = U Ai be the 
decomposition of A into irreducible components. Suppose W is a positive cycle on 
A such that W* Aj < 0 for all Aj C A. For any positive cycle X on A such that 
X > W, X2 < W2. Also, X2 = W2 if and only if X = W. 

PROOF. Let X = W + Y.niAi where n, > 0. Then 

X2 = W2 + 2E n,(A, W) + X ninj(Ai Aj). 
ij 

Now A,. W < 0 by the hypothesis. The last expression is nonpositive since 
(Ai , A>) is negative definite. Moreover, this expression is zero if and only if 
ni, = 0 for all i by the definiteness. 

LEMMA 2.16. Let 7T: M -. V be a normal two-dimensional analytic space with 
p as its only singularity. Let A = '- I(p) = U 'iIA i be the decomWosition of A 
into irreducible components. Let a: M' -) M be a monoidal transformation with 
point q as center. Let D = T- '(q) and A, be the proper transform of A' by a. 
Then 

(' I .a)Y'(p) =D u(U A:). 
( -1 ) 

Suppose X is a positive cycle on A such that Ai * X < 0 for all A, c A. Then 
D a*(X) = 0 and A' - a*(X) < O for all 1 < i < t. 

PROOF. Since A, is linearly equivalent to some divisor not passing through 
q, hence X is also linearly equivalent to some divisor not passing through q. It 
follows that 7T*(X) - D = 0. By p. 421 of [37], X- Ai = a*(X) - a*(Ai). So 
0 > X- A, implies that 

0 > a*(X)oa*(Ai) = a*(X)(A,' + mED) = a*(X)A,. 

THEOREM 2.17. Let 'r: M -* V be a normal two-dimensional analytic space 
with p as its only singularity. Let A = 'T l(p) = U ' . IAi be the decomposition 
of A into irreducible comWonents. Let Y be the maximal ideal cycle associated to 
1r. Then the multiplicity of v?p > - Y Y. If m? is locally principal, then the 
multiplicity of v?p = - Y Y. 

PROOF. If mE is locally principal, then mE) = ) (-Y) by Proposition 2.13. 
In this case Theorem 2.7 of [37] says that multiplicity of v?p is equal to 
-Y. Y. 

In the general case, let 7T': M'-* M be the monoidal transformation with 
center mE). The map 1T' is a composition of monoidal transformations a with 
points as center (see [42, lemma, p. 538]). Let A' = (qr * iT')- l(p) = U 5 1A,. 
Then Lemma 2.16 says that A,'* 1'*(Y) < 0 for all 1 ( i < s. Let 0' be the 
structure sheaf on M'. Let Y' be the maximal ideal cycle relative to 1T ?J'. 
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Then mi' = ?'(- Y'). But mi' c ?'(- 1'*(Y)). So Y' > 1r'*(Y). Theorem 
2.7 of [37] and Lemma 2.15 will show that the multiplicity (v?p) = - Y' Y' 
> - [1,*(Y)]2. However, for any proper modification a and divisor L, we 
know that [a*(L)]2 = L2. So (?r'*(L))2 = L2. In particular, (qrt*(y))2 = Y2. 
Therefore multiplicity of V?p > -Y2. 

DEFINITION 2.18. Let p be the only singularity of the normal two-dimen- 
sional space V. Let 'r: M -) V be the resolution of V. Let A = U A, 
1 < i < n, be the decomposition of A = 1r- '(p) into irreducible components. 
Let K be the canonical divisor on M. We define the negative cycle K' = 
I2k,A, on A where ki E Z, the set of integers, to be a cycle such that 
Ai * K' = Ai * K for all A. C A. (K' does not always exist.) 

The following theorem gives a "nonlower" estimate of the maximal ideal 
cycle in terms of the cycle K'. 

THEOREM 2.19. Let 17: M -* V be the minimal resolution of a normal 
two-dimensional Stein space with p as its only singular point. Suppose K' exists 
and dim H'(M, 0 ) > 2; then the maximal ideal cycle Y relative to 1i cannot be 
greater than or equal to - K'. 

PROOF. By Theorem 3.2, p. 603 of [20], we know that H '(M, 0 (K')) = 0. 
The following cohomology exact sequence, 

H 1(M~ 0(K1))-) H1 (M,0 -). H1 (M, 6-K') -' o 

shows that H '(M, 0 -K') H '(M, (9). Since 

X(-K ) =-2 [(-K'.) K + (-K')* (-K')] 

=-2 -[(-K')* K' + (-K')(-K')] = 0 

by (1.2), hence (1.1) says that 

dim H?(M, ?-K') = dim H' (M, ?-K') = dim H' (M, 0) > 2. 

Suppose on the contrary that Y > - K'. Since 1i is the minimal resolution, 
Ai * K' > 0 for all Ai, so-K' > Z by the definition of the fundamental cycle 
Z. It follows that there is a natural injective map 

Ho (M~ 
e 
(K')) -.Ho (M, 0 (- Z)). 

We claim that this map is actually surjective. Given any g E H?(M, 0 (-Z)), 
we know that g is actually a function on V which vanishes at p. By 
Proposition 2.13, g E H?(M, 0 (- Y)). However, Y > - K' implies that 
HO(M, 0 (- Y)) C H?(M, e (K')). So g can also be considered as an element 
in H?(M, 0 (K')). This proves our claim. Look at the following commutative 
diagram with exact rows. 

S H (M ?(K)) C Hb (M1 6) HO (M 0) - (M, H) is sujective 

O Ho?(M~ 0 Z)) -.Ho?(M e,) -Ho?(Me, z) C -.H 1 
(M, 0 (-Z)). 

Since H?(M, (9)z) C bY (1 .6), SO H?(M, 0) -) H?(M, Osz) is surjective. 
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We have H?(M, &-K') iS isomorphic to H?(M, ?z). However, 
dim H?(M, (9z) = 1 < dim H?(M, (-K'). This leads to a contradiction. 
Q.E.D. 

If vOp is a Gorenstein ring, i.e. there is some neighborhood Q of p in V and 
a holomorphic 2-form w on Q - p such that w has no zeros on Q - p, then 
K' exists. 

THEOREM 2.20. If we assume v?p is Gorenstein in Theorem 2.19, then the 
same result holds even if 'i is not necessarily the minimal resolution. 

PROOF. As Vp is Gorenstein, there exists w E H?(M - A, Q) having no 
zeros near A. Serre duality gives H 1(M, 0) as dual to H 1(M, 0), where a is 
the canonical sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By 
Theorem 3.4, p. 604 of [20], for suitable M, which can be chosen to be 
arbitrarily small neighborhoods of A = M -'(p), H*(M, S) may be identified 
with H?(M - A, Q)/H?(M, Q). So 

dim H?(M-A, R)/H0(M ) =)n > 2. 

There exist w2, . . . , An in HO(M - A, Q) such that the image of 
(0, W2 *... * wn in H?(M - A, Q)/H?(M, Q) forms a basis. Since w is nonzero 
in a neighborhood of A, we may assume that wi = fiw, 2 < i < n, where 
f E H?(M, 0). Moreover we can assume that f are vanishing at p, i.e., 
? E H?(M, min). Otherwise we simply replace f byf - f(p), 2 < i < n. 

Suppose our theorem is false. Then the maximal ideal cycle Y > [w]. Since 
m9 c 9(- Y) by Proposition 2.13, we have wi = fiw, 2 < i < n, all in 
H?(M, S2). This contradicts the fact that the image of w, W2, .... wn forms a 
basis for H?(M - A, S)/H?(M, S2). 

CHAPTER III. ELLIPTIC SEQUENCES AND 
MAXIMALLY ELLIPTIC SiNGULARITES 

One might classify hypersurface singularities by h = dim H'(M, 0). If 
h = 0, then the singularity is rational [20]. If h = 1, then the singularity is 
minimally elliptic [24]. Let us consider the condition h = 2. All hypersurface 
singularities, as well as complete intersection, are Gorenstein, so the following 
theorem applies. 

THEOREM 3.1. Let 1r: M -) V be a resolution of the normal two-dimensional 
Stein space V with p as its only singularity. Suppose v?9p is Gorenstein and 
H 1(M, (0 ) = C2. Then p is a weakly elliptic singularity. 

PROOF. Let 1r-l(p) = A = UA,, 1 < i < n, be the decomposition of the 
exceptional set A into irreducible components and Z be the fundamental 
cycle on A. Since H 1(M, 0 ) is independent of the choice of the resolution 
[20, Lemma 3.1, p. 599], [2, p. 124], we may assume that 17 is the minimal good 
resolution. By (1.6), H?(M, Oz) = C. So we have the following exact 
cohomology sequence: 
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Since H'(M, 0) = C2, dim H'(M, ?z) is either 0, 1 or 2. If H'(M, ?z) = 0, 
then X(Z) = dim H?(M, Oz) - dim H'(M, ?z) = 1, i.e. p(Z) = 1 - X(Z) 
= 0. By Theorem 3 of [2], p is a rational singularity. However, as H (M, 0)) 
= C2, the first direct image R 1'w*0V is not zero by Lemma 3.1 of [20]. This 
leads to a contradiction. If H '(M, ?z) = C2, then H '(M, 0 (- Z)) = 0. As 
v?p is Gorenstein, there exists w E H?(M - A, S) having no zeros near A, 

where Q is the canonical sheaf, i.e. the sheaf of germs of holomorphic 
2-forms. By Theorem 3.4, p. 604 of [20], for suitable M, which can be chosen 
to be arbitrarily small neighborhoods of A = - '(p), H (M, Q) may be 
identified with H?(M - A, Q)/H?(M, Q). So dim H?(M - A, Q)/H?(M, D2) 
= 2 and there exists w' E H?(M - A, S) such that the image of w, w' in 
H?(M - A, S)/H?(M, S) forms a basis. Since w is nonzero in a neigh- 
borhood of A, we may assume that w' = fw where f E H?(M, 0 ). Further- 
more, replacing f by f - f(p), if necessary, we can assume that f E 
H?(M, min). Let wi be the order of the pole of w on Ai. Consider a cover as in 
Lemma 3.8 of [24]. On PI, 

w = (wi(xi,yN)/yIN) dxi A a4i 
where wI (x1, y l) is a holomorphic function, wI(x1, 0) m 0. There is a 
holomorphic function f(xI), r < xl < R, such that 

w1I A) (XI, YI) d 
Y "I f(XI) YWI dxI A dY # 0. 

LiI-R 

Let A01 = y wf 
- 

(xl) and Xoj = 0 for 2 < j < t. Then by Lemma 3.8 of [24], 
cls[A] :# 0 in H '(M, ? ). Let Z = :ziAig, 1 < i < n, be the fundamental cycle. 
If wI - 1 > zl, then A may be thought of as also a cocycle in H'(N(?L), 
?(-Z)). So cls[X] = 0 in H'(M', ? (-Z)) and necessarily in H'(M', ?). 
Thus w1 - 1 > z1 is impossible, i.e. w1 < zl. As m? 5 ?(-Z), p. 133 of [2], 
we have c' = fw E H?(M, Q), i.e., wo, ' cannot form a basis for H?(M - 

A, Q)/H?(M, Q). This is a contradiction. So the only possible case is 
H'(M, ?z) = C. Hence X(Z) = dim H?(M, )z) - dim H'(M, ?z) = 0, i.e. 
p is a weakly elliptic singularity. Q.E.D. 

However, that dim H '(M, ?) = 3 and V?p is Gorenstein do not imply p is 
a weakly elliptic singularity. 

EXAMPLE. Let V be the locus in C3 of z2 = X6 + y6 Then the dual 
weighted graph is 

g =2 

-1 
It can be calculated by [23] that dim H '(M, ?) = 3. 

THEOREM 3.2. Let V be a normal two-dimensional Stein space with p as its 
only singularity. Suppose v9p is Gorenstein, i.e. there is some neighborhood Q of 
p in V and a holomorphic 2-form X on Q - p such that w has no zeros on 
Q - p. If there exists f E V/6p such that o, fo, f2'w ... ..fn w is a basis for 
H '(M, 0), then p is a weakly elliptic singular point. 
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PROOF. Replacing f by f - f(p), if necessary, we may assume that f E 

H0(M, mE)). By (1.6), H0(M, ?z) = C. So we have the following exact 
cohomology sequence. 

0O- H' (M, (-Z)) -* H' (M, ?) -* H' (M, ?z) -*0. 

By Theorem 3.1, we need only consider the case n > 3. It is easy to see that 
dim H1(M, 0z) > 0. Otherwise, as observed in the proof of Theorem 3.1, p 
will be a rational singular point. To prove that p is a weakly elliptic singular 
point, it suffices to show that H 1(M, 9z) = C. Suppose on the contrary that 
dim H1(M, 0z) > 2. Then dim H'(M, ? (-Z)) < n -2. Let the notation 
be as in the proof of Theorem 3.1. We know that there exists A, C A such 
that on P,, 

fix = 
y-iaj+ ) dxi A dYi, W w- ial > 0, 0 < i < n- 1, (3.1) 

where xlo(xl, yl) is a holomorphic function, wl(xl, 0) 3 0. (X) =-2wiAi and 
(f) = Xa,A, + D = [f] + D. D does not involve any Ai. There are 
holomorphic functions gi(xI), r < x1 < R, such that 

f y 
llIR l-gi(xI) 

(xy dx) A dy & ? 

Let A,1 = y w,-a, - 'gi(x1) and 0 =0for 2 < j < t. Then by Lemma 3.8 of 
[24], cls[AX] #& 0 in H'(M, 0). In fact, {Ai} forms a basis for H'(M, 0) 
because <Ai, f'w> = 0 for i #& j. Since 

dim H' (M, ) dim H' (M, ?(-Z)) = dim H' (M, 9z) > 2, 

there are at least two A"i, Ai2 which are not in H'(M, 0 (-Z)). Hence, 
WI - ila, - 1 < z1 and w1 - i2a, - 1 < zl, i.e., w1 < z1 + ilal, w1 < z1 + 

i2a,. Since i, * i2 and 1 < il, i2 < n - 1, we may assume that w1 < z1 + (n 
- 2)aj. But [fl*Ai < 0 for all Ai C A by p. 133 of [2]. So [f] > Z, by the 
definition of fundamental cycle Z. In particular, z1 < a1. So, w1 < (n - I)aj. 
This contradicts (3.1). Q.E.D. 

A partial converse of Theorem 3.2 will be proved later. Weakly elliptic 
singularities can be effectively studied by the following method of elliptic 
sequences. 

DEFINITION 3.3. Let A be the exceptional set of the minimal good resolution 
77: M -* V where V is a normal two-dimensional Stein space withp as its only 
weakly elliptic singularity. If E Z < 0, we say that the elliptic sequence is 
{Z } and the length of elliptic sequence is equal to one. Suppose E * Z = 0. Let 
B, be the maximal connected subvariety of A such that B, D supp E and 
Ai Z = 0 VAi C B,. Since A is an exceptional set, Z Z < 0. So B, is 
properly contained in A. Suppose ZB1 * E = 0. Let B2 be the maximal 
connected subvariety of B, such that B2 D IEI and Ai * ZB, = 0 VAi C B2. By 
the same argument as above, B2 is properly contained in B,. Continuing this 
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process, we finally obtain Bm with ZB * E < 0. We call { ZBo = Z, 

ZBR, ZB } the elliptic sequence and the length of elliptic sequence is m + 1. 
EXAMPLE 1. Let p be a weakly elliptic singularity whose weighted dual 

graph is of the following form: 

-2 

-2 

-2 -2 -2 -3 -2 -2 2 -3 -2 -2 -2 -2 

1 
2 

Z=1 1 1 1 2 3 2 1 1 1 1 1 

1 
2 

ZB2 = 1 O 1 1 2 3 2 1 1 1 0 

2 

ZB2 = ?0 1 1 2 3 2 1 0 0 

1 
2 

ZB3 =O 0 0 1 2 3 2 1 1 0 0 0 

2 
E=O 0 0 1 2 3 2 1 0 0 0 0 

The elliptic sequence is {Z = ZBO, ZB, ZB2, ZB3 and the length of elliptic 

sequence is 4. 
REMARK 3.4. The elliptic sequence is defined purely topologically. 
EXAMPLE 2. Let p be a weakly elliptic singularity whose weighted dual 

graph is of the following form: 

-2 

-2 -2 -2 -3 -2 -3 -2 -2 -2 

1 

ZB1 ? 1 1 1 1 1 1 1 1 

1 

ZB2=O 1 1 1 1 1 1 1 0 

1 

ZB3 =O 0 0 1 1 1 0 0 0 
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The elliptic sequence is {Z = Z ZB, Z2, ZB3 = ZE} and the length of the 
elliptic sequence is 4. 

PROPOSITION 3.5. Let iT: M V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. Then 
for any Ai z I E , Ai are nonsingular rational curves with self-intersection 
number less than or equal to - 2. 

PROOF. The fact that Ai EI are nonsingular rational curves follows from 
Lemma 2.1. Suppose there exists Ai Z IEI such that Ai * Ai = -1. It follows 
easily from Proposition 2.2 that A, is a "star" in the dual weighted graph F of 
exceptional set 'T - '(p) = A, i.e., there exist A1, A2, A3 c A such that F has 
the following graph as its subgraph: 

A1 

A2 Ai A3 

or there exist A1 C A such that F has the following graph as its subgraph: 

-1I 

A' A1 

Then X(AI + A2 + A3 + 2A,) = 0 in the former case, and X(AI + 2Ai) = 0 
in the latter case. These are impossible by Proposition 1.7 and that Ai Z 
supp E. 

LEMMA 3.6. Let F be a weighted dual graph including genera for the vertices 
associated to the minimal good resolution of the normal two-dimensional weakly 
elliptic singularity p. Suppose p is not a minimally elliptic singularity; then 
-K' > Z + E whenever K' exists. If E Z < 0 and IEl C A, then K' does 
not exist. 

PROOF. If ST is the minimal resolution, then A, K' > O for all Ai C A by 
Proposition 1.2. So - K' > Z > E by the definition of fundamental cycle. 
Suppose 'T is not the minimal resolution. Then the corresponding dual 
weighted graph F consists of either 

-WI 
(a)~~~- -15 

A1 A2 

or 

-W2 A2 
(b) -WI 3 

A1 A4 A3 
9 
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as its proper subgraph. In case (a), E = A1 + A2. We claim that k' #& 0 where 
K' = Eki'Ai. For if k' = 0, then Al K' < 0 since K' is a negative cycle. On 
the other hand, 

A K'=A K=-Al Al +2g1-2 > 3 >0. 

This is a contradiction. Hence k' 9& 0. We claim that k' cannot also be zero. 
For if k2 = 0, then A2 * K' < -2 since A2 * A 1 = 2. On the other hand, 

A2 K' = A2 K = -A2 A2 + 2g2-2 = 1 -2 = -1. 

This is a contradiction. Hence, k' 9& 0. It follows that - K' > E. In case (b), 
E = A1 + A2 + A3 + 2A4. We claim that one of kI,', 1 < i < 3, cannot equal 
zero. For if k' = k' = k' = 0, then A4 K' > 0. This is because there exists 
no A g El , Ai * A4 > 0 by the proof of Proposition 3.5. However, 

A4*K' =A4*K= -A4*A4+2g4-2= 1-2 =-1. 
This is a contradiction. So we may assume k' 9& 0. If k' = 0, then A2 K' < 
0. On the other hand, 

A2*K'=A2*K= -A2*A2-2 > 0. 

Hence, A2 K' = 0 and A2 * A2 = -2. If k' also equals 0, then a similar 
argument will show A3 * A3 = -2. The intersection matrix cannot be negative 
definite. So we may assume that k3 9& 0. We claim that k' 9& 0. For if k4 = 0, 
then A4* (K') < -2. On the other hand, 

A4*K'=A4*K=A4*A4+2g4-2= -1. 

This is a contradiction. So k4 -# 0. We claim that k' 9& 0. For if k2 = 0, then 
A2* (K') < -1. On the other hand, 

A2 K' = A2K=-A2A2 + 2g2-2 > 0. 

This is a contradiction. We claim that k4 < -2. For if k4 =-1, then 
A4K' = k + k2 + k3 + 1 < -2.Ontheotherhand, 

A4*K'=A4*K= -A4*A4+2g4-2=-1. 

This is a contradiction. So k4 < -2. We have proved in both cases (a) and 
(b) -K' > E. We claim that actually -K' > E. Since p is not a minimally 
elliptic singularity, there exists Ai g IEl, Ai n E #&0. It suffices to prove 
ki'<& 0. For if ki' = 0, then Ai * K' < 0. On the other hand, 

Ai K = Ai K =Ai * Ai + 2gi -2 2Ai A Ai2 > O. 
This is a contradiction. Therefore - K' = E + D where D is a nonzero 
positive cycle. We claim that Ai D < 0 for all Ai C A. If Ai 5 IEI, then 
Ai(-K') = Ai(-K) = Ai * E by Lemma 1.8. So Ai * D = 0. If Ai g JEl, then 
Ai Ai < -2 and, hence, 

Ai(-K') = Ai(-K) = Ai-Ai + 2 < 0. 

However, Ai Z I El, so A, * E > 0. It follows that A, * D = Ai(-K') - AiE < 
0. This proves our claim. By definition of the fundamental cycle, D > Z. So, 
in particular, - K' > Z + E. 

Suppose E Z < 0, we want to prove K' does not exist. Suppose on the 
contrary that K' exists. By the above proof, - K' = Z + D where D is a 
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positive cycle. By (1.2), 
X(- K') =2(K') K + (-K') (-K')] 

I- [(- K) * (K') + K' * K'] = O, 
so O = X(Z + D) = X(Z) + x(D) - Z* D. Since p is a weakly elliptic singu- 
larity, X(Z) > 0 and x(D) > 0. Also Z * D < 0 because Z is the fundamental 
cycle and D is a positive cycle. It follows easily that x(D) = 0 and Z * D = 0. 
Since Z E < 0, ID I 0 1El. By Proposition 1.7, we conclude that D = 0. But 
then Z = - K' > Z + E, which is absurd. 

THEOREM 3.7. Let r : M -* V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose p is not a minimally elliptic singularity and K' exists. Then the elliptic 
sequence is of the following form: 

ZBO Z4 ZBI0 * * * 9 ZBj9 ZBI, I ZE9 I > ?. 

Moreover, -K' = ,OZBi + E. 

PROOF. Lemma 3.6 says that length of the elliptic sequence is greater than 
or equal to 2 and -K' > Z + E. So -K' = Z + D, where D, is a nonzero 
positive cycle on A. By (1.2), X(-K') = 0. So 0 = X(Z + D,) = X(Z) + 
X(D ) -Z * D,. Since p is a weakly elliptic singularity, X(Z) = 0, X(D1) > 0. 
Because Z is the fundamental cycle and D, is a positive cycle, so Z D, < 0. 
Consequently, X(DI) = 0 and Z D, = 0. By Proposition 1.7, X(DI) = 0 
implies that IDI1 is connected and contains JEl. We claim that ID11 = Bl. 
Since D1 * Z = 0 and IDII is connected and contains IEl, we have ID11 5 B1. 
Suppose IDI1 #7 Bl. Then there exists Ai LZ 1D1, Ai C B1 and Ai n IDI1 #70. 
Hence, Ai(- K') = Ai(Z + D1) = Ai * DI > 0. On the other hand, since Ai Lz 
IEl, Ai * (-K') = Ai * Ai + 2 < 0, by Proposition 3.5. This is a contradiction. 
Hence, IBI1 = 1DI1. Let U1 be a holomorphically convex neighborhood of B1 
such that (D: U1 -+ VI represents B1 as exceptional set where VI is a normal 
two-dimensional Stein space with 4I(BI) as its only singularity. We claim that 
the K' cycle on U1 which is denoted by Ku, exists and Ku, =-D,. In fact 
foranyA CBl, 

Ai' (-D1) = Ai. (-Z - D,) 
= Ai * K where K is the canonical divisor on M 

= -Ai* Ai + 2gi-2 
= Ai * Ku. where Ku. is the canonical divisor on U1. 

So -D, = KU1. By induction on the length of elliptic sequence, the proof 
reduces to the following proposition. 

PROPOSITON 3.8. Let 'r: M -+ V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose p is not a minimally elliptic singularity and K' exists. If the length of 
the elliptic sequence is equal to two, then the elliptic sequence is {Z, ZE). 

Moreover - K' = Z + E. 
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PROOF. Lemma 3.6 says that - K' > Z. So - K' = Z + D where D is a 
nonzero positive cycle on A. By (1.2), X(- K') = 0. So 0 = X(Z + D) = X(Z) 
+ x(D) - Z* D. Since p is a weakly elliptic singularity, X(Z) = 0 and 
x(D) > 0. As Z is the fundamental cycle and D is a positive cycle, we have 
Z D < 0. Consequently, x(D) = 0 and Z D = 0. Arguing as above, we 
know that IBI1 = IDI. Moreover KU, exists and Kb, = - D where U1 is a 
holomorphic convex neighborhood of Bl. By Lemma 3.6, B1 =# JEl cannot 
occur since the length of the elliptic sequence is equal to two. So ID I = B = 
IEl. We claim that D = E. Since x(D) = 0, we have D > E, i.e., D = E + 
D', where D' is a positive cycle with ID'I S IEl. Since A . D = Ai * KU,) 
= Ai E for all Ai C JEl, so Ai * D' = 0 for all A, 5 JEl. It follows that 
D' D' = 0. Therefore D' = 0 and D = E. We have proved the elliptic 
sequence is {Z, ZE) and - K' = Z + E. Q.E.D. 

Let p be the only singularity of the two-dimensional hypersurface Stein 
space V. Let r: M-+ V be a resolution of V. Let A = U,Ai, 1 < i < n, be 
the decomposition of A = - I(p) into irreducible components. Let ,u be the 
Milnor number of p. Then Laufer [231 proved that 

u = n + K' * K'-dim HI (A; C) + 12 dim H' (M, ?). (3.2) 

(3.2) has various applications. One is that it gives a means of calculating 
dim H '(M, 0 ) for hypersurface singularities. This calculation is very difficult, 
if not impossible, in general. However, given a weighted dual graph corre- 
sponding to a singularity, we have to solve a system of linear equations in 
order to find K'. For weakly elliptic singularities, Theorem 3.7 provides us a 
quick method to find K'. 

2. Maximally elliptic singularities. The length of the elliptic sequence gives 
information about h = dim H '(M, 0). 

THEOREM 3.9. Let 7T: M -+ V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only weakly elliptic singularity. Then 
dim H '(M, 0 ) is less than or equal to the length of the elliptic sequence if K' 
exists. 

PROOF. If the length of the elliptic sequence is equal to 1, i.e. the elliptic 
sequence consists of the fundamental cycle Z only, then Z E < 0. By 
Theorem 4.1 of [241, H '(M, 0) = C. So from now on, we may assume that 
the elliptic sequence is of the following form: 

ZBO = Z ZBI *... , ZBI9 ZBI, =ZE, I > 0, 

and K' =-(7 0ZB, + E) by Theorem 3.7. Choose a computation sequence 
for the fundamental cycle Z of the following form: 

Zo = 09 Zlg .. * Zk = ES .. * sZrl = ZB/9 .. * 
Z,j= ZB,,j+1, * I Zrj+= ZBO Z 
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Consider the following sheaf exact sequence: 

Oe?(Z)/?(-Z -Z,)z+z+?. O 

0Z- Zk- - Zkl)/?(-Z E) _ZR+E -Z+Zk 

?- 
0()(Z Zrl- ) )(Z Zrl) 

-)+ z+z OZ+Z,,I- 0 

( )_ ( )B -OB;Z ZBJ CZB 0 ? E 
i-O i-O 

(I-O ) =1O ) 9-CB+ 

62Jii OZBI + Zk_ I 
+ 

? ( ZB/-ZZ -j_ I( ZB/ ZBj+l 

?X- -9(0 E ZB +9 E)+ 
f 

B Z4 ZI 
020ZiZ 

i-O~~~~~~~~ 6 2i-oZ? 

ZB ZO I Z )/( ZBI - E) 

0X1iZg s Z + _E 07I -g, + -I*0. (3.3) 
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Let Z = j z,zjAj. We remark that if E = Al is an elliptic curve, then 
B.z1 = 1 for all i by Corollary 2.6. The usual long cohomology exact sequence 
or (3.3), (1.6) and Reimann-Roch Theorem will show that 

dim H' (M, ?v,DZB, +E) < I + 2 = length of the elliptic sequence 

because 

0 (_ ji- 0ZB; Zh -1)1 an0 M ( T1i 0ZB, Zh_I1) 
HO Mg - ~ ~ 1and I'M 

H (M 1(it0ZB Zh) J l (1i-0-ZB, Zh) J 
are nonzero only if h = k. Since 

H' |MgO ZB, - E H' (Mg O(K')) =O 

by Corollary 3.3 of [20], the exact sequence 

HI Mg?(- ZB,-E)] H (M Mg)) H (M (M 02_Z3 +E >o 

shows that 

dim H' (M, 0) = dim H' (MS 0O + 

'1 
I + 2. Q.E.D. 

The following example, which is due to Laufer, shows that dim H '(M, g) 
can be strictly less than the length of the elliptic sequence even for hypersur- 
face singularities. As far as the author's knowledge is concerned, this is the 
first known example for double-point singularity with maximal ideal cycle 
strictly greater than the fundamental cycle. 

EXAMPLE 3 (LAUFER). Let V be the locus in C3 of Z2 = y(x4 + y6). Then 
the dual weighted graph is 

-1 -2 -2 
torus 

This is a weakly elliptic singualrity and the length of the elliptic sequence is 
equal to three. It can be calculated that ,u = 22, where u is the Milnor 
number. By Theorem 3.7, 

-K = ZBO + ZB, + E, K.K = ZB + ZB + E =-3. 

By (3.2), we know dim H'(M, 0) = 2. 
The following two examples show that dim H '(M, 0) can actually equal 

the length of the elliptic sequence. 
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ExAMPLE 4. Let V be the locus in C3 of z2 y3 + x9+61 Then the dual 
weighted graph is 

-2 
l>0 

.~~~ ~~~ ,_ , 

-2 -21 -3 -2 -2 

-2 

This is a weakly elliptic singularity and the length of the elliptic sequence is 
equal to I + 1. It can be calculated that the Milnor number ,u = 16 + 121. By 
Theorem 3.7, 

-K'= ZB+E, K'2= Z2+E2=-(l+). 
i-o imo 

By (3.2), we know that dim H 1(M, 0) = I + 1 = length of the elliptic 
sequence. 

ExAMPLE 5. Let V be the locus in C3 of Z2 = y3 + X11+61. Then the dual 
weighted graph is 

-2 

1>0 

-2 -2 -2 -2 -2 -2 -2 -3 -2 -2 

This is a weakly elliptic singularity and the length of the elliptic sequence is 
equal to I + 1. It can be calculated that the Milnor number ,u = 20 + 121. By 
Theorem 3.7, 

- K'= ZBI+ E, K',2= ZB2l+ E 2=_(+1). 
i-O i 0 

By (3.2), we know that dim H '(M, 0) = I + 1 = length of the elliptic 
sequence. 

EXAMPLE 6 (WAGREICH). Let V be the locus in C3 of Z3 = X3 + y31l 1. Then 
the dual graph is 

-2 

:R 

-2 

-4 

l1- 1 I -i 

-2 -2 -4 -1 -4 -2 -2 
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Tlhis is a weakly elliptic singularity and the length of the elliptic sequence is 
equal to 1. It can be calculated that the Milnor number ,u = 121. By Theorem 
3.7, -K' = V- jcZBf + E, K'2 = -(31 + 1). By (3.2) we know that 
dim H 1(M, e ) = I = length of the elliptic sequence. 

EXAMPLE 7 (WAGREICH). Let V be the locus in C3 of Z3 = X3 + y31+2. Then 
the dual weighted graph is 

-2 

-3 

-2 

-2 -2 -3 -2 -2 -2 -3 -2 *-2 

This is a weakly elliptic singularity and the length of the elliptic sequence is 
equal to 1. It can be calculated that the Milnor number ,u = 121 + 4. By 
Tlheorem 3.7, -K' = V-2I ZB. + E, K'2 =-31. By (3.2) we know that 
dim H '(M, 0) = I = length of the elliptic sequence. 

DEFINITION 3.10. Let V be a normal 2-dimensional Stein space withp as its 
only weakly elliptic singularity. Let 'r: M -> V be the minimal good 
resolution. Suppose K' exists. If dim H '(M, ?) = length of the elliptic 
sequence, thenp is called a maximally elliptic singularity. 

THEOREM 3.11. Let rr: M -* V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only maximally elliptic singular point. 
Then v?p is Gorenstein. 

PROOF. If length of the elliptic sequence is equal to one, then Lemma 3.6 
says that p is a minimally elliptic singularity. By Theorem 3.10 of [24], v?p is 
Gorenstein. Therefore we may suppose that the length of the elliptic sequence 
is greater than or equal to two. By Theorem 3.7, we know that the elliptic 
sequence is of the following form: 

ZBO=Z, ZRBI ,..., ZBR, ZB, =ZE, I > 0 and -K'= ZB,+ E. 
i-o 

Serre duality gives H '(M, C)) as dual to H '(M, S) where a is the canonical 
sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By Theorem 3.4, p. 604 
of [20], for suitable M, which can be arbitrarily small neighborhoods of 
A = v-1(p), H,(M, E) may be identified with H?(M - A, U)/H0(M, E). 
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Let U1 be a holomorphically convex neighborhood of B1 such that 1: 
U1 -> V1 represents B1 as an exceptional set where V1 is a normal two- 
dimensional Stein space with 41(B,) as its only weakly elliptic singularity. We 
claim that Ku,, the K' cycle on U1, exists. In fact 

- Kb1 = ZBI +* + ZBI + E, 

because for all A, 5 B1, 

i~~~~~R 1 E), 

= Ai* (K') = 2gi-2-Ai Ai. 

So the length of the elliptic sequence relative to 4, is I + 1. Let wj,... I W1+2 
E H?(M - A, 0) such that its images form a basis for H?(M - 

A, U)/H0(M, Q). Suppose, on the contrary, that v?p is not Gorenstein. We 
claim that the pole sets of wi, 1 < i < I + 2, are contained in B1. For if there 
exists w,, say wI, having a pole set which is not contained in B1, then the 
divisor of wj has the following form: 

t n n 

= 2aiAi+ bjAj+ dkXk, a>O, bj > O, dk > 0 

i-1 j-t+l k-I 

where t > 1, X, Z A, X, n A- #0, 0VI < r < n1, and there exists 1 < i < t 
such that Ai Z B1. For any Ah 5 A, 

Ah * (K') = Ah * (wl)g Ah* ((wl) - K') = 0. 

Let 
t n 

[W1]=-I a,Ai+ I bjAj. 
i-I j-t+l 

Then Ah.* ([wIJ - K') < 0 for all Ah 5 A. Since vEp is not a Gorenstein ring, 
either there exists 0 < by, t + 1 <j n, or there exists dk> 0, 0 < k < nl, 
by Lemma 3.6. If the former case occurs, then [wJ - K' 0 because K' is a 
negative cycle. If the latter case occurs, we claim that [wJ -K' =# 0 also. For 
let 0 < r < n1 such that d, > 0. There exists Arg A such that A, * Xr > 0. 
Then 

Ar *([W>] 
- K) = Ar*[wj 

- Ar* K' = Ar*[WI1 - Ar* (WI) 

ni 

=A* "1] -Ar [1+E kXk 
k-O 

n 
= -Ar E dX -dr < ?. 

k-O 

Therefore [olJ - K' is not zero in any cases. Notice that some coefficient of 
Ai Z B1 in [w1] - K' is strictly less than the corresponding coefficient of that 
component in the fundamental cycle Z because - K' = V-0i + E. If 

This content downloaded  on Tue, 18 Dec 2012 01:38:26 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MAXIMALLY ELLIPTIC SINGULARITIES 295 

[w1] - K' is a positive cycle, we let Z' = infa[w - K', Z). It follows from 
M. Artin's argument, pp. 131-132 of [2] that Z' is also a positive cycle and 
Z * Ak < 0 for all Ak C A. However, Z' < Z. This contradicts the definition 
of the fundamental cycle Z. So [w1] - K' cannot be a positive cycle. Let 

s n 

Zo WI ]K = hiAi - 2, cjAj,, hi > , cj> O,s <n. 
i-I j-s+1 

Without loss of generality, we may assume that c, 1 = max(cj), s + 1 j j < 

n. Consider 

n 

Z, = c,+1Z + z,+,Zo = EzAi) 
i-O 

where Z = En. Iz,A,. Since ZO - Ai < O for all Ai C A, we have Ai Z, O for 
all Ai5 CA. Also z,' > O for I < i < s and z,1 =O. By changing the index if 
necessary, we may assume Z1+2 = mmn(z,'), s + 2 < i < n. If zs'+2 > 0, then 
Z, is a positive cycle with supp Z1 c A because z,,+I = 0. If Zs1+2 < 0, 
consider 

n 

Z2 -Zs+ 2Z + Zs+2Z1 = I Zi2i; 
i-I 

then Ai -Z2 <0 for all Ai C5AI zj2 > for Il li <s+ I and Z.,2+2 = - 
Continuing this process, we finally get a positive cycle D on A with supp D 
C A and Ai D < 0 for all A, 5 A. But this is impossible by previous 
argument. We conclude that the pole set of wi, 1 < i < I + 2, is contained in 
B1. It follows that wi/ U1, the restriction of w, to U1, is in H0(U1 - B1, S) for 
all 1 < i < I + 2. Since the length of the elliptic sequence on U1 is I + 1, by 
Theorem 3.9, dim H1(U,, ?) < I + 1. Hence 

dim H (U1 - B1, S2)/HO(U1, Sl) < I + 1 

and there exist X1,. . , X1+2 E C, not all A, = 0, such that 

XIWI/Ul + * + X1+2W,+2/Ul E Ho(U1, a), 

where w / U1 is the restriction of w, on U1. It follows that 

XIwI + * * * + A1+2W1+2 E= HO(M, Q2), 

which contradicts our assumption that images of w1, .. ., w1+2 form a basis 
for H?(M - A, Q2)/H(M, Q2). 

THEOREM 3.12. Let -: M -) V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only maximally elliptic singularity. If 
ZE 

- 
ZE < -2, then mO = ?(-Z). 

PROOF. If the length of the elliptic sequence is equal to one, then Lemma 
3.6 says that p is a minimally elliptic singularity. By [24] we have m? = 
e (- Z). From now on, we assume that the length of the elliptic sequence is 
greater than one. By Theorem 3.7, the elliptic sequence is of the form 
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ZBO=Z, ZB * *... ZB,9 ZE = ZB,+1 I > .O and - K'=' ZB+ E. 
ZBO I 1+1 ~~~~~~~~~i-O 

Suppose A1 5 B1. We want to prove that 

H?(M, ?(-Z)/?(-Z - A1)) = C 

and 

H?(M, ?(-Z)) ->Ho (M, (-Z)/(-Z - A1)) 

is surjective. We know that the Chern class of the line bundle associated to 
0 (- Z)0 (- Z -A 1) is -A 1 * Z = 0. By the Riemann-Roch Theorem, 

dim H?(M,g (-Z)/?(-Z-A1)) < 1. 

In fact, H?(M, (-Z)/(-Z - A1)) = 0 only if A1 is an elliptic curve and 

0 (- Z)l 0 (- Z - A1) is a sheaf of germs of sections of a nontrivial line 

bundle over A1. Suppose, on the contrary, that H?(M, (- Z)/? (-_Z - 

A )) is not isomorphic to C or 

Ho (M, ? (-Z))- Ho (M, ? (-Z)/(-Z - A1)) 

is not surjective. Then 

Ho(Mg ?(-Z - A1))Ho(Mg ? (-Z)) 

is an isomorphism. Choose a computation sequence for Z as follows: 

Z0=OZ=Aij,=Aj*...,Zr ZB * ... * Zr,1 Z 

Consider the following sheaf exact sequences. 

? 0(- Z -Z2) 6(Z -ZI) 0(-Z - ZI10(- Z -Z2) 0 

0 (Z -Z3) (Z -Z2)0(- Z -Z2)/O(- Z -Z3) 0 

?~ 
?6(-Z- 

AB ) 
(- Z-(Ar, i)> 

(ZZr (-Z- Zr) 
-.O (3.4) 

The Chern classes of the line bundles associated to ? (-Z - Z,)/? (- Z - 

Zi+1) for 1 < i < r- 1 are strictly less than zero. By the Riemann-Roch 
Theorem, 

H?(M' 0(-Z -ZX)/6(-Z - Zj+)) = O for I < i < rl-1 

The corresponding long coholomogy exact sequences of (3.4) will show that 

HO(M, ?(-Z - Z,+1))->HO(M,g (-Z - Z,)) 

are isomorphisms, for 1 < i < r- 1. By composing the maps, we get 

H0(M9 ?(-Z- ZB))+HO (M, ?(-Z)) 

is an isomorphism. However, by [2], m? c ? (-Z). Therefore, if g E 

H0(M, min), then g e H?(M, ? (- Z - ZB)). Since v?p is Gorenstein, there 
exists w E H?(M - A, S) having no zeros near A. Serre duality gives 
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H'(M, 0) as dual to H'(M, Z), where Q is the canonical sheaf, i.e., the sheaf 
of germs of holomorphic 2-forms. By Theorem 3.4, p. 604 of [20], for suitable 
M, which can be chosen to be arbitrarily small neighborhoods of A = 

,- (p), H (M, D) may be identified with H?(M - A, f0)/H0(M, 2). Sincep 
is the maximally elliptic singularity, 

dim H?(M- A, Q)/H?(M, Q) = I + 2 

and there exist w,, . . . , w E H(M - A, 2) such that images of 
,, ... , w1,1, w form a basis of H&(M - A, S)/HH(M, g2). As w is nonzero 
in a neighborhood of A, we may assume that w, = fiw, wherefi E H?(M, 0). 
Moreover, we can assume thatfi are vanishing at p; otherwise we need only 
replace fj by fi - f (p). Let U1 be a holomorphic convex neighborhood of B2 
such that 4: U1 -* V1 represents B2 as an exceptional set where V1 is a 
normal two-dimensional Stein space with ?(B2) as its only weakly elliptic 
singular point. Observe that the K' cycle on U1 which is denoted by Ku, is 
equal to V,2 ZB4 + E. Since in this case, the length of the elliptic sequence is 
I by Theorem 3.9, dim H I(Ul, C) < 1. On the other hand, as (X) = V.oZB, + 

E and H?(M, m6) 5 H?(M, 0(-Z - ZB)), we can restrict , = 

f,.. , 1.,+ = f.+ to to U1 and get {X1/ Ul, ... ., 1+ I/ UI) which is linearly 
independent in H0(UI - B2, Q)/H0(U1, Q). But this is impossible since 
dim H (M, 0) ) 1. So we conclude that 

H0(M, 0(-Z)/0(-Z - Al)) = C 

and 

H?(M, 0(-Z))-*Ho(M, 0(-Z)/0(-Z - A)) 

is surective. Given a point a E A1l let 

I EH0(M, ?(-Z)/?(-Z - Al)) 

be nonzero near a as a section of the line bundle. f E H0(M, (9 (-Z)) 
projecting onto I will generate ( (- Z) near a since it must vanish to the 
prescribed order on A 1 near a and will have no other zeros near a. 

In order to prove 0(-Z) 5 m, it remains to prove 0(-Z) C mO near 
A - B1. There are two subcases. 

Case (i). There exists Ai C supp E such that E ZE + 1 < AI*ZE< -I or 
E = Ai is a nonsingular elliptic curve. For any A1 IZ supp E, choose a 
computation sequence for the fundamental cycle Z of the following form: 
Zo = 0Q Z, = Ai, = Al, . .., Z, Zr+ *** s r+ 1= Zr + ES + I , Z9 Z00,Zj=AjjA1,...,Z~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,Z~~~~~~~~j, . ..,Z,~~~~~~~~~~~~~~~~~k = Zr + E,. ..,Zr,j =~~~~~~~~~~~~~~~~~~.. r+ =Z +E . 

in which supp Zr 5supp Z-supp E and Zr+ -Zr ... 9 Zr+k-Zr E is 
part of a computation sequence for Z. If suppE has at least two irreducible 
components, then our hypothesis guarantees that the computation sequence 
can be so chosen such that Ai,k- ZE < 0 by Proposition 2.5. Consider the 
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following sheaf exact sequence for n > 0: 

Diagram A (page 299). 

We claim that 

( ZB + ZE )Ai < O for all Ai A. 

It is obvious that 

Ai (X ZB + ZE) < O forAi C supp E. 

If Ai . supp E, then A, * ZE = Ai * E by Proposition 2.5. Hence 

A* 4 +B 4) AE = 4iZ, + E) 

Ai * (-K) -Ai*K= 2 + AiAi < O forA LZsuppE. 
This proves our claim. 

is the sheaf of germs of sections of a line bundle over A,j of Chern class 
-A,* (2 O ZBi + ZE + nZ + Zj. 1). If supp E has at least two irreducible 
components, from Proposition 2.5, 

Ai+k (Zr+k-l)= 2 and A, Zj_I=1 forj # r+k. 

So 

A (, ZB, + ZE+ nZ + Z_ ) i< 1 for allj and all n. 

Thus 

H'(M (9 Zi- Z )/e(l / O ZB - ZE - nZ - Zj)) -O 

and the maps 

HI (M, e EZBI - ZE - nZ - Z H)) H M ( ZB, -4- nZ - i--l 

in (3.5) are surjective. Composing the maps, we see that 

P: HI (M, e : ZB,- - ZE - nZ - 
Zj HIM ZBZE Z))) 

is surjective for all n > 0. For sufficiently large n, p is the zero map by [7, ?4 
Satz 1, p. 355]. Hence 

H [M, ( 2 ZB -ZE - ) 

\i =0 I 
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If supp E = Ai is a nonsingular elliptic curve, then AiAi <-2. By 
Corollary 2.6, we know that e* = zi = 1, where E = :ejAi, Z = :ziAi. From 
Proposition 2.5, A,* Zj1 I = 1 for allj. Therefore 

, ZB+ ZE+ nZ+Zy_) 1 j forallj#r+ 1 

and 

Ai,,l* ZB, + ZE + nZ + Z r -1 
i o 

Thus the Riemann-Roch Theorem will show that 

HI M, ( zB, 
- ZE -nZ - Zjl)/?(-XZB, - ZE - nZ - Z)j=0 

for all] and n. A similar argument will show that 

H I,M, (9( ZB, -ZE -Zj =0. 

In particular, 

H' M, ( ZB, -4ZE-A1)] =0. 

Therefore 

Ho (M ZBIZ- ZE ( , B, E ZB( 
- 

ZE AI)) 

is surjective. We remark that the above argument is also applicable to the 
following situation. With notation as above, there exists Ai 5 supp E, Ai # 

Ai+,, such that Aj' ZE < O 
Case (ii). Supp E has at least two irreducible components and there exists 

Ai 5 El such that e, = 1, Ai * ZE < 0 and Aj 4 ZE= 0 for all Aj 5 El where 
Aj # A,. The proof of Case (i) fails only because Aik # Ai, i.e., A,1* ZE < 

0. Suppose first that 

Aln Ai,1 = A, n Ai #0 

Choose a computation sequence for Z with E = Zk, Aik = Ai, Aikl = Al. By 
Proposition 2.7, 

HI [Mk ( ZB, - ZE - Z) 0 for all]. 
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Hence 

Ho(M, e( - ZE--zE))*H (M, ( - - ZE D,- ZE - Zk+1)) 

is suriective. It follows that 
I 0(Zl( -OZ4-Z) 

Ho M, ek- IZB, -ZE) and Ho ~M, (',ZB ZEk)J 
( ,O )) ( eF 2 B, oZ ZE Zk+1l)) 

have the same image R in 

O-+HHO(M, e( OzH zE zk) ) H e(Z -ZOZ- ZE) ) 

(+H M,(-71.-OZ, - ZE - Zk) ) 

is an exact sequence. Thus the image of 

Ho M 
( 

ZB 
- ZE 

i Zk)/( ZB, ZE - Zk +1) 

which is injected into 

HO M,( O) ZB; - ZE)( B E - - A I) 

via the natural map is contained in R. If 

HoM ( .o - Z - ZB4- ZE- Zk+)I )]O 

then the elements of R have no common zeros on A I- (A i n Ai) as sections 
of the line bundle L on AI associated to ? (-Y.OZB, - ZE)/? (- . ZB oZ - 

ZE- A1). If 

HO M ( *- Z, E Zk )/ ( ZB; ZE -Zk + I )!= 

thenA1* (AI .OZB, + ZE) = 0. Hence 

Ho , 0 Z4 E )/ZE ( / ZB; ZE- Al =C. 
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We claim that 

HO( M ( -- ZE )> (M, e( Zg zB1-ZE)/Z(-4 zB1-ZE-Al)) 

is surjective. It suffices to prove that the map is not a zero map. Suppose 'T is 
the minimal resolution; then ZE = E and hence Ai * ZE < -2. So 

Ai 
X 

ZB, + ZE < -2 
i=O 

and 

HO M ( i-? )/ (ZE ZB, -ZE - Ai) > 3. 

The image of 

p: HO(M, Z4- B , - ZE' 
( ( i-O t / 

( ( i ) ZB ZE -Ai)) 

is a subspace S of codimension 1 in 

Ho M~ ( B - ZE) /( ZO B 
- ZE- Ai)]. 

Hence the elements of S have no common zeros as sections of the line bundle 
L, on A, associated to 

ZB-O -ZE)/?( , Z ZE-Ai) 

by Proposition 2.8. If iT is not the minimal resolution, we still get that the 
elements of S have no common zeros as sections of the line bundle Li onAi 
associated to 

ZB - ZE )/( ZB- ZE- Ai) 

by an easy case-by-case check using Proposition 2.8 with Y = V OZB + ZE. 
It follows that 

HO 
(, Z- 

- 
ZE)) 

o 
(M' 

, Z - ZE ) (Z4 Z- ZE -Al) 

is not a zero map and, hence, a surjective map. 
To finish the proof of Case (ii), it remains to consider those AI E IE such 

that A, n Ai =0 and the computation sequence for Z starting from Al in 
order to reach IEI must first reach Ai. Choose a computation sequence for Z 
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with E = Zk, A,k = A, Aik+, n Ai #0, Aik+, = A1, A1 Z IZk+t-11 and A,, 
k + 1 < j < k + t, are distinct to each other such that A, I El. By Propo- 
sition 2.7, 

HI |M (9 - ZB, -ZE- Zj ) 0 for allj. 

Hence 

Ho( M, 
e 

ZB, ZE)) H( M, ( ZB ZE ) /( ZB ZE Zk+t)) 

is surjective. It follows that 

H(M&(~ Z i-VIE) aZ (M - ZE) 
Ho , - Z, -ZE and Ho M, ~~z- kg 

have the same image R in 

Ho(M, 6 ZB. - ZE)/&(-X - ZE - Al)) OH(M, ( (i-OZ ) ( io ZM, ZEA1)) ) 

( OM 0ef-, OZA,- ZE -Zk+$- ) Ho Ml, 2 Z ZE- )j 

ZB, ZE -Zk+1 

-HO (M, &(-OZ4 o ZE) O 
f)(- -oZB, Zk+,-I) 0 

is an exact sequence. Thus the image of 

Ho [f ( Z40 - ZEt- Zk+t1I)/?( XZB- ZE - Zk+t)j 

which is injected into 

Ho [M ZB, -0 ZE)/ ZB/ - ZE - A )] 

via the natural map is contained in R. If 

Ho{ M ( ZB- ZE-Zk+tI )/( ZB -ZE -Zk+) #0, 

then the elements of R have no common zeros on A1 -(A1 n Aik+) as 
sections of the line bundle L1 on A 1 associated to 

i=O i=O 
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If 

Ho M ( ZBo -ZE Zk+t- I) ( ZB, ZE Zk+t)] =0, 

then A1* (V=OZB + ZE) = 0. Hence 

Ho M ( ZB? 
- 

ZE 2 BE ZE- A l ) =C. 

But by induction, we know that the elements of the image of 

Ho (MS (- E ZBi - ZE)) 

H(M. ( Z E - ZE)/( Z - ZE+- A 

have no common zeros on Aik+ -(Aik+I n Aik+ _2) as sections of the line 

bundle L, on A, associated to 
Ik+,_, Ik+,_I 

ZB ZE)/ ZB( ZE A 

It follows that 

Ho(M, ( 4 - ZE) Ho M, ef Z4 z,-ZE Z,,-ZE Al)) 

is again surjective. So far we have proved 0 (- Z) 5i mi. But m? C 0 (- Z) 
by [2]. This completes our proof of the theorem. 

PROPOSITION 3.13. Let 7T: M -) V be the minimal good resolution of a normal 
two-dimensional Stein space with p as its only maximally elliptic singularity. Let 

ZBO= Z, ZBI * * , . ZB,, ZE ZB,+ 

be the elliptic sequence. Then for any 0 < h < 1, there exists f C 
H?(M, 0(-V.OZB)) such that f a H?(M, ?(- Y+ZB)). In fact the 
vanishing order of f on A, is precisely i 0Bzj, where ZB = Sk BzkAk and 

Aj C Bh+ I 

PROOF. By the definition of maximally elliptic singularity, dim H'(M, 0) 

= the length of the elliptic sequence. By the proof of Theorem 3.9, we know 

that maximal ellipticity implies 

H '(M, 0eh v ) = + for allO < h < 1. 

Moreover, 

Ho (M, 0h+z )- H (M, 0,i_B,D) 

are surjective. Consider the following commutative diagram with exact rows: 

Diagram B (page 305). 
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SinceH '(M, 0 (- OZB - ZE)) = 0 by Proposition 2.8, 

Ho?( Mg Ho ?( MS OVI-i _B+ ZE) 

is surjective. It follows that 

H?(M, 0) -H0(M* HOZ ) 

are surjective for all 0 < h < 1. An easy diagram chase will show that there 
ens~~~~ E F,~ JZB Let AjC exists f E- H?(,C(E ?B) but f a H?(M, 0(-Vh+IZBi)) LtA 

Bh+ P. Choose a computation sequence for ZBA+I of the following form: 

Z0=O,Z1=A>,... , Zr,h =ZBA+ I 

Look at the sheaf exact sequence: 

Diagram C (page 305). 

If the vanishing order of f on Aj is larger than E B zj, then the usual 
cohomology exact sequence argument will show that f E 
H?O(M, (-hV +'ZB )), which is a contradiction. Q.E.D. 

The following corollary is a partial converse of Theorem 3.2. 

COROLLARY 3.14. Let V be a normal two-dimensional Stein space with p as 
its only maximally elliptic singular point. Let 

ZBO =Z ZB,... I ** Z,, ZB4,+ =ZE 

be the elliptic sequence. If there exists A C I El such that the coefficients of A 
in ZB, 0 < i < 1, are equal, then there exist f E H?(M,C 0), X E H?(M - 
A, S) such that , fo, ... , f+ ' w forns a basis of H(M, 0). 

PROOF. An easy consequence of Theorems 3.7, 3.11 and Proposition 3.13. 
The following theorem will be useful in calculating the Hilbert function 
dim m /mn+'. 

THEOREM 3.15. Let rr: M -* V be the minimal good resolution of a normal 
2-dimensional Stein space with p as its only maximally elliptic singularity. If 
ZE * ZE < -3, then 

H?(M,g 0(-Z)) Xc H?(M, 0(-nZ)) .H(M, ((n + 1)Z)) 
is surjective for all n > 1. If we assume further that the length of the elliptic 
sequence is equal to two, then the above map is surjective for all n > 1. In this 
case, 

m n_ H?(A, 0 (-nZ)) for alln > 0 

where A = -(p). 

PROOF. It is true that H?(A, 0(-Z)) = proj lim H0(U, 0(-Z)), U a 
neighborhood of A. Since Z is minimal, H?(A, 0 (-Z)) = m. By Theorem 
3.7, the elliptic sequence is of the form 

ZBO=Z' ZB , 4, * ZB, ZE and K=- ZB- E. 
1-0 
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Step 1. We are going to show 

Ho Me( ZB - ZE )]C H[ M ( ,Z_ZB 
- )] 

H0 iM, C) (-(n + I)Z - 2 ZB, 
- 2ZE ) 

is surjective for all n > 1. It suffices to show 

T: H (MS &(- 2 4,, )E ) @XC H? (M, &(-nZ - ) -1Z4 - ZE) 

0-(nZE )Z / +Z i)Z -Z.JB,Z) 

- Hk(M' e(-(n + 2)Z-2V_'Z, -2ZE) 

is surjective for all n > 1. 
Let us first demonstrate this fact. We first show that the image of 

Ho ( M )I c Ho |M O -nZ-Z - ZB ZE 
contains 

iO [m ?( mz- 2 zB-2ZE)] 

for some m. Let 

f ...,sE Ho |M~ ( nZ - ZB, -ZE) 

generate ?)(- nZ - :1. - ZE) as an 6-module. Proposition 2.8 and the 
proof of Theorem 3.12 guarantee that such f's do exist. The 6 -module map 

( iI ) (iI) 

given by (g1, ... , gs) E- fg, is then surjective. Let K = ker p. 

(-) 
K -( 

I) ) ( (n + I )Z -2 zZB - 2ZE ) 
+ 

is exact. Multiplying by 0 (- kZ), we get 

Diagram D (page 308). 

with the vertical maps the inclusion maps, is commutative. The verification 
that the first line is exact is the same as the verification that [19, (5.5)] was 
exact. 

Diagram E (page 308) 
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is commutative with exact rows. By [7, ?4 Satz 1, p. 355], a* is the zero map 
for sufficiently large k. Then given 

hEHo M3?( (n+k+I)Z 2X ZB, 2ZE )] 

A*(h) = p*(g) for some g, by exactness. Letting m = n + k + 1, we have that 
the image of 

Ho Mg 0 (Z- ZB- ZE)! Ho | , ( B-I ZE 

contains 

H[ M, ( mZ2- 2 zB - 
2ZE) 

as required. 
If m > n + 1 > 2, we shall show that the image of 

Ho SM 6( ZB, - 
ZE)| 

Ho Mg 
, (n *-I 

ZB 
IZ 

contains 

Ho Mg ((m- I)Z -22 ZB, -2ZE) 

By induction argument, we will be done. Look at the diagram: 

Diagram F (page 309). 
Since m > 2, 

H' Mg (-mZ -2 ZB -2ZE )]= 

by Proposition 2.7. Hence the vertical sequence is exact. We also notice that 
the maps 

0 -Z T1-1 ZE)1 
Ho Mg (Z- 2ZB-Z E )JH 

ZB, 
- 

ZE M ) J 

H((m S ( (m- 2)Z - ViZB ZE) 
+ H? [ -((M 1)Z - Y 1ZB- ZE) J 
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are surjective because 

H' Mg 3( 2Z - ZBE ZE)] 0 

r~~~~~ 
H' - I)Z - ZB- ZE 

by Proposition 2.7. The horizontal map in (3.7) is surjective by hypothesis. It 
follows easily that the image of 

Ho |Mg (-Z - ZB - ZE ) 9S HO| Mg 0 (nZ - ZB - ZE ) ~~~~~~~~~~~~~~~~~~ 

contains 

Ho Mg 0) ( - 1)Z 
- 2 ZB, -2ZE)]. 

It remains to prove (3.6) is surjective for all n. The proof breaks up into 
three subcases. 

(i) There is an Ai, call it A 1 such that ZE ZE + 1 < A ZE < -2. 
(ii) There is an Ai, call it A 1, such that A IZE = ZE * ZE. 
(iii) Ai * ZE = l- or O, all Ai 5 supp E. Take A I * ZE =-1. 

In case (i), all irreducible components are nonsingular rational curves. 
Choose a computation sequence for Z with E = Zk, Zr,1 = Z and A,k = Al. 
Consider 

T,: HO (M, &(-Z-B-ZE) ? Ho M, &(-nZ-B-ZE -1) 
6(-Z-B-ZE-AL) J 6(-nZ-B-ZE - Zj) 

Ho (M' e(-(n + I)Z-2B-2ZE-Zj)-) (3.8) 

where B = IZB 
To show that T in (3.6) in surjective, it will suffice to show that Tj in (3.8) is 

surjective for allj. Indeed, since all of the first cohomology groups 

H ,|Mg 6( nZ - ZB, - ZE - Zj O for allj, 

by Proposition 2.7, 

Ho [Mg '(-nZ - X ZB - ZE /( (n + 1)Z -2 ZB, - ZE)] 
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can be written via successive quotients as 

[O 
9 

(-nZ-B-ZE-Zj 1 

H ?(-(n+1)Z-B-ZE) J 

- [ HO 0(-nZ-B-ZE-Zj-I) 
?(-(n + 1)Z -B- ZE) J 

.*Ho{Mg '9(-nZ-BB-zZE- Zj,) ?, I < j < 1l1 

where we denote B = VI=_ZBW 

Ho(M, & ((n + I)Z - 2 ZB, - 2ZE)/e( -(n + 2)Z - 2 Z, - 2ZE)) 

also can be written via similar successive quotients. Moreover, 

H' [Mg?(-X B4 - ZE-Al) =0 
!. (.o ) 

by Proposition 2.8 and the proof of Theorem 3.12. Now consider the 
commutative diagrams: 

Diagram G (page 309), 

1 ( j < 
r,l,, 

where we denote VOZB = G and V_ZB= = B. Thus if (3.8) 
is surjective for allj, (3.6) is also surective. 

Suppose that the target space in (3.8) is nonzero, i.e., 

-,; ((n + 1)Z + 2 ZB, + 2ZE + Zj-l1) > 0. 

We need 

-A,; (Z + ZB, + ZE )> ? 

and 

- A< (nZ + Z8 + ZE + Z -l) > 0 

Forj+ kg Ag* - 1. If+- A * ( +ZBE + ZE) > 0, then 

-- A,j nZ + ZBJ + ZE + Zj-1I > O. 
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If -A. (V.OZ'a + ZE) =O, then 

- (~n B + ZE+ 

-Ai.. ((n + I)Z + 2 2,ZB + 2ZE + Zj_ Il > O. 

For j = k, Aik * Zk- = 2. By construction Aik* ZE < -2 and so (3.8) is 
surjective for allj. 

Let us now do case (ii). Suppose supp E has more than one irreducible 
component. The proof of case (i) fails only because the maps 

Ho [Mg e(-I ZB~ - ZE) 

HO ( ZB ) ZE)/( 0 B, ZE AI)j 

and 

Ho[Mg (( B - - ZE)] 

HO M ? 4B,- ZE)/?B? - ZE -A l)] 

need not be surective, where Ai k, JEl and the computation sequence 
starting from Ai kin order to reach IE l must first reach A 1. In (3.8), 

HO(M, ( ZE) Ho(Ml -4) 
0(7Z1B-0 ZE -Aik) / e( .-o0z ZE4- 1) / 

must be replaced by the subspace S of Proposition 2.8. 

dim S = -Al ZB + ZE =-Al . ZE = -ZE ZE > 2. 
i=O 

Also, 

dimHO (M e( nZ - Z -ZE -Zk-l)/e( nZ-n ZB ZE Zk)) 

=-A( nZi-I Z+ZE+Zk)I +1=-AI ZE-2+1>2. 
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Under these conditions 

0 nZ- V.1ZB - ZE - Zk- Tk: S @JC Ho EM., 
11 E ^- 

LCtM I(fZIZB, ZE -Zk ] 

- 

) 0(-(n + 1)Z- 2V 
1ZB- 

2ZE- Zk-l) 1 
1M, e(-(n + 1)Z - 2V.1ZB - 2ZE- Zk) 

is still surjective. Namely, consider the subspace T of S of sections which 
vanish at some given point, say a E A 1. T has codimension 1 in S. If all the 
elements of T have a common zero at some point b # a E A 1 or if all have a 
second order zero at a, then T, having codimension 2 in 

HO [M ?( B - ( / Z- ZE) ( - )- 1 

represents all sections of a suitable line bundle over A1. Then Tk is readily 
seen to be surjective, as in the proof of [19, Lemma 7.9, pp. 144-146], but 
more easily. If the elements of T have no common zeros, then think of T as 
codimension 1 subspace of the sections of a line bundle and replace S by T in 
the previous case. Eventually we see that Tk is surjective when dim T = 1. 

Also in (3.8), 

HO Mg ( ZB - ZE ( Z0 B, - ZE - 
A+k) 

must be replaced by subspace R,+k which is the image of 

rPt+k: Ho [Mg ?( ZB4 ZE)] 

I ( , =? 
- 

( So B- ZE A1+k)] 

if Pt+k is not surjective. By the proof of Theorem 3.12, case (ii), we know that 
R.+k has at most codimension 1 in 

Ho[Mg(IB zB-ZE)/?(XZB-ZEA l)] 

Moreover, the elements of R,+k have no common zeros as sections of the line 
bundle on A. k associated to 

gt+k / Z,-ZE j+ 
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We claim that if )t+k is not suiective, then 

di (OM (Z i-I 2 4 Z t+k- I /)/ ( ;Z Z,% ZE Zt+kS) > 2- 

Since 4t+k is not surjective, it follows from the proof of case (ii) of Theorem 
3.12 that 

- Aik , ZBi + ZE > 1. 
i-o 

We will prove that actually 

- Aik +, ZB + ZE 
i. o 

For if -A. (Y' .O ZBR + ZE) = 1, then 

An inductive argument, as in the proof of case (ii) of Theorem 3.12, will show 
that there existsf E H?(M, (-X OZB, - ZE)) such that the image of f in 

HO Hi -0 Z( - ZE) ( 2 B 
- ZE- Aik)] 

as section of the line bundle associated to 

ZB - ZE )/ (- ZB - ZE - Aik+) 
i=o i o 

has no zero on Aik n Aik+. Hence, the image of f cannot be in the image of 

H O Mg I )/ - Z ZB, ZE- Zk+)] C 

which is injected into 

HO [M (9 ZB - ZE)/( ZB - ZE- Akj] 

via the natural map and which is contained in R,+k. Hence mt+k is sujective. 
This contradicts our assumption. We conclude that 

- 
Aik(+ I ZB, + ZE > 1 

i o0 

and, hence, 

dimH( , e( nZ X ZA Z ZE - Zt+k- I)/(f l - Z Z - ZE - Zt+k) > 2. 
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Now repeating the argument above, we get 

Tt+k: Rt+k ?c HO CMg - 
[ 

I 
: 

ZE Ztk1 
0 (-nZ - V/ IZKB- ZE Zt+k-)| 

I' 
H 

0(-(n + 1)Z - 

2- 24z- 

ZE +k1) 1 
1M, ?(-(n + 1)Z - 2..1ZB - 2ZE 4 Z+k) 

is suriective. 
In case E = A1 = ZE is an elliptic curve, we know that 

HO(M G(-AOZB 
- ZE) H0 ( M I( nZ-,Z 

ZE) 

0 (-V_OZB -ZE -AI) / \ G(-nZ-Z...IZBI - ZE - ) J 
Ho(M G(-(n + 1)Z - 27,._,ZB, - 2 )E) 

0 G(-(n + 1)-2-27,zB,ZBJ - 2ZEZ) J 

is surjective. This is shown in [30]. The result follows from the proof above 
and the proof of case (i). 

in case (iii), the proof of case (i) fails only because 

H?o(M e(nz- ZB1- ZE-ZkI)/G(-E k ZB, ))ZEZk 

We can still get 

H (nM + )Z-2_ - 2ZE -Zk-)l 

(n )- 2 z -zE Zk) 

as an image as follows: There are two subcases. First, suppose that A1 can be 
chosen so that A1 * ZE < 0 and el > 1 in E = EeA,. In this subcase ZE = E. 
Then choose a computation sequence for Z with Ai, * ZE< O, E= Zk, 

AI = Aik and with Zq, q < k, such that Ai = Al, AI Z supp(E-A1-- Zq) 
and Ai' Zqi 1 < 0, i # 1, Ai c supp E. Such a computation sequence can be 
formed by letting A, = A1 only when A, c IEl cannot be chosen otherwise. 
Then also 0, Zq-Zq-, Zq+ -Zq- . .. , Zk- Zq- is part of a compu- 
tation sequence for ZE = Zk, which, by Corollary 2.3, can be continued to 
terminate at Ar1. Recall that Ai,* ZE < 0 by construction. Hence 

H' M, / -nZ - 
ZB- ZE- (Zk -ZY-1) ? 
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and also 

H' [M, ( ZB - 
ZE - 

Zq )| 

In place of (3.8), we use 

HO M, 
( 

- 1 -OZB,- ZE -Zq - I 

( -)( iOZB, ZE - Zq) H0 ~~~ oZBJ-ZZ) J -Z -Z 

OHO - 4- (E-(Zk-I - Zq-1)) \ 
0 H( (-nZ - 7 I_Z,- ZE - (Zk - Zq-)) I 

0 ((-(n + 1)Z - 2V1Z4 - 2ZE - Zk-I ) 

( G9(-(n + 1)Z - 21Z - 2ZE - Zk) 

Look at the following commutative diagram: 

Diagram H (page 318) 
with the vertical column on the right exact. Our result follows easily. 

In the other subcase, there must be A,, A2 and A3 all distinct, such that 
Ai * ZE< O, I < i < 3, and e, = 1, < i < 3. Choose a computation 
sequence for ZE with E = Zk such that Ai, * A > 0, Aik = A1, and such that 
when Zq with q < k, Ai = A2 is reached, A, * Zq 0 for i ? 1, 2. We may 
suppose A3 c supp Zqj, for otherwise we reverse the roles of Ai and A3. 
Since Ai, *AI > 0 and eI = 1, Zq-I + AI is part of a computation sequence 
for ZE 0 Zq - Zq 1 .. . * Zk - Zq- I is also part of a computation sequence 
for ZE. Therefore 

H' |Mg 6 - 
ZB, ZE -Zq-l -Al) = 

and 

H' IMg ( nZ- ZB, - ZE- (Zk - Zq-I = 0 

by Proposition 2.7. In place of (3.8), we use 

HO M, 0( G-ZE Zg-1) ) OHO Ml (:nz -BB-ZE -(Zk-l -1q-;)) 
f )(G G- ZE - Zq-l Al) J \ (-nz - B -ZE -(Zk -Zq-I ))J 

(HO GM 0(-(n + 1)Z - 2B - 2ZE - Zk-l) 

\~H kM (-(n + 1)Z-2B-2ZE -Zk) I 
where G = X.OZB and B = , ,ZB4. 

Look at the following commutative diagram: 

Diagram I (page 319) 
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with the vertical column on the right exact. The results follow readily. This 
completes the proof of Step 1. 

Step 2. We are going to show that 
(3.9) We can get 

Ho M 0( (n + I)Z)/( -(n + I)Z- 2 ZBR- 2ZE)j 

as an image for alln > 1. 
The proof of (3.9) breaks up into two subcases. 
(i) supp E has more than one irreducible component. 
(ii) supp E is a nonsingular elliptic curve. 
In case (i), choose a computation sequence for Z of the following fonn. 

Zo = 0?,Z, = Ai, * Zk = Zk-l + Aik 
= Eg.. 

Zro ZE9 . . . . ZrI=ZB, ... 9 Zr, ZB * *... 9 Zr,+ =ZBO Z9 

where Aik = Al and A * ZE < 0. Consider 

YBO....BA*HkM e(-zA~) ' E(-nZ - 4.iZ J-z1)/ 

0 < j < r^+, -1 < h < 1- 1, 

)'Bo....B AP\MH e(-z-A ) / 
H0 Z (M, A(-nz -nlZ- Z ZE - X-ZjZBI - ) 

( ./!3(-(n + 1)Z - -(n ZE - --1Z -Z Zj-.) 

0 j < r*+, -1 < h < 1-1. (3.10) 

To show that (3.9) is true, it will suffice to show that YBO, ..., B,bU' YBO,. .., B* are 
surjective for all 0 ( J ( Y,+l -1 <h j1- 1. Cnsider the following 
sheaf exact sequences: 

HO (-nZ-GA-zJ) (-nlZ-G- ZJ1) e(-nZ-GA-ZJl) 

0-4 ~ ()-Z-4A 

e3(-flz-2GI -2zE) e3(-flZ-2G,-2ZE) e3(-nZ- GA-~Zj) 

(-nZ- G-ZE -GhnZj) -(-nZ-G - 
ZE-1Gh-Z ) 

0? e3(-nZ-2G,-2Z4) e3(-fZ-2G,-2ZE) 

e) H- nZ ~ l~Z - I,- E-hB Zj-1 I 

03-G-n ZE - Gh Z E ) , -1 4 h Z l-1,1 ) j 

e(-nz -(n ZE - G -4)- Z LI B j 
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where we denote G_ I = 0, ZO = 0, Gh = V2.1ZB. We claim that 

Ho Mg(nZ ZB - l - - 2 ZB, - 2ZE)| 

H ,1HO |Mg Z nZ ZB, - Zj -I nZ- ZB, - Zj 

are surective for all -1 < h < I - 1 and 0 < j < rh+1. The Chern class of 
line bundle associated to 

-(,nZ-$) ZB /e(nZ' Z Z Z) 

is 

A,j(Z + E1ZB, + Zj-1 ) A,j Zi_l, 

which is less than zero for j > 1 and 0 for] = 1. Therefore for j > 1, the 
claim is trivially true because 

Ho |Mg () (-nZ- ZB, Zj - I)/ (D - nZ -)|Zj 

Forj = 0, 

Ho Mg ( nZ ZB,)/e0( nZ - ZB, -z) = C. 

By Proposition 3.13, we know that there exists 

f E Ho Mg ( nZ 4 ZBs)j 

such that the image of f in 

Ho Mg 
.nZ Z, )0 (n 

- 

Z, 

- Z 

is nonzero. It follows that 

H? (U 0(-n 7-?) V- 0 e-nz -z lh_Zs) 
H ( (-nZ-221._lZ -2ZE)) ( &(-nZ- _ lZB,- Zl) 

is surective. We next prove that 

00(-nZ - X.1ZB - ZE - 1ZB ZJ-14i 1 - 

H1M ?(-nZ - Vi ZB - ZE- V. IZB1 -z) j 
for - < h < l- 1 andO ] j< rh+1. 
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( ,_ i-I )( i-l - 

is the sheaf of germs of sections of a line bundle over A, of Chern class 
-AiJ* (nZ + V,ZBR + ZE+ Y .ZBi + Zj-,). Recall that by construction 
Aik *ZE < - 1Therefore, 

I h 
- Ai * nZ + 2,ZB, + ZBi + Zj-1 > -1. 

By the Riemann-Roch Theorem, we have 

H' [M (- nZ - V. .ZB- ZE - 1 ZBi -4=j-1) 
H' M, I 0 . 

0 (-nZ - V, ZB, -ZE - 
V. Z, Z 

Now the usual long cohomology exact sequence argument will show that 

0 (- nZ - I,_ ZB, - ZE i_I ZB, Zj _1) 

t 6~~(-nZ - 2V., ZB, 2ZE)J 

?(-nZ- ., ZB- ZE 
-i.1ZR 

Zkl) 1 
+H[M ?(-nZ - i.1 ZBR - ZE - 111 ZBR Zk) J 

is sujective for all -1 < h < I- I and 0 < j < rh+I. So far we have 
proved 

H [M, ?(-nZ)/1(-nZ - 2 ZB, - 2ZE)] 

can be written via successive quotients. 

H e(-nZ -Gh-z Z) o( e(-nZ - 
EGh-z ) 

\' (-nlZ -2G, -2ZE) e(-Z - 2G - 2ZE) 

H( M (-nZ - Gh-Zj) ) -~~HIM, 
nZ- Gh- 

0, 

( (-nZ - GI-ZE- Gh- Zj) ( (-nlZ - GI-ZE - Gh- zjl) 
O ? e(- z -2G -2ZE) j *H e(-Z Z-2G1-2ZE) j 

( 
M (-nZ - G- ZE - Gh -ZI) 8 

e(-nZ-Gl-ZE-GGh-Zj) 

-1h.< I -1, 1 jrlh,where we denote G- = 0, Zo = 0, G= 

i Bi 
By the proof of Theorem 3.12, we know that 

Ho (M, ? (-Z))-* Ho (M, (-Z)/10(-Z - AO)) 
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is suriective for all A,i 5 B,. Since n > 2, 

HI(M, ()-nZ -2 Z4 - Zj o 

HI (M, C)(-nZ - I, Z R- Z - S) 

Z'4 
- 

zj 

by Proposition 2.8. Now look at the following commutative diagrams: 
Diagram J (page 324), 

- 1 ( h (l1- 1, 1 < j <rl, where we denote Gh=2..lZB, G 1=0, 
Zo = O. Thus if yB. ..., Bh, and yj. ...,Bh,j are suljective V - 1 < h < I - 1, 
O < j < rh1,, then(3.9)is true. 

By the Riemann-Roch Theorem, the target space of yB ...I B1 is nonzero 
only if j = 1. In that case -A1, Z =0 and -A,, (nZ + Vh 1ZB) = 0 
Hence YB, B. . is surjective for all h andj. Suppose that the target space of 
YBO,.., Bh2 is nonzero, i.e., 

f 1 ~~~~~~~~h 
-A . ((n + 1)Z + Z1 B+ZE+ zB+Z ) - 0 

We need 

l ~~~~h 
- A* Z > 0 and -A,* nZ + ZB + ZE + ZB, + Zj-1 > O 

But this is obvious because A,, Z = 0 for A,J CB,. 
In case (ii), E = ZE = A 1 is a nonsingular elliptic curve. We first show that 

( ( Z) ) | 0(-nZ -X VlZ -ZB ) ] 

HOr[M f9(- (n + 1)Z - 1 (3.11) 

' ?(- (n + 1)Z - - z1) J 

is surjective. The Chern classes of the line bundles associated to 

0(-Z)10(-Z -AI)q ( -nZ - s) ZB )n B Z 

and 

h ( ) a,)6 ( ) h Zh 1- 
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respectively, are equal to zero. By Proposition 3.13, there exist 

fo E H0(M, ?(-Z)), f EE Ho M~ ?( nZ - ZB)], 

fn+1,h E HO [M ?( (n + 1)Z ZB 

the images of fO fn,h and fn + 1,h in 

H0(M, e(-Z)/e(-Z - A,)),Ho(M,e( nZ X ZB)/( -nZ- I ZBiZ)) 

and 

HO M~ ( (n + ,)Z I ZB, )/?( (n + I)Z- > ZB - Z1 

respectively, are nonzero. It follows from the Riemann-Roch Theorem that 

H?(M, ?(-Z)/?(-Z - A1)) = C, 

HO |M 0 ( nZ - ZB, )/06 (-nZ - 
ZB, 

- Z, )|C 

and 

HoM( -(n0 i- ZB, )/e 
- 

(n + I)Z - z' 
ZB- z) C. 

Hence the maps (3.1 1) are surective. We next show that 

0 e(Z) OH eM(-lz- _z]-zE-7lzB,) 
Ml H (-Z-Al) e( '+)(-nZ - V:-Z ZEK_.1ZB (.12) 

HO (M (3B E Z1 Z , 12) 

is surjective. The Chern class of the-line bundle associated to 

( n i-I Z- - 
ZE 

- ZB / 1 ZB , ZE ZB -ZI 

is equal to 

4 )=h 
- Al * nZ + 2,ZB, + ZE + ZB, = -A1 .ZE >3. 
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- -> 
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._ 
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The Chern class of the line bundle associated to 
I h h ~~~~~~h ~ 

(n i_ Iz *- Z /(( IZ ?Z Z],-Z 

is equal to 
(I1 h 

- Al (n + 1)Z + ZB + ZE + ZB > -Al ZE> 3. 

Therefore 

0 ( -nZ -lZB- Z - .IZB1) 1 
d ?(-nZ- X,1ZB- ZE 4.1 ZB ) J 

O9(-(n + 1)Z - V.1ZB ZE S.1ZB,) ] 

=dimHO M ( 
0(-(n + 1)Z - X.B .1ZB -4 - z1) 

By what we have already proved, the line bundle associated to 
0 (- Z)l 0 (- Z - A1) is a trivial line bundle. Hence the maps in (3.12) are 
surjective. The rest of the proof is the same as case (i). 

Step 3. Consider the commutative diagram: 

Diagram K (page 326) 
with the column sequence on the right exact. The map of the first row is 
surjective by Step 1. It follows that the map of second row is also sujective. 

Let us make the following observation. The only thing that we need n > 1 
in the proof of the map 

H?(M, ( -Z)) ? H?(M, (- nZ))--+ H(M, &( (n + 1)Z)) 

being surective is to get vanishing first cohomology 

H9l |Mes) ( nZ - ZB - ZE- ZB - Z)] 

-I h I1- 1,0< rh+1. 

If the length of the elliptic sequence is equal to two, this is automatically 
satisfied by Proposition 2.7. Q.E.D. 
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